Models for Simultaneous Classification and Reduction of Three-way data

Roberto Rocci
University "Tor Vergata", Rome

A general classification model: Gaussian Mixtures

Let $\mathbf{x}=\left[x_{1}, x_{2}, \ldots, x_{J}\right]^{\prime}$ be a random vector of J variables. We assume

$$
f(\mathbf{x})=\sum_{g=1}^{G} p_{g} \phi_{g}(\mathbf{x}), \quad p_{q} \geq 0, \sum_{g=1}^{G} p_{g}=1
$$

mixture model
where each component represents an underlying group, in our case

$$
\phi_{g}(\mathbf{x})=\left.(2 \pi)^{-\frac{J}{2}} \boldsymbol{\Sigma}_{g}\right|^{-\frac{1}{2}} \exp \left\{-\frac{1}{2}\left(\mathbf{x}-\boldsymbol{\mu}_{g}\right)^{\prime} \boldsymbol{\Sigma}_{g}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{g}\right)\right\}
$$

Gaussian
and each observation is assigned to a group by computing

$$
p(g \mid \mathbf{x})=\frac{p_{g} \phi_{g}(\mathbf{x})}{\sum_{h} p_{h} \phi_{h}(\mathbf{x})}
$$

posterior probabilities

Given a sample of N i.i.d. observations, the parameters are estimated by maximizing

$$
L(\vartheta)=\sum_{n} \log \left(\sum_{g} p_{g} \phi_{g}\left(\mathbf{x}_{n}\right)\right)
$$

Problems

- a very large number of parameters;
- difficult to understand which are the "discriminant" variables, i.e. the variables that describe the clustering structure.

Idea

The mixture model induces the following covariance structure

$$
\begin{aligned}
\operatorname{Var}(\mathbf{x}) & =\overbrace{\sum_{g=1}^{G} p_{g}\left(\boldsymbol{\mu}_{g}-\boldsymbol{\mu}\right)\left(\boldsymbol{\mu}_{g}-\boldsymbol{\mu}\right)^{\prime}}^{\text {Between }}+\overbrace{\sum_{g=1}^{G} p_{g} \boldsymbol{\Sigma}_{g}}^{\text {Within }} \\
& =\boldsymbol{\Sigma}_{B}+\boldsymbol{\Sigma}_{W}
\end{aligned}
$$

Model the Between covariance matrix to:

- reduce the number of parameters;
- find the components (linear combinations of the variables) explaining the "largest information" about the classification.

Reduction Model

The model is a "component analysis" of the centroid matrix.
Scalar

$$
\mu_{j g}=\mu_{j}+\sum_{q=1}^{Q} b_{j q} \eta_{q g}, \quad \sum_{g=1}^{G} p_{g} \eta_{q g}=0
$$

where:
$\mu_{j g}$ is the mean of variable j in component g;
$\eta_{q g}$ is the mean of prototype variable q in component g;
$b_{j q}$ is the loading of variable j on prototype variable q.
Vector

$$
\boldsymbol{\mu}_{g}=\boldsymbol{\mu}+\mathbf{B} \boldsymbol{\eta}_{g}, \quad \sum_{g=1}^{G} p_{g} \boldsymbol{\eta}_{g}=\mathbf{0}
$$

Matrix

$$
\mathbf{M}=\mathbf{N B}^{\prime}, \quad \mathbf{1}^{\prime} \mathbf{N}=\mathbf{0}
$$

where:

- $\mathbf{M}=\left[\boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{2}, \ldots, \boldsymbol{\mu}_{G}\right]^{\prime}-\mathbf{1} \boldsymbol{\mu}^{\prime}$, (centred) centroid matrix;
- $\mathbf{N}=\left[\boldsymbol{\eta}_{1}, \boldsymbol{\eta}_{2}, \ldots, \boldsymbol{\eta}_{G}\right]^{\prime}$, centroid matrix on the reduced space.

