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Abstract

Paper type – perspective
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Problem– Evidence is quantified by statistical methods such as p-values and Bayesian posterior
probabilities in a routine way despite the fact that there is no consensus about the meanings
and implications of these approaches. A high level of confusion about these methods can be
observed among students, researchers and even professional statisticians. How can a
constructivist view of mathematical models and reality help to resolve the confusion?

Method – Considerations about the foundations of statistics and probability are revisited with a
constructivist attitude that explores which ways of thinking about the modelled phenomena
are implied by different approaches to probability modelling.

Results – The understanding of the implications of probability modelling for the quantification
of evidence can be strongly improved by accepting that whether models are “true” or not
cannot be checked from the data, and the use of the models should rather be justified and
critically discussed in terms of their implications for the thinking and communication of the
researchers.

Implications – Some useful questions that researchers can use as guidelines when deciding
about which approach and which model to choose are listed in the paper, along with some
implications of using frequentist p-values or Bayesian posterior probability, which can help
to address the questions. It is the – far too often ignored – responsibility of the researchers to
decide what model is chosen and what the evidence suggests rather than letting the results
decide themselves in a “objective way.”

Constructivist content: A constructivist attitude to formal modelling in science is applied.

Key Words – mathematical modelling, foundations of probability, p-values, frequentism,
Bayesian subjectivism, objective Bayes, reality



1. Introduction

This paper is about the principles statisticians apply to quantify the strength of the evidence
provided by statistical data in favour or against certain hypotheses. Most of these quantifications
belong to the framework of statistical hypothesis tests, such as p-values and Bayesian posterior
probabilities.

Here is an example. Note that examples are presented in a very simplified way here in order to
not distract the reader too much from the focus of the paper; but see the remarks given in
Sections 2 and 3 about to what extent such simplifications are needed on one hand, but to what
extent, on the other hand, they suppress potentially relevant details.

Assume that there are two different species of Acacia trees, which I will call species A and B.
Biologists were interested in finding out whether colonies of ants have any preference for one of
the species. They cleared 28 trees first (15 of species A and 13 of species B), and then they
placed 16 ant colonies in approximately equal distance to all trees. Each of these colonies then
invaded a tree (apparently it can be assumed that it does not happen that more than one colony
invades the same tree). The experiment resulted in the data shown in Table 1.

Acacia species invaded Not invaded Total

A 2 13
15

B 10 3
13

Total 12 16
28

Table 1: Ants data (from Sokal and Rohlf 1981:740)

Obviously, not all ant colonies chose the same species, but many more colonies chose a tree of
species B than one of species A. The number 16 of colonies does not look like a large sample
size, so one may wonder how clear an indication this experiment gives that species B is
generally preferred. A statistician can quantify the strength of evidence, but unfortunately for
the biologists, most of whom would like to have a simple number with a clear interpretation, the
statisticians have several different methods to do this, which may lead to different results and
interpretations, and all methods are riddled with conceptual difficulties.

A constructivist may even wonder whether it makes sense to postulate that there is any
(objective) truth regarding the general Acacia preferences of ant colonies, and therefore whether
it is a sensible question at all to ask how strong the evidence in the data is about any
conceivable truth. The quantification of evidence as a general problem, as well as the problem
of assuming a probability model on which a statistical analysis can be based, are instances of
the mathematical modelling of reality.

Statistical quantification of evidence is applied in a wide variety of situations. Here is a
collection of further more or less typical applications:

 Does better street lightning reduce crime?
 Does Potassium make a breakfast cereal taste better?
 Do the products of a company satisfy an industrial standard?
 Can it be a coincidence that many patients died when a particular nurse was at

work? (The Dutch nurse Lucia de Berk was convicted of murder, but the decision
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was later revised, both strongly based on statistical arguments, see Derksen 2007.)
 Does homeopathy work against allergies?
 Is a new teaching method/therapy/fertilizer better than the old one?
 Is the spectrum of a certain celestial object compatible with a standard star type?
 How strongly should evidence from DNA analysis be weighed in court?

In Hennig (2009), I have outlined a constructivist perspective of mathematical modelling, based
on the idea that mathematical modelling can be seen as a tool to arrive at an agreement about
certain aspects of reality, and therefore to construct a stable and consensual reality. In Section 2,
I give a brief summary of the ideas in Hennig (2009), including my personal version of
constructivism, on which the present paper will be based as well. Even though I do not claim
any particular originality for “my” constructivism, which is strongly influenced by authors such
as Ernst von Glasersfeld, Heinz von Foerster, Ludwik Fleck, Niklas Luhmann, and Kenneth
Gergen, I regard it as a main consequence of constructivism that every constructivist constructs
his or her version of constructivism. So it cannot be taken for granted that a concept such as
“radical constructivism” has an objective or at least a clearly defined meaning within a given
community. (My use of terms like “objective” and “realist” is explained in Section 2.)

Even among those scientists, statisticians and philosophers of science who more or less adhere
to realism, the principles of statistical hypothesis testing are highly controversial. Furthermore,
the standard approaches of presenting and teaching statistics leave many intelligent and critical
beginners confused and frustrated. Apparent paradoxes such as the observation that most
professional statisticians on one hand do not believe that, except in the most elementary and
exceptional situations, the statistical models are “really true”, but on the other hand insist that
any statistical method is only valid if its model assumptions “hold”, are nowhere discussed in
the standard literature in a satisfactory way.

A constructivist view, as opposed to a naive realist one, shifts the focus of attention away from
the question of “truth of the models”. Instead, the models and quantifications are regarded as
items of personal and social construction of perception that may be adopted only temporarily in
order to make and communicate systematic observations, without forgetting that there may be
more relevant aspects, in personal or social reality, that are ignored in the model but may still
enter the discussion of the implications and results of modelling and quantification. It also
highlights that and where personal or consensual subjective decisions have to be made about
how to perceive and conceptualise reality in order to arrive at helpful quantifications.
Quantifications of evidence are produced by such decisions, and can therefore never be fully
objective. Accepting this instead of looking for the “best method” and the “correct number”
leads, in my opinion, to a much clearer and less problematic view of what statistics can and
cannot do, what is required from the scientists in order to arrive at meaningful results and what
the price of quantification is. In this sense, I hope that a constructivist view of statistical
quantification of evidence also has to offer something helpful to the critical realist who
struggles, for good reason, with the confusing way in which the foundations behind the
statistical methodology are usually presented.

Based on the general ideas given in Section 2, Section 3 comes back to the example above and
introduces the problem of quantifying evidence in some more detail. Sections 4 and 5 are
devoted to the two major statistical approaches to quantify evidence, namely p-values connected
to the framework of frequentist hypothesis testing, and Bayesian posterior probabilities.1

Frequentism, subjectivist and objectivist Bayesianism (as explained in Sections 4 and 5) are the
major schools in the more than 100 years old controversy about the interpretation of probability
and the foundations of statistics. There is still no agreement between these schools. Section 6
compares the schools from a constructivist point of view, focusing on the question which way

1 There are also further probability-based approaches not treated here such as interval
probabilities (Walley 1991) or non-Bayesian versions of the likelihood principle (Edwards
1972).



of perceiving and constructing the world they (and the additional model assumptions that are
required for a statistical analysis) entail. This means that the choice between these approaches is
not a question of optimality or correctness, but should be guided by decisions of how the
scientist wants to think about reality in a given situation, based on personal and social
perception of the subject matter prior to the data analysis and the research aims. Section 7
concludes the paper by some general considerations about the role of model assumptions and by
listing some questions that may serve to guide researchers when deciding about how to quantify
evidence in a given situation.

2. Mathematical models and reality – a summary

Domains of reality

Before turning to mathematical models, I will give a general overview of my personal
interpretation of constructivism as applied here. In Hennig (2009) I distinguished different
domains of reality, namely “observer-independent reality”, “personal reality” and “social
reality”. Personal reality is the reality experienced by an individual. There is a personal reality
for every individual. It comprises all sensual perceptions, thoughts and conceptions about the
world. The term “constructivism” refers to the idea that personal reality is constructed by the
individual, interpreted as a self-organising system. As a constructivist, I do not interpret the
personal reality as a reflection or representation of an observer-independent reality outside the
individual, but as a result of the self-organising activity of the person (see Foerster 1984 for a
condensed overview). Construction is not necessarily meant to be explicit and conscious here; a
construct can for example be regarded as made up of behaviour implying tacit assumptions etc.

