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Prelude: The historical machine(s)

140 years ago: Sir
Francis Galton (1822-
1911) invented the
Quincunx, a mechanical
device to illustrate the
central limit theorem
and binomial
probabilities. It consists
of a vertical board with
interleaved rows of
pins. Balls are dropped
from the top, and
bounce left and right as
they hit the pins.
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Prelude: The historical machine(s) of Galton

Later on Galton improved/maodified his Bean Machine. With
the help of his machines, Galton discovered basic
properties and relationships of distributions.

In 1888, Galton realizes that if (X,Y) are bivariate normal,
standardized so both have expectation = 0 and standard
deviation =1, then E(X|Y=y) =ry and E(Y|X=x)=rx ,
and so r measures the association: The ,,co-relation”.

Nowadays, computers replace mechanical devises in
doing simulation experiments, see animations at:
http.//vis.supstat.com/2013/04/bean-machine/ . It's a pitty
that Galton can't play with the electronic bean machine ...
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Introduction

 Variable selection is a well-known problem in many areas of
multivariate statistics such as classification and regression.
The hope is that the structure of interest may be contained
in only a small subset of variables.

* |n contradiction to supervised classification such as
discriminant analysis, variable selection in cluster analysis is
a much more difficult problem because usually nothing is
known about the true class structure.

* In addition, in clustering, variable selection is highly related
to the main problem of the determination of the number
of clusters K to be inherent in the data.
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Introduction

* There are many papers on variable selection in clustering,
mainly based on special cluster separation measures such as
the Davies and Bouldin (1979) criterion: ratio of within-
cluster dispersions and between-cluster separation.

* Forinstance, Steinley and Brusco (2008) compared eight
different variable selection procedures.

* Here we present a general approach to variable selection
using non-parametric resampling techniques based on
criteria of stability such as the adjusted Rand'’s index (ARI).
General means, it makes use only of measures of stability of
partitions, and so it can be applied to almost any cluster
analysis method.
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Non-parametric resampling techniques

* Usually, the starting point of cluster analysis is a data
matrix X = (x;;) with I observations and J variables.

« (Cluster analysis means finding a partition of the set of |
observations into K non-empty clusters C,, k=1, 2, .., K

* The C, should be stable, i.e. they should be reproduced
to a high degree if the data set is changed in a non-
essential way. Thus, clustering of a random drawn
sample of the data should lead to similar results.

* Obviously, the stability of clusters should decrease if we
add some noisy (no-structure) variables J+1, J+2,... So, it
appears plausible to start variable selection in clustering
with as few variables as possible and to proceed by
adding new ones until the stability increases.
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Non-parametric resampling techniques

« Non-parametric bootstrapping is a statistical method for
estimating the sampling distribution of an estimator by
sampling with replacement from the original sample.

* Well-known alternative resampling methods are sub-
sampling (draw a subsample to a smaler size without
replacement) and jittering (add noise to every single
observation), and combinations of simulation schemes.

* These resampling techniques and simulation schemes
allow the estimation of the sampling distribution of
almost any statistic such as ARl or Jaccard measure. The
latter assesses the stability of every original cluster C, by
the mean value (or median)y, over all Jaccard values of
the bootstrap samples.
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Non-parametric resampling techniques

* For a decision about the number of clusters K (as it is usual
using ARI), an averaged Jaccard value vy, regarding all y,
of individual clusters C,, k=12,..., K, of a partition is
recommended:

1K K
vk == Ny« .where | - n«
lia k=1

« Both the ARIR (Hubert and Arabie 1985) and the averaged
Jaccard index vy, are most appropriate to decide about the
number of clusters K, i.e. to assess the stability of a
partition consisting of all clusters C, C,, ..., Cy.

 Alternative well-known measures of stability in cluster
analysis are Dice, and Fowlkes and Mallow.
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Selection of variables in clustering: a proposal

Here we propose a basic bottom-up variable selection:

1.

The starting point is an assessment of the evidence of
univariate clustering results. Concretely, we are looking for
the most stable univariate clustering (i.c., the best variable)
with respect to indexes such as ARl or Jaccard.

Subsequently, we are looking for the best partner of the
variable found in step 1. The hope is to find the most stable
bivariate clustering in that way.

We are going to find a third partner (variable) of the two
variables found in step 2. Furthermore, we proceed the
search for next variables as long as an “essential”
improvement of the stability of the clustering is realized.
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Selection of variables in clustering: a proposal

* The computational complexity decreases with the
number of steps: J univariate (original) clustering
results have to be assessed, J-1bivariate ones, J-2
trivariate ones, and so on.