The component model is not identified. In fact

$$
\mathbf{B} \boldsymbol{\eta}_{g}=\mathbf{B} \mathbf{F}^{-1} \mathbf{F} \boldsymbol{\eta}_{g}=\tilde{\mathbf{B}} \tilde{\boldsymbol{\eta}}_{g} .
$$

We exploit such rotational freedom by requiring that

$$
\mathbf{B}^{\prime} \mathbf{\Sigma}^{-1} \mathbf{B}=\mathbf{I}_{Q} .
$$

ML Estimation (homoscedastic case): EM algorithm

Maximization of the loglikelihood

$$
L(\vartheta)=\sum_{n=1}^{N} \log \left(\sum_{g=1}^{G} p_{g} \phi_{g}\left(\mathbf{x}_{n}\right)\right)
$$

is equivalent to the maximization of the "fuzzy" function (Hathaway, 1986)

$$
l(\vartheta)=\sum_{n g} u_{n g} \log \left(p_{g} \phi_{g}\left(\mathbf{x}_{n}\right)\right)-\sum_{n g} u_{n g} \log \left(u_{n g}\right)
$$

fuzzy objective

where $u_{n g} \geq 0$ and $\Sigma_{g} u_{n g}=1$. This is so because $l(\vartheta)$ reaches a maximum respect to $\mathbf{U}=\left[u_{n g}\right]$ when

$$
u_{n g}=\frac{p_{g} \phi_{g}\left(\mathbf{x}_{n}\right)}{\sum_{h} p_{h} \phi_{h}\left(\mathbf{x}_{n}\right)}
$$

Substituting the previous in $l(\vartheta)$ we obtain $L(\vartheta)$.

The algorithm is based on the conditional maximization of $l(\vartheta)$ with respect to a subset of parameters given the others.

The fundamental steps are the following.
a) Update $\mathbf{U}=\left[u_{n g}\right]$:

$$
u_{n g}=\frac{p_{g} \phi_{g}\left(\mathbf{x}_{n}\right)}{\sum_{h} p_{h} \phi_{h}\left(\mathbf{x}_{n}\right)}, n=1,2, \ldots, N ; g=1,2, \ldots, G
$$

b) Update $\mathbf{p}=\left[p_{g}\right]$:

$$
p_{g}=\frac{1}{N} \sum_{n} u_{n g}, g=1,2, \ldots, G .
$$

c) Update Σ :

$$
\boldsymbol{\Sigma}=\frac{1}{N} \sum_{n g} u_{n g}\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{g}\right)\left(\mathbf{x}_{n}-\boldsymbol{\mu}_{g}\right)^{\prime}
$$

They are simply the steps of a ordinary EM algorithm.
d) Update μ :

We consider centered data, $\boldsymbol{\mu}=\mathbf{0}$.
e) Update \mathbf{N} and \mathbf{B} :

It can be shown that the objective function can be written as

$$
l(\vartheta)=-\frac{1}{2} \operatorname{tr}\left\{\mathbf{D}\left(\overline{\mathbf{X}}-\mathbf{N} \mathbf{B}^{\prime}\right) \mathbf{\Sigma}^{-1}\left(\overline{\mathbf{X}}-\mathbf{N} \mathbf{B}^{\prime}\right)^{\prime}\right\}+c
$$

where c is a constant term (independent of \mathbf{N} and $\mathbf{B}), \mathbf{D}=\operatorname{diag}\left(u_{+1}, u_{+2}, \ldots, u_{+G}\right)$ and $\overline{\mathbf{X}}=\left[\overline{\mathbf{x}}_{1}, \overline{\mathbf{x}}_{2}, \ldots, \overline{\mathbf{x}}_{G}\right]^{\prime}$ is the matrix of centroids, $\overline{\mathbf{x}}_{g}=\frac{1}{\sum_{n} u_{n g}} \sum_{n} u_{n g} \mathbf{x}_{n}$, computed on the centred variables.

This algorithm can be also seen as an ECM (Meng \& Rubin, 1993).