Social reality is the reality made up (constructed) by all acts of communication. This establishes
social reality as something between communicating individuals, separated from the personal
reality within each individual. This is similar to, and inspired by, the distinction in Luhmann
(1995) between the psychological and the social self-organised systems. Having in mind that
there is a heated debated among constructivists about the relation between personal and social
construction (see, e.g., Glasersfeld 2008 and the many open peer commentaries of that paper),
some more reflections may be in place. Obviously, following the conception above, this idea of
social reality (as all the ideas I want to express in this text) is my personal construct. It may be
shared or partly shared by other individuals. The text itself, as something that is meant to
convey a meaning, is part of social reality. As part of my personal reality, I distinguish between
my personal perception of the text (and of acts of communication in general) and the text itself
by means of the idea that the text may be outside of myself in a way that it is possible that other
individuals may have a different perception of what I perceive to be the same text. This does not
claim that the text belongs to any observer-independent reality and “exists” outside any personal
reality, but it does claim that the idea that there is something outside myself and that the text
and some potential readers belong to it is part of my personal reality. It does also mean that the
idea is part of my personal reality that other individuals have potentially different perspectives
on what I see as social reality. I write this text hoping that some readers will make some sense
of it, and this probably requires some related personal constructs on their side.

Social reality can be seen as a personal construct, but once the idea of social reality is part of a
personal reality, the idea of personal reality can be seen as a social construct (a construct in
social reality, made up by communication) as well. Communication (more precisely, my
perception of it) is the origin of me having language. It inspired me to all the ideas that I outline
here, and to the very concepts of personal and social reality, with which I was confronted in
perhaps not identical but closely related form, before I made them explicitly my own personal
constructs. My whole attempt to make my ideas more precise here is communication. It is
intended to contribute to social reality, to have an effect outside my own personal reality.
Therefore at least among those individuals for whom something like my social reality is part of
their personal reality, it makes sense to refer to and analyse social reality and social constructs
in their own right. By regarding personal and social reality as separated domains of reality and
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by distinguishing personal and social construction as taking place in these separate domains, I
think that it is possible to embed radical constructivism (according to, e.g., Glasersfeld 1995,
focusing on personal construction) and social constructivism (according to, e.g., Gergen 2000,
focusing on social construction) in a common constructivist framework (some in my view
related ideas are for example outlined by Raskin, Krippendorff and Baecker in the peer
discussion of Glasersfeld 2008).

Various different social realities can be defined as belonging to different social systems, but the
separation of these systems and realities is usually not as clear cut as the separation between
personal realities of different individuals. Different social realities are not necessarily disjoint
(an exchange of letters discussing scientific ideas may be seen as belonging to a friendship and
to science at the same time). Note that these constructivist concepts are themselves constructs
that belong to certain social and personal realities. So how and how strongly certain different
social systems and social realities are separated from each other depends on the degree
individuals perceive and communicate them as separated concepts. Whereas social and personal
reality are conceptually separate domains, there exists strong feedback between them.
Individuals try to communicate personal constructs and these communications (to be
distinguished from the personal constructs themselves) enter social reality. On the other hand,
the personal perception of social interaction and communication is a very influential part of
personal reality, and many personal constructs can be interpreted as personal adaptations of
social constructs (this again refers to the distinction between personal perception of social
reality and the idea of social reality itself that is potentially perceived in a different way by
different individuals, both of which are part of my personal reality and of the personal realities
of those who make such a distinction themselves).

The observer-independent reality outside the individual observers (called “world outside” later
on) can be said to exist at least as a personal construct of those individuals who construct it, and
as a social construct in the social realities in which it is communicated. It is not directly
accessible. Regarding the ontological existence of a unique observer-independent reality,
constructivism (by which I generally mean my personal interpretation of it) takes an agnostic
position.

This means that it is not incompatible with constructivism to believe that an observer-
independent reality exists and that my personal constructs and the social constructs I am aware
of have something to do with it. In this sense, constructivism is compatible with a quite weak
form of realism. Constructivists may want to built up stable and reliable personal and social
ideas about the world outside, if they subscribe to this “world outside” construct (which as
constructivists they may or may not, and which also may or may not include the belief in the
ontological existence of a unique observer-independent reality2). I interpret the “scientific
method” as aiming at an agreement about social constructs, which can also lead to stable and
reliable personal constructs. With this interpretation in mind, constructivists can take part in
science as well as realists and objectivists. It distinguishes constructivists from (my
interpretation of) objectivists that from a constructivist point of view, science can reasonably be
only about personal reality, and personal constructs of social reality and the world outside,
whereas for objectivists it is about the observer-independent reality (usually calling something
“objective” means “observer-independent”3), and for them social agreement is merely a vehicle
to achieve knowledge about it. Constructivists do not think that knowing anything objectively is
possible in the sense above, and to constructivist scientists, arguments that refer to the
uniqueness of (or any other objectivist assumption about) the observer-independent reality
should not be acceptable in order to enforce agreement.

2 I personally believe that many constructivists can find traces of realism in their own personal realities,
but that contradicts constructivism by no means.

3 Weaker definitions of the term “objective” exist, for example related to observability and
reproducibility, which may be connected to social and personal realities.



Mathematical reality and mathematical modelling

Mathematical reality is a particular and quite well delimited social reality, made up by formal
communication involving mathematical objects. According to the formalist philosophy of
mathematics (see, e.g., Hilbert 20044), abstract mathematical objects, constructed formally by
axioms and definitions, evolved historically from the use of fingers and notches to count and the
use of idealised geometrical shapes to think and communicate about reality (see Hennig 2009
for more details and references). The emergence of abstract and well defined mathematical
objects can be attributed to the desire to construct a domain that enables absolute agreement.
This is explicitly apparent, for example, in Euclid’s axiomatic system. So the idea of absolute
truth in mathematics can be explained by a historical process of construction that made binding
agreement the essential aim of mathematical communication. In order to make such an
agreement possible, mathematical objects needed to be defined in an abstract way, which is
devoid of traces of individually different personal perception. As with other social constructs,
there is a strong feedback loop between the social mathematical reality and its personal
counterparts. There are strong personal adaptations of mathematical reality (strong in the sense
that the individuals holding them ascribe high authority to them), and on the other hand the
strength of social mathematical agreement is based on individual contributions of intuition,
doubt, and convincing arguments. This process was very successful in the sense that almost all
people either agree with proved mathematical truths or regard themselves as unqualified. Within
mathematics, “truth” can be interpreted as a formal construct in the sense that (according to the
formalist philosophy) truth values are established through axioms and transmitted by
transparent and formalised logic and proof techniques. Therefore, the mathematical concept of
truth is much less problematic, in terms of social agreement, than informal objectivist truth
claims concerning the observer-independent reality.

Mathematical modelling consists of assigning mathematical objects to (personally or socially)
real entities5. Usually it is applied in order to interpret mathematical truths about the
mathematical objects as information about the modelled real entities (a standard example is the
use of the mathematically derived physical laws in engineering). Quantification of evidence is
an instance of this; it assigns numbers to the social or personal construct of “the strength of
evidence that certain observations carry in favour or against something unobserved that may or
may not be true”. “Truth” here is informal and therefore potentially controversial, and may refer
to constructs of “existing aspects of the world outside unknown to the observer”, “uncertain
implications of a system of personal or social constructs”, or “ideas which to hold will be useful
in the future”.

But how do we arrive at mathematical objects in the first place? This is the basic problem of
mathematical modelling, i.e., the impossibility to formally analyse the assignment of non-
abstract personal or social constructs to mathematical objects. Non-abstract constructs are, by
virtue of being non-abstract, essentially different from mathematical objects. Furthermore, it is
inherent in the process of abstraction that some properties of the constructs to be abstracted
have to be cleared. Many realists hope that mathematical models allow insights into observer-
independent reality, because mathematical truths seem to be observer-independent. But the
strong agreement about mathematical truths can be explained as a result of the construction
process of mathematics. Formal truth about mathematical objects is only informative about the
modelled non-abstract objects to the extent that individuals and social systems treat the
modelled objects in an abstract way. This involves suppressing all aspects of personal and social

4 I do not regard formalism as the “correct” philosophy of mathematics, but as the currently still
strongest element in the – not necessarily consistent – social construct of the essence of mathematics
among mathematicians. Formalism may be legitimately criticised for example for not giving a proper
account of the intuitive aspects of mathematics, which according to the present terminology would be
located outside the clearly delimited social mathematical reality, but inside many personal mathematical
realities.
5 Note that this use of the term “model” is different from the one in mathematical model theory, see,

e.g, Manzano (1999). The latter one is fully formal and therefore belongs, according to the
terminology here, fully to mathematical reality.
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reality that are lost in abstraction. In other words, mathematical modelling is a way of thinking
about, and operating on, reality, which here may mean quite general aspects of personal and
social reality including the world outside, but it is not a way of getting closer to the observer-
independent reality. Quite often individuals and social systems attach more authority to the
results of mathematical modelling than these results deserve. The idea that science aims at
agreement and stability makes the use of mathematical modelling as part of the scientific
method seem natural. However, general science is not restricted to what can be formalised, and
therefore it cannot rely on mathematical truth but has to deal with the basic problem of
modelling as well, which requires negotiation about and exchange of differences between
personal and social realities.

