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 A general classification model: Gaussian Mixtures 
 
Let x=[x1, x2, …, xJ] be a random vector of J variables. We assume 
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where each component represents an underlying group, in our case 
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and each observation is assigned to a group by computing 
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Given a sample of N i.i.d. observations, the parameters are estimated by maximizing 
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Problems 
- a very large number of parameters; 
- difficult to understand which are the “discriminant” variables, i.e. the variables 

that describe the clustering structure. 
 
Idea 
The mixture model induces the following covariance structure 
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Model the Between covariance matrix to: 

- reduce the number of parameters; 
- find the components (linear combinations of the variables) explaining the 

“largest information” about the classification. 
 



 

 4 

 Reduction Model 
 
The model is a “component analysis” of the centroid matrix. 
 
Scalar 
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where: 

jg  is the mean of variable j in component g; 

qg  is the mean of prototype variable q in component g; 

jqb  is the loading of variable j on  prototype variable q. 
 
Vector 
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Matrix  
 
 BNM  ,     0N1   
 
where: 
- μ1μμμM  ],...,,[ 21 G , (centred) centroid matrix; 
- ],...,,[ 21  GηηηN , centroid matrix on the reduced space. 
 
 
 
The component model is not identified. In fact 

 
 ggg ηBFηBFBη ~~1   . 

 
We exploit such rotational freedom by requiring that 
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 ML Estimation (homoscedastic case): EM algorithm 
 
Maximization of the loglikelihood 
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is equivalent to the maximization of the “fuzzy” function (Hathaway, 1986) 
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where ung0 and g ung=1. This is so because l() reaches a maximum respect to 
U=[ung] when 
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Substituting the previous in l() we obtain L(). 
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The algorithm is based on the conditional maximization of l() with respect to a subset 
of parameters given the others. 
 
The fundamental steps are the following. 
 
a) Update U=[ung]:  
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b) Update p=[pg]:  
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They are simply the steps of a ordinary EM algorithm. 
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d) Update :  
We consider centered data, 0μ  . 
 
e) Update N and B:  
It can be shown that the objective function can be written as 
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where c is a constant term (independent of N and B), D = diag(u+1, u+2, ..., u+G) and 
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This algorithm can be also seen as an ECM (Meng & Rubin, 1993). 
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 Use and interpretation of components 

 
Step M of the EM algorithm shows that: 
 

1) the within-standardized component loadings matrix BΣB 2
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2) the component scores 
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maximize the between variance subject to the constraint of unit within variance, i.e. 
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Fisher linear discriminant analysis (LDA) 
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 Three-way Extension 
 
 
Two-way sample                  Three-way sample 
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Let x = [x11, x21, …, xJ1, …, x1K, x2K, …, xJK] be a random vector of J variables observed 
under K different conditions. 
 
General classification model 
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Problems 

- a very large number of parameters; 
- difficult to understand which are the “discriminant” variables and/or occasions; 
- difficult to distinguish the role of variables from that of occasions. 
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 Within Covariance Structure 
 
Model 
Direct Product (Browne, 1984) 
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in scalar notation 
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Basford & MacLachlan (1985) proposed 
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 Reduction Model 
 
The model is a “Tucker 2 component analysis” of the centroid matrix. 
 
Scalar 
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where: 
- jkg  is the mean of variable j under condition k in component g; 
- qrg  is the mean of prototype variable q under prototype condition r in component g; 
-  

q qrgjqb  is the mean of variable j under prototype condition r in component g; 
- jqb  is the loading of variable j on prototype variable q; 
-  

r qrgkrc  is the mean of prototype variable q under condition k in component g; 
- krc  is the loading of occasion k on prototype occasion r. 
 
Often used in Chemistry and Psychology, see http://three-mode.leidenuniv.nl/ 
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Vector 
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Matrix  
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where: 
- μ1μμμM  ],...,,[ 21 G , (centred) centroid matrix; 
- ],...,,[ 21  GηηηN , centroid matrix on the reduced space. 
 
The component model is not identified. In fact 
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We exploit such rotational freedom by requiring that 
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 ML Estimation (homoscedastic case): EM algorithm 
 
An EM algorithm can be programmed following the analogous algorithm already seen 
for the two-way case. 
 
About the update of N, B and C, it is interesting to note that the complete log-
likelihood can be written as 
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where c is a constant term and X  is the matrix of centroids computed on the centred 
variables. 
 
It follows that the parameters can be updated by computing a weighted least squares 
approximation of the centroid matrix. 
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 Use and interpretation of components 

 
1) the within-standardized component loadings matrices BΣB 2
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maximize the between variance subject to the constraint of unit within variance, i.e. 
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Bilinear discriminant analysis (BLDA) 
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 BLDA: interpretation 
 

Constrained LDA 
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Hierarchical LDA 
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 Application 
 
Data 
58 units: soybeans; 
8  conditions: 4 environments (Lawes, Brookstead, Nambour, Redland Bay)  
                     2 years (1970, 1971); 
2 variables: yield Kg/Ha, protein. 

 
 

Model selection 
Model considered: 
G = 2:7, Q = 1:2, R = 1:8, OΣ  diagonal or with non null covariances only between the 
same locations.  
 
Best model selected by BIC:  
 

G = 7, Q = 2, R = 2 and OΣ diagonal. 
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Percentage of variation accounted for by the components  
on the within-standardized data 

 
 

 Occasions  
Variables 1 2 Tot 

1 50.98 11.59 62.57
2 11.96 4.56 16.52

Tot 62.94 16.15 79.09
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Basford & McLachlan (B&M) and our (R) classification 
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B&M 1 2 3 4 5 6 7 

1 3       
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6     1 8  
7      4 12
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Biplot on the first latent variable at the two latent occasions 
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 Heteroscedastic case 
 

Reduction model 
 

Scalar 
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Vector 
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where 
- ],,[ RKR  CCC  square, 
- ],[ QJQ  BBB , square. 
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Within-covariance model 
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If K =3 and R = 2, we have 
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