» This basic variable selection procedure can be
modified in several ways:

 starting with J*(J-1)/2 bivariate clustering results,
« Or, starting with J*(J-1)*(J-2)/6 trivariate ones,

 evaluate statistically the J ARl of univariate

clustering results (=J*(J-1)/2 pairs) (Carmone et al.

1999), or the J-1 ARI of bivariate clustering ...,

* in between, switching to a top-down step.

AG DANK/BCS Meeting at UCL, London 8/X1/2013 11



Selection of variables in clustering: a proposal

* However, the computational complexity should be taken
into consideration. So, starting with the assessment of
trivariate clustering results seems to be unrealistic ...

* There are two main families of clustering techniques,
hierarchical and partitional clustering.

* Hierarchical clustering |0oks fit and proper for our
resampling proposal because of the (usual) unique and

parallel clustering of the | observations into partitions of

K=2, K=3,... clusters. In addition, pairwise distances, the
starting point of hierarchical cluster analysis, are not
affected by bootstrapping/subsampling.
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Selection of variables in clustering: a proposal

e In contradiction, the results of partitional (iterative)
clustering methods are dependent on the initial partition
into a fixed number of clusters K. Usually, 50 different initial
partitions are used to get up to 50 different locally optimal
solutions. The best solution is taken for the investigation of
stability.

* Moreover, you have to do this for different K (K=2, K=3,
K=4,...).

 Finally, you have to do all things outlined above also for
each bootstrap sample (or subsample). So, our proposal
starts with altogether 50*K ., *(B+1)*J univariate partitional
clusterings... (B is the number of bootstrap samples).
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Example: Hierarchical clustering of synthetic data

Bivariate density surface of the
variables X and Y of four- e —
dimensional three class data. | "
The other two variables R1 and
R2 are masking variables
without any class structure.
Concretely, they are uniformly
distributed in (-5; 5). The
Gaussian sub-populations were
generated with the following
different parameters:
cardinalities 80, 130, and 90,
mean values (-3, 3), (0, 0), and
(3, 3), and standard deviations
(1,1), (0.7,0.7),and (1.2,1.2).
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Example: Hierarchical clustering of synthetic data

Investigation of
the stability of

the univariate
clustering

results based
on the adjusted
Rand index R
coming from
comparisons
with cluster
analyses of 250
sub-samples of
cardinality 180
(60%). Ward's

method is used.

0,8 -

0,6 -

04

4

5 6 7 8 9
Number of clusters K
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Example: Hierarchical clustering of synthetic data

The similarity e ]
measure
‘averaged
Jaccard index” yy
0,85

behaves similar
to the adjusted
Rand index R: Y
clustering based
on variable X'is
most stable for
K=3 clusters
(with an
additional most

0,7 -

0,55 -

2 3 4 S 6 7 8 9
steep rise from Number of clusters K

K=> to K=3 (X: 32 errors, Y. 78 errors)
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Example: Hierarchical clustering of synthetic data

1

Step 2 of the R1X
procedure:
Investigation of

=R2X

the stability of 08

the three
bivariate Ward'’s
clustering results

based on the 0,6
adjusted Rand
index R.The
clustering based
on variables X 0,4

and Y is most 2 8 4 5 6 7 8 9

Number of clusters K
le for K=3 .
stab (XY: 4 errors only )
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Example: Hierarchical clustering of synthetic data

Step 2 of the 1

procedure: #R1X
Investigation of “#=R2X
the stability of

the three 0,85
bivariate Ward’s
clustering
results based Tk
on the
averaged
Jaccard index”
Y« Here, for
K=2, the

situation looks | s & P 2 oz @ B
Not so clear. Number of clusters K

0,7 -
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Example: Hierarchical clustering of synthetic data

Step 3 of the

procedure: 075 1
Investigation of
the stability of 06

the two tri-
variate Ward's  |Rg

clustering results |0,45 -
based on the

adjusted Rand
index R. 02 7
Additionally, the

clustering was
0,15 -

investigated that 2 3 4 5 6 - g 9
is based on all Number of clusters K

four variables. (RRXY: 121 errors are counted)
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Example: Hierarchical clustering of synthetic data

Step 3 of the
procedure:
Investigation of
the stability of
the two tri-
variate Ward's
clustering results
based on the
averaged Jaccard
index” yg.
Additionally, the
clustering was
investigated that
is based on all
four variables.