Regarding the history of mathematical modelling, the following pattern has been observed in
Hennig (2009): Abstract mathematics evolved from re-organising some practical operations.
First, mathematics and the practice from which it arose were not considered to be separated.
The Greeks started to consider mathematical objects as a different, more ideal domain of reality.
Only much later, starting with modern science, already existing abstract mathematics was
deliberately used to model objects and operations that historically had not been connected to
mathematics. Mathematical modelling may therefore be considered as thinking about modelled
non-abstract constructs in terms of those operations that gave rise to the mathematical
structures. In this sense, it is metaphorical thinking.

Most discussions of mathematical modelling in scientific contexts focus on the question
whether the models “really hold”. From a constructivist point of view, this can never be decided
independent of the observing system. Hence a different set of questions becomes relevant.

 What is the pragmatic aim of the model, and is it constructed in order to achieve
this aim? In Hennig (2009), I list several aims and potential benefits of
mathematical modelling apart from “approximating objective reality” such as
improving mutual understanding, stimulating creativity, and decision support.

 Which aspects of the respective realities of involved individuals and social systems
are not captured by the model? What implications does this have? Asking this
question does not mean that all aspects should ever be included because this is
generally impossible due to the nature of abstraction and the limited complexity that
can be handled mathematically. My impression is that a major problem with the
objectivist way in which mathematical models are usually discussed in scientific
practice is that differences between model and modelled reality tend to be swept
under the carpet because the existence of such differences is usually regarded as a
weakness of the model.

 What are the implications of thinking about and communicating the concerned
reality in the way implied by the mathematical model? The feedback of
mathematical modelling to the personal and social realities of those involved should
be acknowledged. Is this desirable in the given situation?

3. Quantification of evidence

Quantification of evidence is an instance of mathematical modelling. It connects direct
perceptions to (more or less) general statements or theories such as “ant colonies do not prefer
any particular Acacia species”. Quantitative or categorical data are the perceptions with which
statistics deals. Measurements are general operations of transformation of socially real items
into mathematical objects. They produce data. For example, a count is a (rather basic)
measurement.

The term “direct perception” requires some clarification. I treat it as a widely held social



construct that it is possible to distinguish between what is directly, “materially” observable and
what is not directly observable, but may still be real (in a certain domain of reality, see above).
This construct is based on the (usually) strong agreement about what is directly observable in a
given situation. It depends, however, on observer-dependent constructs such as the delimitation
of Acacia species. The data in Table 1 were directly observable at the time of the experiment,
assuming a clear definition of the categories. In some instances, not only the definition of the
measured values is observer-dependent in a non-trivial way, but also how they are related to the
issue of interest. For example, there are various personal and social constructs of intelligence
around, and depending on these constructs the IQ may be seen as a measurement of “general
intelligence”, certain aspects of intelligence, or inappropriate for any reasonable measurement
of intelligence (but possibly still appropriate for measuring another potentially interesting
property of the test person such as fitness for certain jobs).

When quantifying evidence, the extent to which data support a statement like “ant colonies do
not prefer any particular Acacia species”, which does not refer to direct perceptions, is
expressed by a hopefully easily interpretable and comparable number.6 This obviously assumes
that it makes sense to believe, or at least to act as if, ant colonies either do or do not prefer a
particular Acacia species, so it assumes a construct of a “not directly observable reality, about
which observations are informative though not necessarily conclusive”. I do not see problems
with this from a constructivist point of view, but it is probably helpful to acknowledge it,
because constructivism does not take the objective existence of such a reality for granted –
personally and socially, it exists only if it is constructed.

In many cases, the pragmatic aim of the quantification of evidence is decision support, as
illustrated in the following example. Table 2 shows the results of a study on coffee consumption
and coronary heart disease in men aged 40-55 employed by the Western Electric Co., Chicago,
after eight years of follow-up. One obviously observer-dependent element of these counts is the
class definition of “heavy coffee drinking” with a cutoff value of 100 cups/month. The reader
may wonder whether more precise information, namely the number of cups/month for every
single observed person, should be used, but it is conceivable that the actual measurement
procedure for this would seem to be much less reliable than the given assignment to just one of
two classes.

Coffee> = 100cu
ps/month

Coffee<100
cups/month

Total

CHD 38 39
77

Non-CHD 752 889
1641

Total 790 928
1718

Table 2: coffee consume and coronary heart disease. Data taken from Greenland
& Mickey (1988:338), original study by Paul (1968).

The question of interest is whether, speaking in constructivist terms, it is sensible to construct
coffee consumption as a cause for coronary heart disease.7 The results of this study may for
example be used for deciding whether people should be advised to limit their coffee consume or
whether it makes sense to try to produce less harmful coffee. But it is not only relevant whether
people should limit their coffee consumption or not, but also to have an idea of how conclusive

6 Note that in some cases evidence is evaluated concerning statements that refer to events that are
constructed as “directly observable in principle, but not actually observed by those who evaluate the
evidence” such as “Mrs B is a murderer”.
7 Note that much more comprehensive evidence concerning this question is available in the
literature, which I omit here to keep things simple; furthermore I disregard the question of “effect size”
that would be relevant in practice.
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the evidence actually is. Should more observations be made before any recommendation is
given? If further observations are made, what weight should the present study have compared to
others? In order to address these practical questions transparently and to support general
agreement, a number quantifying the strength of evidence would be helpful.

The ant preferences data do not seem to address an immediate practical decision problem. A
number quantifying the strength of evidence could be used for communicating the “message” of
the table regarding the question of interest more efficiently, contributing to a larger body of
scientifically agreed knowledge in the field that at some point can be used for decision support
or other aims. There is a clear difference between “constructivistically valid” aims, concerning
decisions, behaviour, and personal and social construction processes and the aim to “find out
whether the statement is really true”.

“Strength of evidence” is an abstract construct. It is not directly connected to operations that
initiated mathematical objects, and therefore it cannot be expected to be quantifiable in a
straightforward way. A possible starting point is to analyse how people assess the strength of
evidence informally. If considerations can be restricted to 2*2 contingency tables, it will be
possible to start with some – for reasons of simplicity somewhat imprecise – axioms such as
“assuming that the marginal totals remain constant, evidence against independence of rows and
columns is the stronger, the more the row-wise relative frequencies for the columns deviate
from the marginal relative frequencies for the columns” or “assuming that the row-wise relative
frequencies for columns deviate from the marginal relative frequencies for the columns, and all
of these are constant, evidence against independence is the stronger, the larger the overall
number of observations is.” Using such axioms is an attempt to formalise the way how “rational
people” think about a construct. In some cases they may lead to a exhaustively specified
mathematical model. (As will be illustrated later, a scientific discussion about what “rational”
denotes in this respect is necessary as it is by no means straightforward.)

Statistical evidence in general is concerned with all kinds of different types of data (for
simplicity, the examples in the present paper only concern 2x2 tables), and therefore a direct
axiomatic approach would be quite cumbersome. However, the problem of quantifying the
tendency of certain events to happen under uncertainty is closely related, and this is modelled
by the probability calculus, which itself is based on axiomatic considerations about relative
frequencies and has been applied to very general types of events and data. Therefore, most
approaches of the quantification of evidence use probabilities. However, there is no scientific
agreement about the interpretation of the probability calculus, and it can be used in different
ways to apparently rationally formalise the strength of evidence (as discussed in Sections 4–6).

Most of the remainder of the paper deals with the evaluation of evidence from data based on
probability models8. In this regard, it is important to keep in mind that by virtue of being
mathematical objects, the data as well as the probability models differ from the personal and
social constructs that are really of interest. Knowledge about how precisely the ant preference
experiment was carried out, for example whether and how interaction between ant colonies was
prevented, is relevant to decide whether the data could be seen as a reliable source of evidence.
For the coronary heart disease data, one problem is that it cannot be taken for granted that
statistical dependence between rows and columns can be interpreted as indicating causality. It is
for example conceivable that an unobserved confounding factor causes the desire to drink a lot
of coffee and susceptibility to coronary heart disease. There are scientific principles to back up a
scientist’s decision to regard some problems as irrelevant, such as controlled randomised trials
for confounding factors. However, differences between model and personal and social realities
can never be completely removed (data from a controlled randomised trial are obviously
observed under circumstances that deviate from the uncontrolled realities to which the results
are to be applied) and are ignored by the statistical method. This is an important factor when

8 Generally, probability models are defined as [0,1]-valued functions on certain systems of sets,
interpreted as “events”, that obey Kolmogorov’s (1933) axioms such as additivity.



interpreting statistical results.

