
Structured Sparsity in Machine Learning:
Models, Algorithms, and Applications

André F. T. Martins

Joint work with:

Mário A. T. Figueiredo, Instituto de Telecomunicações, Lisboa, Portugal
Noah A. Smith, Language Technologies Institute, Carnegie Mellon University, USA

BCS/AG DANK 2013, November 2013

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 1 / 62

Outline

1 Sparsity and Feature Selection

2 Structured Sparsity

3 Algorithms

Batch Algorithms

Online Algorithms

4 Applications

5 Conclusions

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 2 / 62

Our Setup

Input set X, output set Y

Linear model:
ŷ := arg max

y∈Y
w>f(x , y)

where f : X× Y→ RD is a feature map

Learning the model parameters from data {(xn, yn)}Nn=1 ⊆ X× Y:

ŵ = arg min
w

1

N

N∑
n=1

L(w; xn, yn)︸ ︷︷ ︸
empirical risk

+ Ω(w)︸ ︷︷ ︸
regularizer

This talk: we focus on the regularizer Ω

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 3 / 62

Our Setup

Input set X, output set Y

Linear model:
ŷ := arg max

y∈Y
w>f(x , y)

where f : X× Y→ RD is a feature map

Learning the model parameters from data {(xn, yn)}Nn=1 ⊆ X× Y:

ŵ = arg min
w

1

N

N∑
n=1

L(w; xn, yn)︸ ︷︷ ︸
empirical risk

+ Ω(w)︸ ︷︷ ︸
regularizer

This talk: we focus on the regularizer Ω

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 3 / 62

The Bet On Sparsity (Friedman et al., 2004)

Sparsity hypothesis: not all dimensions of f are needed (many features
are irrelevant)

Setting the corresponding weights to zero leads to a sparse w

Models with just a few features:

are easier to explain/interpret

have a smaller memory footprint

are faster to run (less features need to be evaluated)

generalize better

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 4 / 62

(Automatic) Feature Selection

Domain experts are often good at engineering features.

Can we automate the process of selecting which ones to keep?

Three main classes of methods (Guyon and Elisseeff, 2003):

1 filters

(inexpensive and simple, but very suboptimal)

2 wrappers

(better, but very expensive)

3 embedded methods

(this talk)

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 5 / 62

(Automatic) Feature Selection

Domain experts are often good at engineering features.

Can we automate the process of selecting which ones to keep?

Three main classes of methods (Guyon and Elisseeff, 2003):

1 filters (inexpensive and simple, but very suboptimal)

2 wrappers

(better, but very expensive)

3 embedded methods

(this talk)

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 5 / 62

(Automatic) Feature Selection

Domain experts are often good at engineering features.

Can we automate the process of selecting which ones to keep?

Three main classes of methods (Guyon and Elisseeff, 2003):

1 filters (inexpensive and simple, but very suboptimal)

2 wrappers (better, but very expensive)

3 embedded methods

(this talk)

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 5 / 62

(Automatic) Feature Selection

Domain experts are often good at engineering features.

Can we automate the process of selecting which ones to keep?

Three main classes of methods (Guyon and Elisseeff, 2003):

1 filters (inexpensive and simple, but very suboptimal)

2 wrappers (better, but very expensive)

3 embedded methods (this talk)

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 5 / 62

Embedded Methods for Feature Selection

Formulate the learning problem as a trade-off between

minimizing loss (fitting the training data, achieving good accuracy on
the training data, etc.)

choosing a desirable model (e.g., with no more features than needed)

min
w

1

N

N∑
n=1

L(w; xn, yn) + Ω(w)

Design Ω to select relevant features (sparsity-inducing regularization)

Key advantage: declarative statements of model “desirability” often lead
to well-understood, convex optimization problems.

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 6 / 62

Embedded Methods for Feature Selection

Formulate the learning problem as a trade-off between

minimizing loss (fitting the training data, achieving good accuracy on
the training data, etc.)

choosing a desirable model (e.g., with no more features than needed)

min
w

1

N

N∑
n=1

L(w; xn, yn) + Ω(w)

Design Ω to select relevant features (sparsity-inducing regularization)

Key advantage: declarative statements of model “desirability” often lead
to well-understood, convex optimization problems.

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 6 / 62

Embedded Methods for Feature Selection

Formulate the learning problem as a trade-off between

minimizing loss (fitting the training data, achieving good accuracy on
the training data, etc.)

choosing a desirable model (e.g., with no more features than needed)

min
w

1

N

N∑
n=1

L(w; xn, yn) + Ω(w)

Design Ω to select relevant features (sparsity-inducing regularization)

Key advantage: declarative statements of model “desirability” often lead
to well-understood, convex optimization problems.

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 6 / 62

Convex Loss Functions

Squared (linear regression) 1
2

(
y −w>f(x)

)2

Log-linear (MaxEnt, CRF, logistic) −w>f(x , y) + log
∑
y ′∈Y

exp(w>f(x , y ′))

Hinge (SVMs) −w>f(x , y) + max
y ′∈Y

(
w>f(x , y ′) + c(y , y ′)

)
Perceptron −w>f(x , y) + max

y ′∈Y
w>f(x , y ′)

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 7 / 62

Regularization Formulations

Tikhonov regularization: ŵ = arg min
w
λΩ(w) +

N∑
n=1

L(w; xn, yn)

Ivanov regularization

ŵ = arg min
w

N∑
n=1

L(w; xn, yn)

subject to Ω(w) ≤ τ

Morozov regularization

ŵ = arg min
w

Ω(w)

subject to
N∑

n=1

L(w; xn, yn) ≤ δ

Equivalent, under mild conditions (namely convexity).