Use and interpretation of components

Step M of the EM algorithm shows that:

1) the within-standardized component loadings matrix $\widehat{\mathbf{B}}=\boldsymbol{\Sigma}^{-\frac{1}{2}} \mathbf{B}$ derives from a PCA of the matrix of within-standardized centroids

$$
\operatorname{tr}\left\{\mathbf{D}\left(\overline{\mathbf{X}}-\mathbf{N} \mathbf{B}^{\prime}\right) \boldsymbol{\Sigma}^{-1}\left(\overline{\mathbf{X}}-\mathbf{N} \mathbf{B}^{\prime}\right)^{\prime}\right\}=\left\|\mathbf{D}^{\frac{1}{2}} \overline{\mathbf{X}} \boldsymbol{\Sigma}^{-\frac{1}{2}}-\mathbf{D}^{\frac{1}{2}} \mathbf{N} \mathbf{B}^{\prime} \boldsymbol{\Sigma}^{-\frac{1}{2}}\right\|^{2}=\left\|\mathbf{D}^{\frac{1}{2}} \overline{\mathbf{Z}}-\mathbf{D}^{\frac{1}{2}} \mathbf{N} \widehat{\mathbf{B}}^{\prime}\right\|^{2} \rightarrow \min _{\mathbf{N}, \mathbf{B}}
$$

2) the component scores

$$
\mathbf{Y}=\mathbf{Z} \widehat{\mathbf{B}}=\mathbf{X} \boldsymbol{\Sigma}^{-\frac{1}{2}} \boldsymbol{\Sigma}^{-\frac{1}{2}} \mathbf{B}=\mathbf{X} \boldsymbol{\Sigma}^{-1} \mathbf{B}=\mathbf{X} \breve{\mathbf{B}}
$$

maximize the between variance subject to the constraint of unit within variance, i.e.

$$
\begin{gathered}
\max \operatorname{tr}\left(\breve{\mathbf{B}}^{\prime} \overline{\mathbf{X}}^{\prime} \mathbf{D} \overline{\mathbf{X}} \breve{\mathbf{B}}\right) \\
\text { subject to } \breve{\mathbf{B}^{\prime} \boldsymbol{\Sigma} \breve{\mathbf{B}}=\mathbf{B}^{\prime} \boldsymbol{\Sigma}^{-1} \boldsymbol{\Sigma} \boldsymbol{\Sigma}^{-1} \mathbf{B}=\mathbf{B}^{\prime} \boldsymbol{\Sigma}^{-1} \mathbf{B}=\mathbf{I}_{Q}} .
\end{gathered}
$$

Fisher linear discriminant analysis (LDA)

Three-way Extension

Two-way sample

Let $\mathbf{x}=\left[x_{11}, x_{21}, \ldots, x_{\lrcorner 1}, \ldots, x_{1 \kappa}, x_{2 \kappa}, \ldots, x_{J K}\right]^{\prime}$ be a random vector of J variables observed under K different conditions.

General classification model

$$
f(\mathbf{x})=\sum_{g=1}^{G} p_{g} \phi_{g}(\mathbf{x})
$$

mixture model
where

$$
\phi_{g}(\mathbf{x})=(2 \pi)^{-\frac{J K}{2}}\left|\boldsymbol{\Sigma}_{g}\right|^{-\frac{1}{2}} \exp \left\{-\frac{1}{2}\left(\mathbf{x}-\boldsymbol{\mu}_{g}\right)^{\prime} \boldsymbol{\Sigma}_{g}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{g}\right)\right\}
$$

Gaussian components

Problems

- a very large number of parameters;
- difficult to understand which are the "discriminant" variables and/or occasions;
- difficult to distinguish the role of variables from that of occasions.

Within Covariance Structure

Model

Direct Product (Browne, 1984)

$$
\boldsymbol{\Sigma}_{g}=\boldsymbol{\Sigma}_{O} \otimes \boldsymbol{\Sigma}_{V}=\left[\begin{array}{ccc}
\sigma_{11} \boldsymbol{\Sigma}_{V} & \cdots & \sigma_{1 K} \boldsymbol{\Sigma}_{V} \\
\vdots & \ddots & \vdots \\
\sigma_{K 1} \boldsymbol{\Sigma}_{V} & \cdots & \sigma_{K K} \boldsymbol{\Sigma}_{V}
\end{array}\right]
$$

in scalar notation

$$
\sigma_{j k l m}=\sigma_{j l} \sigma_{k m}
$$

Basford \& MacLachlan (1985) proposed

$$
\boldsymbol{\Sigma}_{g}=\mathbf{I}_{K} \otimes \boldsymbol{\Sigma}_{V ; g}
$$

Reduction Model

The model is a "Tucker 2 component analysis" of the centroid matrix.
Scalar

$$
\mu_{j k g}=\mu_{j k}+\sum_{q=1}^{Q} \sum_{r=1}^{R} b_{j q} c_{k r} \eta_{q r g}, \quad \sum_{g=1}^{G} p_{g} \eta_{q r g}=0
$$

where:

- $\mu_{j k g}$ is the mean of variable j under condition k in component g;
- $\eta_{\text {qrg }}$ is the mean of prototype variable q under prototype condition r in component g;
- $\sum_{q} b_{j q} \eta_{\text {qrg }}$ is the mean of variable j under prototype condition r in component g;
- $b_{j q}$ is the loading of variable j on prototype variable q;
- $\sum_{r} c_{k r} \eta_{q r g}$ is the mean of prototype variable q under condition k in component g;
$-c_{k r}$ is the loading of occasion k on prototype occasion r.
Often used in Chemistry and Psychology, see http://three-mode.leidenuniv.nl/

Vector

$$
\boldsymbol{\mu}_{g}=\boldsymbol{\mu}+(\mathbf{C} \otimes \mathbf{B}) \boldsymbol{\eta}_{g}, \quad \sum_{g=1}^{G} p_{g} \boldsymbol{\eta}_{g}=\mathbf{0}
$$

Matrix

$$
\mathbf{M}=\mathbf{N}\left(\mathbf{C}^{\prime} \otimes \mathbf{B}^{\prime}\right), \quad \mathbf{1}^{\prime} \mathbf{N}=\mathbf{0}
$$

where:

- $\mathbf{M}=\left[\boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{2}, \ldots, \boldsymbol{\mu}_{G}\right]^{\prime}-\mathbf{1} \boldsymbol{\mu}^{\prime}$, (centred) centroid matrix;
- $\mathbf{N}=\left[\boldsymbol{\eta}_{1}, \boldsymbol{\eta}_{2}, \ldots, \boldsymbol{\eta}_{G}\right]^{\prime}$, centroid matrix on the reduced space.

The component model is not identified. In fact

$$
(\mathbf{C} \otimes \mathbf{B}) \boldsymbol{\eta}_{g}=(\mathbf{C} \otimes \mathbf{B})\left(\mathbf{D}^{-1} \otimes \mathbf{F}^{-1}\right)(\mathbf{D} \otimes \mathbf{F}) \boldsymbol{\eta}_{g}=\left(\mathbf{C D}^{-1} \otimes \mathbf{B} \mathbf{F}^{-1}\right) \widetilde{\boldsymbol{\eta}}_{g}=(\widetilde{\mathbf{C}} \otimes \widetilde{\mathbf{B}}) \widetilde{\boldsymbol{\eta}}_{g} .
$$

We exploit such rotational freedom by requiring that

$$
\mathbf{B}^{\prime} \boldsymbol{\Sigma}_{V}^{-1} \mathbf{B}=\mathbf{I}_{Q}, \mathbf{C}^{\prime} \boldsymbol{\Sigma}_{o}^{-1} \mathbf{C}=\mathbf{I}_{R} .
$$

ML Estimation (homoscedastic case): EM algorithm

An EM algorithm can be programmed following the analogous algorithm already seen for the two-way case.

About the update of \mathbf{N}, \mathbf{B} and \mathbf{C}, it is interesting to note that the complete loglikelihood can be written as

$$
l(\vartheta)=-\frac{1}{2} \operatorname{tr}\left\{\mathbf{D}\left[\mathbf{X}-\mathbf{N}(\mathbf{C} \otimes \mathbf{B})^{\prime}\right]\left(\boldsymbol{\Sigma}_{o}^{-1} \otimes \boldsymbol{\Sigma}_{V}^{-1}\right)\left[\mathbf{X}-\mathbf{N}(\mathbf{C} \otimes \mathbf{B})^{\prime}\right]^{\prime}\right\}+c
$$

where c is a constant term and $\overline{\mathbf{X}}$ is the matrix of centroids computed on the centred variables.