An essential aspect of the statistical approaches discussed here is that they attempt to quantify
evidence in a unified way regardless of the subject matter. Computations are only based on the
data, cleaned of their meaning, and the probability models under examination. This kind of
unification may be seen as an aim in itself, and it may also support communication between
disciplines. However, it is not clear, and a matter of case-wise negotiation, whether it is
appropriate to treat very different subject matters in the same way. For example, the application
of probability models may be assessed differently depending on whether situations are treated
that can be interpreted as repetitions of more or less identical conditions such as routine tests of
the quality of products produced under very similar conditions, or singular situations such as
somebody being suspected of murder. An implication of the unification is that it tempts
researchers to separate the statistical work from the subject matter expertise. Very often, when
statisticians collaborate with subject matter researchers (or when the researchers use statistical
software), subject matter expertise is used for deciding whether the data properly reflect the
issue of interest, setting up the model, and deciding whether the model assumptions are
regarded as sufficiently fulfilled (see Section 7 about a constructivist view of the role of model
assumptions), but apart from this, statistical calculations are carried out in an abstract way
without making reference to the meaning of the data, and the researcher does not worry about
not understanding them. Statistics is often expected to come up with some kind of “objective
result” for which the researcher does not have to assume responsibility. But the actual way data
are statistically processed implies certain ways of thinking about the subject matter and
therefore reveals certain ways of constructing it. If computations are treated as separated from
meaning, it remains opaque what they imply and how they transform meaning. Therefore it
seems to be desirable that the statistician and the subject matter researcher attempt to have a
joint understanding by using knowledge of both areas.9 The constructivist way of discussing the
quantification of evidence may even be useful for realists because it explicitly emphasizes
where observer-dependent decisions have to be made. Its focus on the question of agreement
between observers makes it more transparent where and why stronger or weaker agreement can
be expected (related to what is constructed as “directly observable”), what has to be negotiated,
and to what extent disagreement cannot be expected to disappear. I think that one does not need
to be a constructivist to see the benefit of this. Furthermore I also think that the realist focus on
objectivity encourages researchers to ignore the problems of observer-dependence and
differences between personal and social realities, and that this ignorance is responsible for much
of the confusion about statistics.

4. Frequentist p-values

How p-values work

In order to quantify the evidence against an independence hypothesis in a 2x2 table – such as
the hypothesis in Table 1 that ants do not prefer any of the two Acacia species –statisticians use
a standard probability-based method, namely a p-value from Fisher’s exact test of independence
(Fisher 1935).

The general idea behind p-values and statistical significance tests is to address the question
“could the given data have occurred by chance?” Depending on the problem at hand, “by
chance” may have different meanings. When testing independence in a 22 table, “by chance”
refers to a situation in which the row and column variable (Acacia species and ant invasion) are
independent. In other situations it may mean: “application of homeopathy does, on average, not
change an allergy indicator” or “all nurses have the same probability to see patients dying”.

9 Since, however, this paper focuses on statistical aspects, much potentially relevant subject
matter knowledge about the example data will have to be ignored here.
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More complex constructs are also possible: “all nurses’ probabilities to see patients dying
depend only, and in the same way, on how their work shifts are organised.”

It is then required to set up a probability model for “by chance”, so that the probability can be
evaluated that something that is as “far away” as the given data from what would be expected
under the model could have occurred in case that this model holds. Under the not unproblematic
but standard additional assumption that what the ant colonies do is independent of each other, it
is straightforward to set up such a model for the situation in Table 1. Table 3 shows the
expected frequencies under such a model, given the marginal totals.10

Acacia species invaded Not invaded Total

A 6.4 8.6
15

B 5.6 7.4
13

Total 12 16
28

Table 3: Expected frequencies given the marginals under the independence model

Given the fixed marginal totals, Table 1 can be entirely reconstructed from the value of a single
cell. Therefore it suffices to ask whether the fact that only two trees of species A were invaded
by ants is compatible with the model that expects, on average, 6.4 in this cell. This leads to the
so-called “hypergeometrical distribution,” which was originally developed for urn problems.
The situation is equivalent to computing the distribution of the number of black balls when
drawing 12 balls (invaded trees) from an urn with 15 black (species A) and 13 white (species B)
balls. Therefore, it can be said that using this model amounts to thinking about the ant colonies
as if they were balls from such an urn.

The probability that two or fewer black balls are drawn in this situation is 0.001. This is the
“one-sided p-value”. It is obviously a very small value and can be interpreted by saying that the
observed data are quite incompatible with the model, or, in terms of quantification of evidence,
that the data provide strong evidence against the hypothesis that the ants do not prefer any
species, and not species B in particular.

The corresponding computation for the data in Table 2 yields a probability of 0.31 for having 38
or more CHD cases among 790 heavy coffee drinkers if these are drawn out of a population of
77 CHD and 1641 non-CHD under independence. p = 0.31 is not very small and it is therefore
well conceivable that such a distribution is observed if the model holds. In other words, there is
no evidence against independence.

Two things are worth being noted. Firstly, the method depends on probabilities for events that

10 Fisher’s approach treats the marginal sums as fixed, as opposed to the famous approach of
Neyman & Pearson (1933), which in the given situation would make things much more complicated, and
will therefore be omitted in the present paper. In general, however, it is based on the same underlying
principle, only using an additional optimality criterion.



did not actually happen. Not only the probability for 2 invaded A trees is computed, but the sum
of the probabilities for 0, 1 and 2 invaded A trees. In the coffee example, the probability for the
precise result 38 is 0.07, which is much smaller than the p-value above. But this probability is
not useful under the logic discussed here because if there are many possible outcomes the
probability for any precise outcome will be small. This in itself, however, cannot be reasonably
interpreted as evidence against the model. Therefore, the p-value is the probability that under
the model something happens that is as far or farther away from what is expected than what
was actually observed. Some statisticians find it counter-intuitive that under this conception for
example the result of 2 in the ants example would be defined to provide weaker evidence
against a model under which 2 had the same probability as before, but the unobserved values 0
and 1 had higher probabilities. A controversial discussion about this is going on among
statisticians and philosophers of statistics, and as far as I know, almost all protagonists hold that
this intuition is either “correct” or “wrong”. From a constructivist point of view, it can be
observed that the inclusion of probabilities of unobserved events entails a certain way of
looking at the situation, in which rather “the observation is much smaller than expected” than
“the observation is 2” counts. It is certainly legitimate to point out that this view may have odd
consequences. Unfortunately, the opposite view based on the so-called “likelihood principle”,
which holds for Bayesian statistics as treated in Section 5, may have similarly odd
consequences in other situations (see, for example, Mayo & Kruse 2001, Davies 2008). There is
no objective way to decide the issue. It seems much more helpful to accept that different
intuitions exist and to explore what they imply in order to negotiate case-wise decisions.

Secondly, a decision is needed whether the p-value should be evaluated in a one-sided or a two-
sided way. Above, one-sided probabilities were computed; it was only taken into account
whether the number of colonies A trees under the model could have been 2 or smaller. But the
outcomes 11 and 12 are farther away than 2 from the expected value of 6.4 as well; only they
are not smaller, but larger. Adding these probabilities yields a two-sided p = 0.0018, which is
still very small, but situations are conceivable where different conclusions would be drawn from
one- and two-sided p-values. The decision whether a one- or a two-sided p-value should be used
depends on the focus of interest. Is the research question rather whether the ants prefer species
B (one-sided question). If the data indicate that rather species A is preferred, this would not
count as evidence against the model because independence and preference for A are identified in
terms of interpretation), or whether they prefer any of the two species (two-sided question)?
Generally, significance tests and p-values do not only depend on the null (“chance”) hypothesis,
but also on an alternative hypothesis of interest – even though in practice it may happen that
data may be neither compatible with the null hypothesis nor with the alternative.

To summarise, the quantification of evidence based on p-values has four requirements:

 A “null model” formalising “chance” or “no effect”,

 An alternative model formalising the direction of deviation of interest from the null
model,

 A statistic to measure how far away the observed data are from what is expected under
the model in the direction (or directions) of the alternative, and

 The mathematical derivation of the distribution of this statistic under the null model.

The p-value is the probability under this distribution that the statistic is as far or farther away
from the expected value under the null model than is observed value. The smaller the p-value,
the stronger the evidence against the null model. Large p-values do not provide evidence against
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the null model. p-values are “large” if they do not make the observed value of the statistics seem
very unlikely; normally any value above 0.1 is interpreted to be “large”.

It is crucial that a large p-value by no means indicates that the null model is true. This does not
have anything particular to do with constructivist philosophy. Even assuming that there is a true
model, it has to be accepted that data that are perfectly compatible with the null model are also
compatible with many other models. p = 0.31 in the coffee example excludes by no means the
possibility that strong coffee drinking increases the risk for CHD a little bit, weakly enough that
this cannot clearly be seen from the data at hand. Furthermore, p-values may be affected by
violations of the model assumptions that do not have to do with the intended interpretation – for
example, the dependence between ant colonies or a common unobserved factor behind both
coffee consume and CHD. This means that self-critical thinking about conceivable effects of
real aspects ignored in the model and a careful experimental design are required.

