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A general classification model: Gaussian Mixtures

Let x=[Xy, X,, ..., X;]' be a random vector of J variables. We assume

G G
f(x)= Z PO, (x), P, O,Z p, =1 mixture model
g=1 g=1
where each component represents an underlying group, in our case
J 1
_J 1 1 e .
0, (x)=(2m) 2 ‘Eg‘ 2 exp{—g(x —1y) Egl(x —pg)} Gaussian
and each observation iIs assigned to a group by computing
p(g|x) = Py (%) posterior probabilities
Zh Prdn (X)

Given a sample of N 1.i.d. observations, the parameters are estimated by maximizing

L(9)=D Iog(zg Py, (X)) log-likelihood



Problems
- avery large number of parameters;
- difficult to understand which are the “discriminant” variables, 1.e. the variables
that describe the clustering structure.

Idea
The mixture model induces the following covariance structure

Between Within
- e \
Var(x) = Z Py(ny —W)(p, — ) + Z Py variance decomposition
g=1 g=1
=2p + 2y

Model the Between covariance matrix to:
- reduce the number of parameters;
- find the components (linear combinations of the variables) explaining the
“largest information” about the classification.



Reduction Model

The model is a “component analysis” of the centroid matrix.

Scalar
Q G
Hijg = H;j +ijqnqg’ Zpgnqg =0
g=1 g=1
where:

L, IS the mean of variable j in component g;

N, IS the mean of prototype variable g in component g;
qu IS the loading of variable j on prototype variable g.

Vector

G
hy=p+Bny Zpgng =0
g=1



Matrix
M=NB', 1'N=0
where:

- M =[p,,n,,....0s ] —1p', (centred) centroid matrix;
- N=[n,,M,,-,Ns ], centroid matrix on the reduced space.

The component model is not identified. In fact
Bn, = BF 'Fn, = Bjj,.
We exploit such rotational freedom by requiring that

v -1
B 'B=I,.



ML Estimation (homoscedastic case): EM algorithm

Maximization of the loglikelihood

L(9) = ilog(i P90, (xn)] objective

IS equivalent to the maximization of the “fuzzy” function (Hathaway, 1986)

1(3) = Zung Iog(pgcl)g (xn))— Zung Iog(ung) fuzzy objective
ng ng
where un=0 and X4 ung=1. This is so because I(3) reaches a maximum respect to
U=[ung] When

= Ped(x0)
" th(l)h(xn)

posterior probabilities

Substituting the previous in [(3) we obtain L(3).



The algorithm is based on the conditional maximization of I(3) with respect to a subset
of parameters given the others.

The fundamental steps are the following.

a) Update U=[ung]:
Py9y(X,)

e = Z Prds (Xn)’

n=1,2,...,N; g=1,2,..., G,

b) Update p=[p,]: .
o :Nzn:u”g g=1,2,. .G
¢) Update X:
2=%%uw (%0 ~ 1) (%, ~ )’

They are simply the steps of a ordinary EM algorithm.



d) Update p.
We consider centered data, p=0.

e) Update N and B:
It can be shown that the objective function can be written as

1(9) = —%tr{D(X ~NB)Z }(X-NB')'}+c

where ¢ is a constant term (independent of N and B), D = diag(U+1, U+, ..., U+g) and

X =[x;,X,,..,Xg] is the matrix of centroids, x, = Zl Z u,X,, computed on the
u n
n N9

centred variables.

This algorithm can be also seen as an ECM (Meng & Rubin, 1993).



Use and interpretation of components

Step M of the EM algorithm shows that:

1) the within-standardized component loadings matrix B=X"B derives from a PCA
of the matrix of within-standardized centroids

tr{D(X - NB)Z (X - NB)'|= D*X2 " - Nz

HD%Z DINB| -

— min
2) the component scores

Y=ZB=XL X ’B=XZ"'B=XB
maximize the between variance subject to the constraint of unit within variance, i.e.

max tr(B’X'DXB)
subject to BEB=B'X'ZX'B=BT B =1,.

Fisher linear discriminant analysis (LDA)



Three-way Extension

Two-way sample Three-way sample

J variables J variables

_K conditions

N observations Xij N observations Xijk
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Let X = [Xu, Xoiy oeey Xogy ooy Xug, Xaxy .-+, Xi]' D€ @ random vector of J variables observed
under K different conditions.