It follows that the parameters can be updated by computing a weighted least squares approximation of the centroid matrix.

Use and interpretation of components

1) the within-standardized component loadings matrices $\widehat{\mathbf{B}}=\boldsymbol{\Sigma}_{V}^{-\frac{1}{2}} \mathbf{B}$ and $\widehat{\mathbf{C}}=\boldsymbol{\Sigma}_{o}^{-\frac{1}{2}} \mathbf{C}$ derive from a Tucker2 analysis of the matrix of within-standardized centroids

$$
\left\|\mathbf{D}^{\frac{1}{2}} \overline{\mathbf{X}}\left(\boldsymbol{\Sigma}_{O}^{-\frac{1}{2}} \otimes \boldsymbol{\Sigma}_{V}^{-\frac{1}{2}}\right)-\mathbf{D}^{\frac{1}{2}} \mathbf{N}\left(\mathbf{C}^{\prime} \otimes \mathbf{B}^{\prime}\right)\left(\boldsymbol{\Sigma}_{O}^{-\frac{1}{2}} \otimes \boldsymbol{\Sigma}_{V}^{-\frac{1}{2}}\right)\right\|^{2}=\left\|\mathbf{D}^{\frac{1}{2}} \overline{\mathbf{Z}}-\mathbf{D}^{\frac{1}{2}} \mathbf{N}\left(\widehat{\mathbf{C}}^{\prime} \otimes \widehat{\mathbf{B}}^{\prime}\right)\right\|^{2} \rightarrow \min _{\mathbf{N}, \mathbf{B}, \mathbf{C}}
$$

2) the component scores

$$
\mathbf{Y}=\mathbf{Z}(\widehat{\mathbf{C}} \otimes \widehat{\mathbf{B}})=\mathbf{X}\left(\boldsymbol{\Sigma}_{o}^{-1} \otimes \boldsymbol{\Sigma}_{V}^{-1}\right)(\mathbf{C} \otimes \mathbf{B})=\mathbf{X}(\breve{\mathbf{C}} \otimes \breve{\mathbf{B}})
$$

maximize the between variance subject to the constraint of unit within variance, i.e.

$$
\begin{gathered}
\max \operatorname{tr}\left[(\breve{\mathbf{C}} \otimes \breve{\mathbf{B}})^{\prime} \overline{\mathbf{X}} \mathbf{D} \overline{\mathbf{X}}(\breve{\mathbf{C}} \otimes \breve{\mathbf{B}})\right] \\
\text { subject to } \breve{\mathbf{C}}^{\prime} \boldsymbol{\Sigma}_{O} \breve{\mathbf{C}}=\mathbf{I}_{R}, \breve{\mathbf{B}}^{\prime} \boldsymbol{\Sigma}_{V} \breve{\mathbf{B}}=\mathbf{I}_{Q} \Leftrightarrow(\breve{\mathbf{C}} \otimes \breve{\mathbf{B}})^{\prime}\left(\boldsymbol{\Sigma}_{o} \otimes \boldsymbol{\Sigma}_{V}\right)(\breve{\mathbf{C}} \otimes \breve{\mathbf{B}})=\mathbf{I}_{R} \otimes \mathbf{I}_{Q}
\end{gathered}
$$

Bilinear discriminant analysis (BLDA)

BLDA: interpretation

Constrained LDA

$$
y_{q r}=\sum_{j=1}^{J} \sum_{k=1}^{K} x_{j k} w_{j k q r} \Leftrightarrow \mathbf{y}=(\breve{\mathbf{c}} \otimes \breve{\mathbf{b}})^{\prime} \mathbf{x}
$$

where

$$
w_{j k q r}=\breve{b}_{j q} \breve{C}_{k r}
$$

$$
\begin{aligned}
& \text { Hierarchical LDA } \\
& \left\{\begin{array} { l }
{ y _ { q r } = \sum _ { j = 1 } ^ { J } \breve { b } _ { j q } f _ { j r } \Leftarrow f _ { j r } = \sum _ { k = 1 } ^ { K } \breve { c } _ { k r } x _ { j k } } \\
{ y _ { q r } = \sum _ { k = 1 } ^ { K } \breve { c } _ { k r } h _ { q k } \Leftarrow h _ { q k } = \sum _ { j = 1 } ^ { J } \breve { b } _ { j q } x _ { j k } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\breve{b}_{j p} \text { variable component weights } \\
\breve{c}_{k q} \text { occasion component weights }
\end{array}\right.\right.
\end{aligned}
$$

Dimensionality reduction of the variables

Dimensionality reduction of the

Application

Data

58 units: soybeans;
8 conditions: 4 environments (Lawes, Brookstead, Nambour, Redland Bay) $\times 2$ years (1970, 1971);
2 variables: yield Kg/Ha, protein.