The concept of p-values is based on an interpretation of probabilities as something that governs
the observed phenomena. Probabilities are constructed as modelling an aspect of the “world
outside” the observer (which may mean an objective world outside to a realist, or a personally
and socially constructed one to a constructivist). The most prominent interpretation of
probabilities referring to the world outside is frequentism, and p-values are usually interpreted
in a frequentist way. However, as illustrated in Section 5, not all interpretations of probability
refer to the “world outside.”

The frequentist interpretation of probability

As all interpretations of probability, frequentism is a way to connect the probability calculus to
reality.11 The basic idea of all frequentist approaches to interpret the probability P(A) of a set A
is as follows. Imagine that there is an experiment that can be repeated in an identical and
independent way. The outcomes of the experiment are measurements. Let A be a subset of the
set of possible outcomes. Imagine that the experiment is carried out n times, n converging to
infinity. Imagine further that the frequency of outcomes in A, divided by n, converges to a limit.
This limit is interpreted to be P(A).

Obviously this idea is an idealisation. It requires ignoring conceivable sources for dependence
and non-identity – actually whenever two executions of the experiment can be distinguished,
strictly speaking they cannot be identical. Furthermore, infinitely many repetitions cannot be
observed and therefore probabilities cannot be observed. This implies particularly that, even
under an objectivist idea of material existence, it is not observable whether probabilities exist.
Relative frequencies for finite repetitions of experiments perceived to be sufficiently identical
and independent are observable and can be interpreted as “approximations” of probabilities.
From a mathematical point of view, however, this is not valid, because a limit point of a
mathematical sequence is invariant against arbitrary alterations of any finitely long
subsequence. Frequentism has often been criticised for these problems (Finetti 1970, Howson &
Urbach 2006). Its defence, usually carried by realists, led to several variants of frequentism, but
most arguments about the (approximately observable) existence of frequentist probabilities
involve the law of large numbers and are open to charges of circularity. The law of large
numbers is a fundamental theorem of the probability calculus and states that, assuming
independence and identity of repetition of an experiment, the relative frequency of the
observation of A converges in a probabilistic sense to P(A).12 It even gives bounds for the

11 See Section 6 for a historical note on the idea of separating the probability calculus from its
interpretation.
12 Actually there is more than a single such law in probability theory but I avoid here the subtleties



difference between P(A) and a relative frequency for fixed n that can only be exceeded with
very small probability, so that it can make the connection between probabilities and relative
frequencies for finite repetitions precise in some sense. However, the law is itself formulated in
terms of probabilitie. “Independence” and “identity” enter in their probability theoretical formal
meanings, and thus are not identical to their intuitive meanings, but rather mathematical models
of them.13 As a consequence, its interpretation needs to assume a probability interpretation
already.

I maintain that, when attempting to make the connection between mathematical models of
relative frequencies of experimental outcomes under uncertainty and reality precise, circularities
cannot be avoided, because if the outcome of an experiment is uncertain, it is uncertain as well
how close the corresponding relative frequencies under repetition will match any conceivable
value of a probability. Whatever is observed cannot prove or disprove any limiting value for
relative frequencies, but the implications of the law of large numbers for finite n can be tested –
using the probabilistic methods for quantification of evidence.

From a constructivist point of view, the objections against frequentism are not severe, because
constructivists are not concerned with the most critical issue, i.e., to establish the observer-
independent existence of probabilities. For a constructivist, adopting a frequentist interpretation
of probability means to treat a situation – at least temporarily – as if it were a realisation of an
experiment that can be repeated infinitely many times in identically independent ways obeying
the rules of probability theory. Following von Foerster’s (1984) ideas about stable constructs as
eigenvalues of self-referential behaviour, constructivists can accept that they have to live with
the kind of circularities encountered above if they want to establish concepts like quantitative
values for uncertainty and evidence. Frequentism becomes a particular way to perceive and
analyse situations in which uncertainty arises. It can be temporarily adopted but is not right or
wrong or good or bad in any objective sense. What needs to be decided is whether it serves the
aim of the data analysis in the given situation properly or not. Assuming that the model holds,
the constructive power of frequentist models is that it can be mathematically described what
pattern of outcome can be expected, and this can always be compared with some observed
reality. In order to learn from such models, it is not necessary to assume it to be the “true” one.

Frequentist interpretation of p-values

Interpreting p-values in a frequentist way means that the whole experiment (observing all 28 ant
colonies, or all the individuals in the coffee dataset) is constructed as repeatable. In the ant
example, the p-value then gives the expected relative frequency, under infinite identical and
independent repetition, of observing 2 or fewer invaded A species trees under the null model. It
is up to decide for the researcher (and her audience) whether this is a reasonable construct. Such
an experiment can certainly be repeated, though it depends on the precise conditions whether it
is convincing to model these repetitions as independent and identical. The model-implicit
treatment of the ant colonies as independent of each other seems more critically to me, but such
things can more convincingly be assessed by the subject matter experts.

A very frequent misinterpretation of p-values is that they give the probability of the null
hypothesis to be true (“the probability of the occurrence of CHD to be unaffected by heavy
coffee drinking is 0.31”). It has been argued particularly by Bayesians, see Section 5, that the
researchers really should be interested in this latter probability, because this would be a direct
measurement of whether the model should be believed or not, given the available evidence. The
p-value is only a rather indirect indication of the strength of evidence, because the information
how likely the observed outcome is under the model does not tell the researcher directly how
valid the model is. Under the frequentist interpretation, however, a probability for the model to
hold does not make sense except under the rather curious construct of a repeatable development

of discussing their differences.
13 In the probably most well known reference for the foundations of frequentism, Mises (1928),
avoided the terms “independence” and “identity” as basic concepts for his version of frequentism in order
to avoid circularity. However, his own suggestion attempted to formalise the same intuition, was riddled
with difficulties as well and did not gain general acceptance.
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of the observable world so that the null model is true in a constant limiting relative frequency of
cases. The frequentist idea is that the model either holds or not, unknown to the researchers, and
that probabilities describe what the model does, but not how the researchers should think about
it. As said before, even an arbitrarily high p-value cannot exclude the possibility that many
other models are compatible with the observed data as well. This also implies that p-values are
not unique as a frequentist way to measure strength of evidence, though they are by far the most
popular one.

5. The Bayesian approach

Bayesian interpretations of probability

Bayesian posterior probabilities are the most widespread statistical alternative to p-values. Their
adherents claim that they have two major advantages over p-values. Firstly, they deliver a value
P(H0), H0 being the null hypothesis, which apparently allows direct interpretation as the
“probability that the null hypothesis is true”, as opposed to p-values. However, to some extent
this is a misinterpretation as well, see below. Secondly, their computation does not involve
probabilities of unobserved events.

Before carrying out Bayesian computations, it makes sense to discuss how Bayesian
probabilities are interpreted. Bayesian statistics is named after Thomas Bayes’s (1763)
Theorem. Omitting some formal details and assuming that H0 and H1 together cover all
possibilities, Bayes’s Theorem roughly states that
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“p.i.” stands for “prior information”, “|” stands for “conditionally on”. Note that all probabilities
are interpreted in Bayesian statistics as conditional probabilities “P(A|some information)” but
some conditions are usually omitted by “lazy notation”. P(H0|data) would be more precisely
denoted by P(H0|data & p.i.) and P(A) as I will use it below implies conditioning on the state of
information in the given situation, whatever it is. In the context of objective Bayes, the case of
“no prior information available” is treated later, which in the formula above can be interpreted
as a special case of p.i.

Bayes’s work was only published after his death, and it is quite brief about the interpretation of
probability. Therefore there is no agreement about Bayes’s own interpretation, and his name is
nowadays used for different interpretations. In this paper, I concentrate on the two most popular
ones, often branded “subjectivism” and “objective Bayes”. Both of them have in common that,
as opposed to frequentism, probabilities do not model a world outside, but a “rational strength
of belief” of an individual in the occurrence of a certain event. In the objective Bayes approach
the individual is idealised to be unbiased by any prejudice and to have access to all available
information, and the resulting probability value should be unique. In subjectivism the
probability value is allowed to depend on the individual.

Not knowing whether A will occur (or has occurred) or not, the probability value P(A) can be



interpreted as the fair “betting” rate in a gamble where the individual gets 1 unit back if A
occurs but nothing if A does not occur. Assuming that the individual can be forced to bet either
on or against A, operationally this means that the individual will bet on A if a rate below P(A) is
offered to her, and against A with one minus the offered rate otherwise. In this way, at least the
subjectivist Bayesian interpretation can be linked to the individual’s behaviour.

