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1.1 Geometric representation of HDLSS data

• Notation and General setting

–      : Number of clusters,      : Sample size,     : dimensions, 

–       : Sample size of Cluster    , 

–           :    -dimensional random vector of Cluster    ,

–  

–                                     are independent.
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1.1 Geometric representation of HDLSS data

• Notation and General setting

(a)  

(b)  　

(c)  

(d)   
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1.1 Geometric representation of HDLSS data

• Notation and General setting

(e)  

(f) There is some permutation of           ,         

      which is    -mixing*.

*The concepts of    -mixing is useful as a mild condition 
  for the development of laws of large number.
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• Hall et al. (2005; JRSS B)
– The distance between data vectors from a same cluster is  

approximately-constant after scaled by       ! 

– The distance between data vectors 

   from different clusters is also

   approximately constant 
   after scaled by       !
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1.2. Difficulty of clustering for HDLSS data

• Hierarchical clustering in HDLSS contexts !

–　

– In some cases, classical methods do not work well…
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2. Previous study (MDP clustering)

• Maximal data piling (MDP) distance  (Ahn and Marron, 2007)

– The orthogonal distance between the affine subspaces

   generated by the data vectors in each cluster.

12



2. Previous study (MDP clustering)

• Clustering with MDP distance (Ahn, et al., 2013)

– Find successive binary split, each of which creates two 

clusters in such a way that the MDP distance between 

them is as large as possible.
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2. Previous study (MDP clustering)

• MDP distance Clustering (Ahn, et al., 2013)

– A sufficient condition for the label consistency

– where                             . 

– If              is sufficient large, the label consistency holds.
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2. Previous study (MDP clustering)

• Some problems of MDP clustering

– The sufficient condition depends on variances (and sample 

sizes. 

– Cannot discover differences between variances in each 
cluster.

Avoiding stereotypes of clustering method, 

we can conduct simple and effective methods based on 

a distance matrix or an inner product matrix.
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3. Clustering with distance vectors

3.1 Main idea
– Toy example:

•　
•  For 　　   ，　　　　 　，

• The condition of Ahn et al. (2013) dose not hold.
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3. Clustering with distance vectors

3.1 Main idea

Standardized distances converge to some constants in prob.
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*Distance “vectors” have the cluster information!* 



3. Clustering with distance vectors

• Proposed method
– Step 1. Compute the distance matrix      from the data 

            matrix     (or the inner product matrix                  ).

– Step 2. Calculate the following distances (                      ),

– Step 3. For the matrix    , apply a usual clustering method.
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3. Clustering with distance vectors

• K-means Type

    where

–We can optimize this by the usual k-means algorithm.

• Important property

– Under the assumptions  a) ～ f), for all               , 
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3. Clustering with distance vectors

• Theoretical results of the k-means type
– In the case of using a distance matrix 

   Assume  a) ～ f) .

         If

then the estimate label vector converges to 
the true label vector in probability as 　　　  .

– Ahn et al., 2013
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3. Clustering with distance vectors

• Theoretical results of the k-means type
– In the case of using an inner product matrix 

   Assume  a) ～ f) .

                               If                                            

then the estimate label vector converges to 
the true label vector in probability as 　　　  .

– Ahn et al., 2013
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3. Clustering with distance vectors

Application to Cancer Microarray data (Leukemia data)

 Summary:

– The number of  labels：2

– Sample size：72

– Dimensions：3571

Comparison

– Reg. k-means: 2/72 (2)

– MDP: 2/72 (2)

– Proposal method：1/72 (2)
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4. Conclusion

• In this presentaion,

– Introduce geometric representations of HDLSS data,

– Propose a new efficient clustering method for HDLSS data.

• Remark:

– In HDLSS contexts, 

   the closeness between data points may not be meaningful, 

   but “vectors” of distances have the cluster information!

40Thank you for your attention!
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A. Definition of    -mixing

•    -mixing (Kolmogorov and Rozanov, 1960; Theor. Probab. Appl.)

– For 　　　　　　　　  ，
          : the    -field of events generated by the r.v.s                           .

– For any    -field     , 

               : the space of square-integrable,    -measurable r.v.s.

– For each             ,  define the maximal correlation coefficient

   where           .

– The sequence          is said to be    -mixing if 
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