Model selection

Model considered:
$G=2: 7, Q=1: 2, R=1: 8, \Sigma_{o}$ diagonal or with non null covariances only between the same locations.

Best model selected by BIC:

$$
G=7, Q=2, R=2 \text { and } \boldsymbol{\Sigma}_{o} \text { diagonal. }
$$

Percentage of variation accounted for by the components on the within-standardized data

	Occasions		
Variables	$\mathbf{1}$	$\mathbf{2}$	Tot
$\mathbf{1}$	50.98	11.59	62.57
$\mathbf{2}$	11.96	4.56	16.52
Tot	62.94	16.15	79.09

Basford \& McLachlan (B\&M) and our (R) classification

	\mathbf{R}						
B\&M	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
$\mathbf{1}$	3						
$\mathbf{2}$		3					
$\mathbf{3}$			6	3			
$\mathbf{4}$					9		
$\mathbf{5}$					3	6	
$\mathbf{6}$					1	8	
$\mathbf{7}$						4	12

Biplot on the first latent variable at the two latent occasions

Heteroscedastic case

Reduction model

Scalar
$\mu_{j k g}=\mu_{j k}+\sum_{q=1}^{J} \sum_{r=1}^{K} b_{j q} c_{k r} \eta_{q r g}, \quad \sum_{g=1}^{G} p_{g} \eta_{q r g}=0, \eta_{q r g}=0$ if $q>Q$ and/or $r>R$
Vector

$$
\boldsymbol{\mu}_{g}=\boldsymbol{\mu}+(\mathbf{C} \otimes \mathbf{B}) \boldsymbol{\eta}_{g}, \quad \sum_{g=1}^{G} p_{g} \boldsymbol{\eta}_{g}=\mathbf{0}
$$

Matrix

$$
\mathbf{M}=\mathbf{N}\left(\mathbf{C}^{\prime} \otimes \mathbf{B}^{\prime}\right), \quad \mathbf{1}^{\prime} \mathbf{N}=\mathbf{0}
$$

where

- $\mathbf{C}=\left[\mathbf{C}_{R}, \mathbf{C}_{K-R}\right]$, square,
- $\mathbf{B}=\left[\mathbf{B}_{Q}, \mathbf{B}_{J-Q}\right]$, square.

Within-covariance model

$$
\boldsymbol{\Sigma}_{g}=(\mathbf{C} \otimes \mathbf{B}) \boldsymbol{\Omega}_{g}(\mathbf{C} \otimes \mathbf{B})^{\prime}
$$

where
$-\boldsymbol{\Omega}_{g}=\left[\begin{array}{ll}\boldsymbol{\Omega}_{O, g} & \mathbf{0} \\ \mathbf{0} & \mathbf{0}\end{array}\right] \otimes\left[\begin{array}{ll}\boldsymbol{\Omega}_{V, g} & \mathbf{0} \\ \mathbf{0} & \mathbf{0}\end{array}\right]+\boldsymbol{\Psi}$,

- $\boldsymbol{\Psi}$ diagonal.

If $K=3$ and $R=2$, we have
$\boldsymbol{\Omega}_{g}=\left[\begin{array}{cc:cc:cc}\omega_{110, g} \boldsymbol{\Omega}_{V, g} & 0 & \omega_{120, g} \boldsymbol{\Omega}_{V, g} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \hdashline \omega_{210, g} \boldsymbol{\Omega}_{V, g} & 0 & \omega_{220, g} \boldsymbol{\Omega}_{V, g} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \hdashline 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]+\boldsymbol{\Psi}$