The problem with the expression P(H0) is that such an approach does not allow regarding H0 as
a frequentist probability model that could be true or false in the world outside the individual.
P(H0) therefore cannot exactly be the “probability that H0 is true” under Bayesian interpretations
either (but is often misinterpreted in this way). The most important proponent of an
operationally subjectivist interpretation was Bruno de Finetti (1970), who stressed that the
expression P(A) only makes sense for events A for which it is possible to decide later, by future
observations, whether A has occurred or not. This does not apply for probability hypotheses in
the sense discussed above. Finetti’s interpretation of P(H0) is indirect. When assigning
probabilities to events A of which the occurrence can be observed in the future, they can be
computed by P(A) = P(A|H0) P(H0) + P(A|H1) P(H1), so that P(H0) and P(H1) become technical
devices to compute P(A). A more careful direct interpretation of P(H0) is that with probability
P(H0) it makes sense to compute Bayesian probabilities for events observable in the future as if
they were generated by a frequentist model H0. This is still not fully operationally
understandable, because it still assigns a probability to something unobservable, but many
Bayesians do not find operational definitions as important as Finetti.

For most models, the use of P(H0) to specify probabilities of observable future events involves
the concept of “exchangeability”, which is the Bayesian formulation of independent
(conditionally under a probability model which itself is uncertain) and identical (in terms of
probabilities assigned to future events) repetition. Whereas the Bayesians do not assume
independence and identity to hold in the reality outside the observer, the Bayesian application of
the probability calculus requires the individual to assign probabilities that follow similar
assumptions to make learning from experience (inference from past data to future data)
possible.

Instead of using the probability calculus for obtaining probabilities from a model that is
assumed to be located in the outside world and may be “true” or not, in Bayesian statistics the
calculus governs how prior beliefs should be modified in a supposedly rational way in the light
of the data. Bayes’s Theorem requires the knowledge P(data|H0) and P(data|H1), which are
obtained from the calculus as in the frequentist approach given H0 and H1, but it also requires
the prior probability P(H0|p.i.). The prior probability distribution is the key ingredient that
makes the computation of P(H0|data) possible in the Bayesian approach, and the dependence of
Bayesian inference on the prior distribution is a standard frequentist criticism. It is also the
major difference between subjectivists and objective Bayesians. According to the subjectivists,
the prior distribution reflects the prior state of belief of the subjective individual, and they allow
in principle any distribution as a prior distribution, although there are some suggestions in the
literature about which principles to apply when designing it in a given practical situation.
According to the objective Bayesians, however, the prior distribution should be unique. In case
that there is no prior information, it should be a distribution modelling the absence of any
information, and in case of existing prior information, it can itself be a distribution resulting
from Bayes’s Theorem, starting at some point from absence of information and updating the
information by data that had been collected and evaluated before the study for which then a
prior distribution is required. However, there is no agreement about how an “objective” non-
informative prior distribution should look like, which will be illustrated in the following section;
see Kass and Wasserman (1996) for an overview of problems with selecting non-informative
priors.

Apart from the selection of prior probabilities, another issue with the Bayesian approach is
whether Bayes’s Theorem and the probability calculus really provide “rational” updates of
probabilities in the light of the data. This is again a question of the connection between
mathematical modelling and reality. The Bayesian approach models rationality in particular
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way. This is based on the idea of “coherence”. Coherent betting in a Bayesian sense means that
betting rates (and therefore probabilities) have to be chosen by the betting individual in a way
that no opponent can apply a betting system based on the individual’s betting rates so that the
individual loses money regardless of the outcomes of the statistical experiments. It can be
shown mathematically that this demand (properly modelled) entails the axioms of probability
theory for betting rates. Here is an illustration of this. Assume that an individual D specifies
probabilities for the outcome of rolling a single (not necessarily fair) die. Assume that D
specifies P({1})=P({2})=0.2 (there is nothing to stop a subjectivist Bayesian from doing this,
and objective Bayesians may do so in certain situations if indicated by prior information).
Assume further that D violates the axiom of additivity (for disjoint events) by setting the
probability for rolling a 1 or a 2, namely P({1,2})=0.3 (instead of 0.4). Assume now that a
betting opponent E offers a rate of 0.18<0.2 to I for betting on 1 and 2 separately, and 0.32>0.3
for betting on {1,2}. According to the operational definition of Bayesian probabilities, D will
pay twice 0.18 to bet on each 1 and 2, and 1-0.32=0.68 to bet against {(1,2)}. This means that D
pays E 1.04 overall, but will only win 1, whatever the outcome of the roll is (either 1 or 2 or any
other number, i.e., “non-{1,2}”). So D loses 0.04 in each case. It can be shown that such a
situation is not possible if D obeys the probability axioms.

A crucial assumption of this result is that the individual can always be forced to bet either in
favour or against an outcome according to her specified betting rates. Several aspects could be
controversial (see, e.g., Dawid 1982, Walley 1991):

 Does it make sense to think about any given situation in which evidence should be
quantified in terms of bets and betting rates? Even if this is accepted for the situation of
interest, it is still not clear that all available prior information can be properly
formalised in terms of betting rates /probabilities.

 Should the assumption be accepted that the individual is forced to bet? There is an
alternative concept of “imprecise probabilities” in which the individual is allowed to
leave some room between the highest rate with which to bet in favour of A and one
minus the highest rate with which to bet against A, leading to probabilities that are
intervals rather than single numbers (see Walley 1991), in which case the individual
would not be assumed to be forced to bet if the offered rate is in the interval.

 Does Bayesian coherence model what is meant by “rationality” in every situation?
Exceptional situations involving real betting may be constructed in which the
individuals, on average, could be better off even allowing the opponent to win
something regardless of the outcome than if they strictly adhere to the probability
calculus. Such examples particularly concern situations in which individuals change
their opinion about the situation after having observed some data, but where they had
specified a prior distribution that does not allow for radical enough changes. Some
Bayesians accept that it is sometimes necessary to adapt the prior distribution
retrospectively to information that comes in later even if this leads to incoherence (Box
1980, Dawid 1982). Apart from that, it cannot generally be taken for granted that
rationality should always be interpreted in terms of gains and losses of money (see
Habermas 1984 for a completely different perspective of rationality).

 Should another implicit assumption be accepted, namely that what happens later is
independent of the behaviour of the betting indivuduals? This is obviously problematic
for setups like the stock market, but even more so from a constructivist point of view
that treats the future observations as personal and/or social constructs. It can often be



observed as well in scientific setups that the way experiments are carried out and data
are gathered is indeed designed dependent on ealier assessments of evidence.

To these questions again the general remarks about mathematical modelling apply. Idealisations
like assuming the individual to be forced to bet, or a formalisation of rationality in terms of
money are necessary to set up any formal model in the first place, but there is no objective
answer to the questions whether these particular idealisations are the ones to be adopted, and
whether the benefits of formal modelling outweigh its problems. A constructivist way to decide
in favour or against such idealisations analyses the implications of them on the world view and
decides whether they are desired (which includes, if social acceptance is desired, whether they
can be convincingly communicated). Here is an example. A university decides about
applications for a certain programme and wants to use Bayesian posterior probabilities for later
success in the programme as decision criterion. Applicants come from two different regions.
The applicants have to carry out a test. Assume that the information that the university has to
base its decision on is only the region and the test result of an applicant. Assume that past
experience suggests that the probability is higher that applicants from region A are eventually
successful in the programme than applicants from region B. It is known that the test result is
associated positively with the probability of later success in the programme, modelled by
assuming that there is an underlying “true” ability of every applicant of which the distribution
of the test results and the probability of later success are monotone functions that do not depend
on the region (but abilities distributions are allowed to differ between regions). Applying
Bayes’s Theorem then yields (without proof here) that the posterior probability of success of an
applicant from region A is higher than that of an applicant from region B with the same test
result .This means that the university, if it selects the applicants according to their success
probabilities, commits itself to discriminating against equally qualified applicants from region
B. Mathematically there is nothing wrong with this. However, the university cannot pass the
responsibility for its discriminating behaviour on to Bayes’s Theorem. It is actually a result of
the university’s decision (implied by the way the model was set up) to reduce the admission
problem to a temporary betting rate problem, ignoring completely the effect that the admission
policy of the university may have on future abilities (for example by denying potential
applicants from region B “role models”; note that the term “underlying ability” is an
interpretative wrapper for all kinds of factors that influence the success probability of an
applicant, not just pure personal ability) and any possibility that the bad past success rate of
region B students may have been caused by some issues in the university’s education about
which it could actually do something14.

There are various attempts in the philosophy of statistics to come up with “solutions” for these
issues (such as interval probabilities), and they may lead to improvements in certain situations,
but they still have to deal with the basic problem of modelling. They come with their own
implications, which can be analysed and criticised in a similar way, depending on the situation
and the aims of those who model it or are involved..