General classification model

G
f(x)= Z P9, (x) mixture model
g=1
where
_JK 1 1
O, (x)=(2m) 2 ‘Zg‘ 2 exp{— E(X -1, )’Zgl(x -1, )} Gaussian components
Problems

- a very large number of parameters;
- difficult to understand which are the “discriminant” variables and/or occasions;

- difficult to distinguish the role of variables from that of occasions.
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Within Covariance Structure

Model
Direct Product (Browne, 1984)

Op 2y 0 Oy

X, =X, ®L,=|

| Oy 0 Oy

In scalar notation

G jim = OjiIOkm

Basford & MacLachlan (1985) proposed

2, =, ®%,,
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Reduction Model

The model is a “Tucker 2 component analysis” of the centroid matrix.

Scalar
Q R G
Mig =M+ 2. 2 DiCaNargs D PgMarg =0
q=1r=1 g=1
where:

- 1, Is the mean of variable j under condition k in component g;
- Ny 1S the mean of prototype variable g under prototype condition r in component g;
- qujqnqrg IS the mean of variable j under prototype condition r in component g;

- by, Is the loading of variable j on prototype variable g;

- Zrckrnqrg IS the mean of prototype variable g under condition k in component g;
- C,, Is the loading of occasion k on prototype occasion r.

Often used in Chemistry and Psychology, see http://three-mode.leidenuniv.nl/
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Vector
G
p,=p+(C®B), > pmn, =0
g=1

Matrix
M=N(C'®B’), 1I'N=0

where:
- M =[p,,1,,.... 0] —1p', (centred) centroid matrix;
- N=[n,,M,,.-,Ns ], centroid matrix on the reduced space.

The component model is not identified. In fact

(C®B)n, =(C®B)(D'®F)(DR®F), =(CD*®BF )i, =(CRB)J.,.
g g g g

We exploit such rotational freedom by requiring that

BX,B=1I,, CL;C=1;.
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ML Estimation (homoscedastic case): EM algorithm

An EM algorithm can be programmed following the analogous algorithm already seen
for the two-way case.

About the update of N, B and C, it Is interesting to note that the complete log-
likelihood can be written as

1(9) = —%tr{D[X ~N(C®B)](EZ ® )X -N(C®B)]}+c

where ¢ is a constant term and X is the matrix of centroids computed on the centred
variables.

It follows that the parameters can be updated by computing a weighted least squares
approximation of the centroid matrix.
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Use and interpretation of components

1) the within-standardized component loadings matrices B = ZQ%B and C = ):55C
derive from a Tucker2 analysis of the matrix of within-standardized centroids

2

HD%X(zgﬁ ®X,}) - DIN(C'® B)(Zo: ® L) — min

= D'Z-D'N(C'® B)

2) the component scores
Y=Z(C®B)=X(Z, ®XL,)(C®B)=X(C®B)
maximize the between variance subject to the constraint of unit within variance, i.e.

max tr|(C ® B)X'DX(C ® B)]
subjectto C'’X,C=1;,BX,B=1, < (C®B)'(X,®X, )(C®B) =1, ®I,

Bilinear discriminant analysis (BLDA)
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BLDA: interpretation

Constrained LDA

J K
yqr = szjkwjqu N Y= (é ® b)’X
e Dimensionality
where redyction of the
variables

Wikgr = DjeCi : nal;
Dimensionality

reduction of the
Hierarchical LDA occasions

J
=S3Sb f.<f =N x _ _ _
Yar Z Jq tr i = 2 G b,, variable component weights
—
Cy, Occasion component weights
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Data

58 units: soybeans;

8 conditions: 4 environments (Lawes, Brookstead, Nambour, Redland Bay)
x 2 years (1970, 1971);

2 variables: yield Kg/Ha, protein.

Model selection
Model considered:

G=2:7,Q=1:2, R =18, X, diagonal or with non null covariances only between the
same locations.

Best model selected by BIC:

G=7,Q=2,R=2and X diagonal.
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Percentage of variation accounted for by the components
on the within-standardized data

Occasions
Variables 1 2 Tot
1 50.98 11.59 62.57
2 11.96 456 16.52
Tot 62.94 16.15 79.09
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Basford & McLachlan (B&M) and our (R) classification

R
B&M 1 2 3 4 5 6 7
1 3 |
2 3
________ L - 2
4 9
5 3 6
6 1 8
7 4 12




Biplot on the first latent variable at the two latent occasions
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Heteroscedastic case

Reduction model

Scalar
Mg =Hix ™ Zzquckrnqrg ! Z PgMarg =0, Mgy =0 179 > Q and/orr >R
g=1r=1
Vector

G
p,=n+(C®B)n, > pm,=0
g=1

Matrix
=N(C'®B’), 1'N=0

where
- C=[C,,C, _x], square,
=[B,,B, ], square.
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Within-covariance model

T, = (C®B)Q,(C®B)

where

o [P O T
STl 0 0

- ¥ diagonal.
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2, wWe have

If K=3 and R
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