0,8

Yk

0,6

04

4

<B-R1XY

==R2XY

==RRXY

5 6 7 8 9
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Example: Hierarchical clustering of synthetic data

The procedure stops at

step 3 because the sta-
bility of trivariate cluster-
ing decreases rapidly.
Ward’s method based on
the selected variables X
and Y is successful in
finding the 3 classes: 4
errors are counted only.
One gets quite similar
partitional clustering
results in the case of 4000 gt N,
points (1100, 1600, 1300, v "

8

Frequencies

0.3 £3

see the histograms of X

and/orY).
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Example: Clustering of the Swiss bank notes data

The data set contains six measurements made on 100 genuine
and 100 counterfeit old-Swiss 1000-franc bank notes with the
following variables:

* Length: Length of bill (mm)

o Left: Width of left edge (mm)

* Right: Width of right edge (mm)

« Bottom: Bottom margin width (mm)
e Top: Top margin width (mm)

* Diagonal: Length of diagonal (mm)

Source: Flury, B. and Riedwyl, H. (1988). Multivariate Statistics
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Example: Clustering of the Swiss bank notes data

Dendrogram of the hierarchical Ward's clustering of 200 Swiss bank
notes based on all 6 variables (one error only!). The genuine bank notes
on the right hand side look more homogeneous than the forged ones.

They, value
of an original
cluster come
from a com-
parison with
250 Ward’s
clustering
results of
bootstrap
samples.

First principal component (66,8% of total variance)
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Example: Clustering of the Swiss bank notes data

Investigation of the stability of the six univariate Ward's clustering
results based on the adjusted Rand index R coming from compari-
sons with Ward's cluster analyses of 250 bootstrap samples.

1

R
0,65
==Length  ==|eft
==Right -=-Bottom
-=Top ==Diagonal
0,3 _
2 3 4 5 6 7

Number of clusters K

(Diagonal: 2 errors are counted only)
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Example: Clustering of the Swiss bank notes data

Step 2: Investigation of the stability of the five bivariate Ward's cluste-
ring results based on bootstrapping the adjusted Rand index R. See
the high increase of R of “Diag+Top” when going from K=3 to K=2.

1 -

—=Diag+Length ==Diag+Left
<=Diag+Right  ===Diag+Bottom

<@-Diag+Top

0,85 -

0,7

0,55

2 3 4 5 6 7
Number of clusters K

(Diagonal + Top: 1 error is counted.)
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Example: Clustering of the Swiss bank notes data

Step 3: Investigation of the stability of the four tri-variate Ward's clus-
tering results based on bootstrapping the adjusted Rand index R. s the
fourth variable "Right” important in dividing the forged bank notes?

1

0,85 -

0,7

0,55

Number of clusters K

(Bottom + Top + Diagonal (4 &5 & 6): 1 error is counted.)
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Example: Hierarchical clustering of the Iris data

Iris flower data (Fisher, 1936). The PCA-plot shows the 150
observations. The class (species) on the left hand side is easy to find.
The other two species are not separated of each other. 16 errors are
counted when using Ward's method.
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Example: Hierarchical clustering of the Iris data

Investigation of the stability of the four univariate Ward's clustering
results based on the adjusted Rand index R coming from compari-
sons with Ward's cluster analyses of 250 bootstrap samples.

1
M
_ == —t
0,7
_____,_——)'(
R
0,4
==Selen
==SeWei
e=Pelen
==PeWei
0,1 ,
2 3 4 5 6 7
Number of clusters K
(K=2: PelLen, PeWei: no errors, K=3: PelLen: 16, PeWei: 22)

AG DANK/BCS Meeting at UCL, London 8/X1/2013 28 %



Example: Hierarchical clustering of the Iris data

Indeed, the variable petal length can be used alone to find
a stable two class solution.

Nonparametric density estimation (bandwith=0.5)

A

0,45

0,3

0,15

)
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Example: Hierarchical clustering of the Iris data

Step 2: Investigation of the stability of the tri-variate Ward’s cluster-
ing results. All bivariate clustering results are most stable for K = 2.
Conclusion: Ward’'s method fails in finding the three true classes.

1
==Selen+Pelen
==ScWei+Pelen
=-Pelen+PeWei
R
08 /
PN
0,6
2 3 4 5 6 7
Number of clusters K
(K=2: no errors, K=3: PeLen + PeWei: 22)
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summary

* The general approach to variable selection proposed
here works without using special clustering criteria such
as within-cluster or between cluster variances.

* Itis based only on non-parametric resampling techniques
and criteria of stability such as the adjusted Rand'’s
measure or the averaged Jaccard measure.

* This basic variable selection procedure can be modified
in several ways. For instance, one can start with J*(J-1)/2
bivariate clustering results.

Thank you very much for your kind attention!
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