Bayesians often criticise the frequentists for making supposedly objective assumptions about
the world outside that cannot be verified. Constructivists may feel attracted to Bayesian
subjectivism in particular, because of the explicit allowance for individual differences, and
many frequentists (and some objective Bayesians) certainly appear to be philosophically naive
by using this as a major objection against subjectivism. However, in the light of the discussion
about mathematical models and reality, the frequentist assumptions about the world outside

14 I got this example from Deborah G. Mayo by personal communication. Mayo used it to
illustrate what she thinks to be a general flaw in Bayesian reasoning, but I rather think that it
demonstrates that in some situations the implications of modelling run counter to personal and
social constructs, and that the modellers should therefore try to be aware of these implications.
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seem to stand on a rather equal footing with the Bayesian ones about rational reasoning. They
are idealisations that are not made because they are believed to be objectively true, but that are
necessary in order to take advantage of the benefits of mathematical modelling. Only the
modelled domains to which they are applied are different for frequentists and Bayesians.

Computation of Bayesian posterior probabilities

The computation of the Bayesian measure of evidence, the posterior probability P(H0|data) for
the null hypothesis that the ants do not prefer any of the Acacia species or for CHD being
independent of strong coffee drinking, requires the specification of a prior distribution first.
Following the subjectivist approach, the individual researcher (or a group of researchers; it
would certainly make sense to involve at least one subject matter expert and one statistician)
would need to think carefully about the situation to come up with a quantification of her prior
belief, and also with convincing reasons for this to enable others to accept a result that depends
on her choices.

An objective Bayesian, or a subjectivist without clear prior information and opinions, needs a
prior probability distribution that models the absence of information. 22 tables are no standard
case for Bayesian statistics and are not treated in every introductory book. I found two
surprisingly different approaches how to do this.

The first approach was suggested by Jim Albert (2009:194–196). It is assumed (as in the second
approach below) that the behaviour of the ant colonies is exchangeable. Under H0, the
probability for an A tree to be invaded is the same as the probability for a B tree to be invaded.
Under H1, these probabilities are assumed to differ. Non-informativity enters in two ways.
Firstly, P(H0|p.i.) = P(H1|p.i.) = 0.5. This is based on the “principle of insufficient reason” to
give any of the hypotheses more probability than the other one. Secondly, in order to compute
P(data|H1), it is necessary to specify a distribution of probabilities for colonising species A and
B trees within H1, which is chosen to be the uniform distribution. Based on these choices,
P(H0|data) = 0.005. A straightforward subjectivist way to use this approach of specifying the
prior distribution is just to change P(H0|p.i.). Even if for some reason (which may just be
sensitivity analysis), P(H0|p.i.) = 0.95, P(H0|data) is still as small as 0.09, so that the evidence
clearly seems to indicate that the ants prefer species B (it can be computed that almost all the
remaining probability is assigned to a preference for species B and almost nothing of it to
preference for species A). Note that 0.09 still is a small value for a posterior probability, it still
clearly points against H0, whereas a p-value of 0.09 would rather be a borderline case. For the
CHD data, this yields P(H0|data) = 0.959 (non-informative prior) or P(H0|data) = 0.528 for
P(H0|p.i.) as small as 0.05, to illustrate another potentially extreme subjective choice.

Choosing P(H0|p.i.) = 0.5 (or even any number larger than zero) means that positive probability
is assigned to the idea of precise independence, and it can be argued that it is not realistic to
believe in precise independence and the researcher should rather be interested in “practical
independence” meaning very weak dependence (but keep in mind that the precise independence
discussed here is not frequentist, and therefore it does not entail believing in precise
independence in the world outside – though it is often carelessly interpreted in this way).
Though assigning a nonzero to precise independence can be interpreted as approximating this in
some sense, it can also be formalised in an alternative way, which is suggested by Peter Lee
(2009: 152–153). Lee’s approach starts by assuming a non-informative distribution for the two
probabilities p and q, modelled as independent of each other, for a strong, and a weak or no
coffee drinker to get CHD considering the CHD example (uniform distributions could be used
for this but Lee suggests the so-called “Haldane prior”). The H0 of “practical independence”



can then be chosen by looking at the “odds ratio”
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are about the same. So H0 could for example be taken as “0.99 < r < 1/0.99”. This yields
P(H0|data) = 0.029, which is totally different from the value of 0.959 following Albert’s
approach with non-informative priors. Note that Lee’s approach involves a subjective decision
about how close r has to be to 1 in order to speak of “practical independence” (though the
posterior distribution as a whole does not depend on subjective decisions apart from the not-so-
objective choice of an “objective prior”). If H0 is taken as “0.8 < r < 1/0.8”, P(H0|data) = 0.528,
still much lower than Albert’s value. Analysing the posterior distribution further, it can be seen
that the data still leave a strong uncertainty about p and q with large or at least non-negligible
probabilities for both r < 0.8 and r > 1/0.8. Choosing a positive probability such as 0.5 for
precise independence in Albert’s approach has the effect that much of this uncertainty collapses
into P(H0|data). Interpreting the Lee prior, it can be seen that prior independence of p and q is a
quite strong form of non-informativity, because it entails that a very small rate of CHD cases
among strong coffee drinkers is by no means informative about the CHD rate among weak or no
coffee drinkers – it is not taken into account that CHD may be a rare disease overall (in Albert’s
approach, similar rates are more likely a priori through P(H0)). This leaves the researcher with
strong uncertainty even after having observed more than 1700 workers. Thinking it over, I
realised that p and q should probably be restricted to be quite small and potentially similar a
priori, and then the odds ratio approach would probably give more sensible results. It is a quite
frequent phenomenon in statistics as well as in science in general that striving for objectivity
basically implies that some standard approaches are chosen that cannot take into account the
peculiarities of the given situation in a sensible way, whereas subjectivism allows for non-
standard choices that may adapt better.

For the ants data, Lee’s prior points even stronger against H0 than Albert’s one, so that the
practical conclusions would probably be the same.

There is a Bayesian result stating that, under some assumptions, enough data eventually swamp
the prior distribution, so that even if starting with different prior distributions, posterior
distributions become more and more similar if more data are collected. However, this does not
apply to a situation like the one above, where different principles of modelling were applied
(nonzero vs. zero prior probability for precise independence). The computations show that
different priors can lead to quite different posterior probabilities for H0, and that it is not easy to
understand all the implications of a chosen prior distribution, but this is needed in order to
design it in a useful way.

6. Differences and connections between interpretations

Keeping in mind the idea that science aims at agreement, how problematic is it that there are
several different approaches around to quantify evidence, sometimes leading to quite different
results? Many practitioners are not very happy with this state of affairs, and in the statistical
literature there are often attempts to “reconcile” the different approaches (see for example
Berger 2003). However, another more or less explicit value of the scientific method (or, rather,
my personal rather benevolent construct of it with which the reader may or may not agree) is
that agreement should not be enforced artificially, and an agreement that is reached in an
arbitrary way just because agreement is desired is not scientifically valid. Such attempts of
reconciliation usually suppress some aspects of the original concepts that some people find
worthwhile to keep visible, and they therefore rarely satisfy everyone (see for example Mayo’s
comment in the discussion following Berger’s 2003 paper). In such a situation, there may be
better chances of agreement accepting that different approaches have different merits and fulfil
different aims. Destroying the myth of the “objectivity and unity of statistics” may be more
worthwhile than looking for ways to pretend it more efficiently. It becomes more interesting to
find guidelines about what to use when, and where irreducible elements of subjective decision
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cannot be removed.

As explained before, a major difference between the frequentist and the Bayesian interpretations
of probability is that the frequentist interpretation is about modelling mechanisms in the world
outside whereas the Bayesian interpretations are about modelling rational reasoning. This alone
is not of great help because in many situations researchers are interested in rational reasoning
about the world outside. However, I can outline some guidelines for deciding between
frequentist and Bayesian approaches:

 The Bayesian approach delivers a probability for H0 given the data at the price that
P(H0|p.i.) has to be specified first. If there is prior information or prior belief that can be
convincingly formalised as such a prior distribution, and the researcher is happy that the
outcome will depend on this, the Bayesian approach suggests itself. (Typically it is not
“objective Bayes” then, because the prior distribution is actually informative.)

 On the other hand, there are decision problems in which it is explicitly not desirable to
have an outcome that depends on prior beliefs, in which case obviously subjectivism
cannot be used (though there are still irreducible subjective elements in model and prior
specification and selection of cutoff values for p-values and posterior probabilities in
the less explicitly subjective approaches). This is for example the case if fair and
impartial decisions are desired about issues that affect people with opposing interests
such as in court.

 p-values are about assessing the compatibility of data with certain idealised models for
relative frequencies under repetition. A small p-value allows a statement of the kind
“under the null model it would be almost inconceivable to happen what actually
happened”. This kind of statement may often be of interest, for example when checking
the plausibility of certain scientific hypotheses about the world outside (without
actually attempting to make the statement that they are “true”) that can be formalised
properly as such models15. Note that the evidence collected in this way can never be in
favour, but only against the hypothesis, though evidence may be observed that is not
against the null hypothesis of interest but against certain alternatives, so that at least
some competitors of the H0 could be discarded.

 In some situations the aim is prediction and potential future benefits can be properly
quantified, for example if it is about financial issues, or (involving some more
complexities) something like drilling for oil. In such situations, the betting rate
metaphor for Bayesian probabilities can be seen as quite directly related.

 Generally the social system to which the researchers belong or want to communicate
their results plays a role as well, particularly if and how it can be expected that
agreement can be reached about the involved choices of a model, prior distributions and
decision rules.

Up to now the focus was on the differences between interpretations. On the other hand, they use
the same label (probability) and the same calculus, and the connection between them is not only
mathematical. The perception of a separation between the two interpretations of probabilities as
degrees of belief on one hand and related to randomness in the world outside on the other hand
came up around the middle of the 19th century (Gillies 2000:19 traces it back to a remark by
Poisson in 1837), more than 100 years after the beginnings of the probability calculus. In
response to the formalist ideas that Hilbert started to present around 1900 (see Hilbert 2004),

15 The connected Neyman-Pearson approach to hypothesis testing (Neyman & Pearson 1933), which does
not exactly deliver a “quantification of evidence” but rather a binary decision, utilises the frequentist
interpretation to give “error probabilities” for making wrong decisions, which may be of interest as
well, based on the model assumptions.



Kolmogorow (1933) axiomatised probability mathematically in a way compatible with both
betting rates and relative frequencies, which separated the calculus explicitly from its various
interpretations. In the very early works (for example Bernoulli 1713) probabilities were defined
as ratios of numbers of favourable and existing events (for example 1/6 for a die to roll a “2”;
note that because Bernoulli did not yet separate the mathematical formalism explicitly from its
real world interpretation, the word “definition” is chosen here instead of “interpretation”). These
were treated as identical with fair betting rates and expected relative frequencies under
repetition. A difference between these ideas was not yet constructed. Applying the probability
calculus to new problems and wider areas (biased dice, death probabilities in age classes,
reliability of astronomical observations etc.) required some extensions from which the
differentiation of the interpretations emerged. My interpretation of this is that using probability
calculus for many phenomena involved treating them in terms of a dice/gambling metaphor, but
for some of the phenomena, the “fair betting rate” aspect of this metaphor worked better
whereas for others the “relative frequency” aspect became dominant. At some point some
people realised that, unless cases such as fair dice are treated, these aspects may have quite
different implications, but instead of accepting them as essentially different views both of which
have their merits, most probabilists (if they were interested in the issue at all) started to
advocate either of these points of view as the “best” or “correct” one. The use of the same word
“probability” for them and the general myth of “objectivity of science” suggested that there
should only be one correct meaning. To some extent, these views still persist today.

Despite the pluralist position that I take in most parts of the present paper, I find it helpful to
acknowledge the deep historical connection between the different approaches in order to
understand why they are still so often perceived as directly competing and why there is such a
big amount of statistical literature that uses frequentist and Bayesian approaches in a very
eclectic way without bothering about differences in interpretation.

There is a vast literature comparing Bayesian and frequentist interpretations of probability
including some further interesting aspects that could also be relevant for deciding in a given
situation between approaches, see for example Finetti (1970), Fine (1973), Bernardo and Smith
(1994), Mayo (1996), Gillies (2000). Most of these authors highlight issues with the
interpretations as reasons to attack or defend one of them for use in more or less general
situations. A constructivist way of reading these arguments would be different; they can
illustrate what kind of “ideal” world view is entailed by these interpretations, and therefore they
help with the casewise decision between the approaches, but also with keeping in mind what
aspects of reality are suppressed when adopting one of them. Obviously, there is no need for a
constructivist to adopt one of the interpretations exclusively. However, given that
constructivists aim at understanding how their construction processes work, it seems
unsatisfactory as well to follow the kind of eclectic approach that is often found in the scientific
literature and that ignores the deep philosophical issues of interpretation. In a given situation, it
seems sensible to adopt an interpretation explicitly and to discuss honestly its implications and
the restrictions and ignored aspects involved by it, making it clear that this is always a matter of
choice, even though good case-dependent arguments may exist.

7. Conclusion

As far as I see it, applying constructivism in statistics does neither necessarily lead to new
methodology, nor to discarding old ones. It is rather about considering the methodology and its
underlying assumptions in a particular way. For a constructivist, the following questions could
be of major importance:

 How do we (the researchers) see our topic, which aspects do we want to model, which
aspects do we want to ignore, considering our aim of modelling?

 What a point of view is entailed by the models that we use and our interpretation of
them, and how does this relate to what we think about our topic?

 What is the communicative value of the model and the quantification of evidence,
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how can it help to support understanding and agreement, to make decisions, draw
conclusions, and to give others the chance to disagree in a constructive way?

 Do we really want and/or need to measure evidence by a single value in the given
situation?

These questions emphasise the responsibility of the researchers, and are far too often ignored by
an attitude that the data should decide “objectively” what the correct model is and what the
evidence suggests. Much of the discussion in the previous sections was about exploring the
points of view implied by various ways to quantify evidence. Such considerations are hopefully
useful when addressing the questions above.

In particular, the role of model assumptions changes when adopting a constructivist point of
view. By interpretation, model assumptions translate into ways of thinking about a situation.
Frequentist models mean that the researchers think of the modelled phenomena using a
metaphor of repetitive result-generating mechanisms. Bayesian models mean that the
researchers think about the way how they should rationally learn from data using a metaphor of
betting rates. Note that in Bayesian as well as frequentist statistics assumptions interpreted as
regarding situations as in some sense identical repetitions are required in order to get the
calculus going, regardless of whether it is believed that these are “true” or “rational”. Gillies
(2000:77-81) demonstrated that Bayesian exchangeability has interpretational implications that
are not weaker than frequentist independence. In Hennig (2007) I showed that attempts to test
frequentist independence necessarily lead to a paradox. Probability is always about what could
have happened apart from what actually happened. In this sense, it always involves what is
essentially unobservable. Probability statements, and therefore quantifications of evidence, can
never be checked by observation alone

Much more detailed analyses of the models are possible, giving the frequentist for example
probabilities of observing low p-values if the H0 is wrong in certain ways (power analyses), and
giving the Bayesians predictive probabilities for all kinds of conceivable future events. To the
constructivist, these analyses show what her constructions imply, and therefore they enable a
very precise understanding of the implications of the modelled ways of thinking. This is a major
benefit of probability modelling. The role of the model assumptions (and to compare their
expected implications with the data at hand, which can be interpreted as a constructivist version
of “model checking”) is then rather to assist the researcher in finding out whether the chosen
data analytic method may lead to undesired or misleading results for the given data.
Unfortunately this is often totally obscured by the usual way to communicate results from
probability modelling such as p-values and posterior probabilities that attempts to hide the
responsibility of the researchers. This is particularly obvious in the teaching of statistics, which
regularly leaves many intelligent students confused about the contrast between the apparent
necessity to check whether model assumptions “really” hold and the striking impossibility to do
this in any satisfactory way. The result is that many of them lose any interest in statistics
whereas others adapt to the “usual scientific rituals” and start to apply the formal calculus in an
unreflected and uncritical way.

The subjectivist Bayesian approach could be a positive exception in this respect, but
unfortunately many researchers who follow this approach shy away from assuming
responsibility openly for their prior choices. From a constructivist perspective, however, all
interpretations share the general problems and merits of mathematical modelling, and each of
them could be applied with a constructivist attitude.

There are many potential practical implications of the view outlined in the present paper. I have
most personal experience with its influence on my approach and my way of communicating as a
statistical consultant or collaborator of non-statisticians. Dealing with models in terms of
decisions how to see a problem makes the statistical modelling process seem much less
mysterious, and it makes the connection of the researcher’s decisions to the chosen models and
the results much clearer. It also gives the researchers clearer ideas about the existing
possibilities to see the problem in a different way.



It seems to me to be more difficult to me, up to now, to give these ideas a stronger influence on
my teaching. I try to do so, and they certainly have an influence on some of my students. But in
teaching there is always limited time and the constructivist view runs counter to what most
students expect and are told in other courses. There is certainly a lot of potential here for
innovative teaching ideas. How much constructivist attitude can and should students learn (and
how) in their statistics courses?

The use and presentation of statistics and quantification of evidence in the general public is
another interesting issue. Although the presented ideas imply a quite optimistic view of the
potential of science and the value of statistical modelling, to some extent they undermine the
way people perceive the authority of scientific results that are based on such quantifications.
Will it be possible to communicate their potential value along with the view that “finding out
how the world really is” is not exactly what this value is? Quite often I have experienced that in
discussions in which quantifications of evidence played a role less objectivistically (and
probably more constructivistically) minded persons were generally very sceptical toward the
use of statistics and statistical models. The way these models are often used gives good reasons
for such a sceptical attitude. But I think that they can be used in many situations in a
constructive and helpful way, if often with a more modest attitude that is more open to criticism
than the one that dominates currently.
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