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 8 / 62

Regularization Formulations

Tikhonov regularization: ŵ = arg min
w
λΩ(w) +

N∑
n=1

L(w; xn, yn)

Ivanov regularization

ŵ = arg min
w

N∑
n=1

L(w; xn, yn)

subject to Ω(w) ≤ τ

Morozov regularization

ŵ = arg min
w

Ω(w)

subject to
N∑

n=1

L(w; xn, yn) ≤ δ

Equivalent, under mild conditions (namely convexity).

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 8 / 62

Norms: a Quick Review

Any norm is a convex function (follows from triangle inequality)

`p-norms (p ≥ 1): ‖w‖p = (
∑

i |wi |p)1/p

x 1 x 2 x ∞

‖w‖1 =
∑
i

|wi |, ‖w‖2 =
∑
i

w 2
i , ‖w‖∞ = max

i
|wi |

Side note: the infamous `0 “norm” (non-convex, not a norm):

‖w‖0 = lim
p→0
‖w‖pp = |{i : wi 6= 0}|

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 9 / 62

Norms: a Quick Review

Any norm is a convex function (follows from triangle inequality)

`p-norms (p ≥ 1): ‖w‖p = (
∑

i |wi |p)1/p

x 1 x 2 x ∞

‖w‖1 =
∑
i

|wi |, ‖w‖2 =
∑
i

w 2
i , ‖w‖∞ = max

i
|wi |

Side note: the infamous `0 “norm” (non-convex, not a norm):

‖w‖0 = lim
p→0
‖w‖pp = |{i : wi 6= 0}|

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 9 / 62

Norms: a Quick Review

Any norm is a convex function (follows from triangle inequality)

`p-norms (p ≥ 1): ‖w‖p = (
∑

i |wi |p)1/p

x 1 x 2 x ∞

‖w‖1 =
∑
i

|wi |, ‖w‖2 =
∑
i

w 2
i , ‖w‖∞ = max

i
|wi |

Side note: the infamous `0 “norm” (non-convex, not a norm):

‖w‖0 = lim
p→0
‖w‖pp = |{i : wi 6= 0}|

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 9 / 62

Ridge and Lasso Regularizers

Ridge or `2 regularization: Ω(w) = λ
2‖w‖

2
2

goes back to Tikhonov (1943) and Wiener (1949)

corresponds to a zero-mean Gaussian prior

Pros: smooth and convex, thus benign for optimization.

Cons: doesn’t promote sparsity (no explicit feature selection)

Lasso or `1 regularization: Ω(w) = λ‖w‖1

goes back to Claerbout and Muir (1973); Taylor et al. (1979);
Tibshirani (1996)

corresponds to zero-mean Laplacian prior

Pros: encourages sparsity: embedded feature selection.

Cons: convex, but non-smooth: more challenging optimization.

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 10 / 62

Ridge and Lasso Regularizers

Ridge or `2 regularization: Ω(w) = λ
2‖w‖

2
2

goes back to Tikhonov (1943) and Wiener (1949)

corresponds to a zero-mean Gaussian prior

Pros: smooth and convex, thus benign for optimization.

Cons: doesn’t promote sparsity (no explicit feature selection)

Lasso or `1 regularization: Ω(w) = λ‖w‖1

goes back to Claerbout and Muir (1973); Taylor et al. (1979);
Tibshirani (1996)

corresponds to zero-mean Laplacian prior

Pros: encourages sparsity: embedded feature selection.

Cons: convex, but non-smooth: more challenging optimization.

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 10 / 62

The Lasso and Sparsity

Why does the Lasso yield sparsity?

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 11 / 62

The Lasso and Sparsity

Why does the Lasso yield sparsity?

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 11 / 62

Take-Home Messages

Sparsity is desirable for interpretability, computational savings, and
generalization

`1-regularization gives an embedded method for feature selection

Another view of `1: a convex surrogate for direct penalization of
cardinality (`0)

Under some conditions, `1 guarantees exact support recovery (Candès
et al., 2006; Donoho, 2006)

However: the currently known sufficient conditions are too strong and
not met in typical ML problems

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 12 / 62

Outline

1 Sparsity and Feature Selection

2 Structured Sparsity

3 Algorithms

Batch Algorithms

Online Algorithms

4 Applications

5 Conclusions

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 13 / 62

Models

`1 regularization promotes sparse models

A very simple sparsity pattern: small cardinality

Main question: how to promote less trivial sparsity patterns?

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 14 / 62

Models

`1 regularization promotes sparse models

A very simple sparsity pattern: small cardinality

Main question: how to promote less trivial sparsity patterns?

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 14 / 62

Structured Sparsity and Groups

Main goal: promote structural patterns, not just penalize cardinality

Group sparsity: discard entire groups of features

density inside each group

sparsity with respect to the groups which are selected

choice of groups: prior knowledge about the intended sparsity patterns

Yields statistical gains if prior assumptions are correct (Stojnic et al., 2009)

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 15 / 62

Structured Sparsity and Groups

Main goal: promote structural patterns, not just penalize cardinality

Group sparsity: discard entire groups of features

density inside each group

sparsity with respect to the groups which are selected

choice of groups: prior knowledge about the intended sparsity patterns

Yields statistical gains if prior assumptions are correct (Stojnic et al., 2009)

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 15 / 62

Structured Sparsity and Groups

Main goal: promote structural patterns, not just penalize cardinality

Group sparsity: discard entire groups of features

density inside each group

sparsity with respect to the groups which are selected

choice of groups: prior knowledge about the intended sparsity patterns

Yields statistical gains if prior assumptions are correct (Stojnic et al., 2009)

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 15 / 62

Example: Sparsity in a Grid

Assume the feature map decomposes as f(x , y) = f(x)⊗ ey

In words: we’re conjoining each input feature with each output class

input features

la
b
e
ls

“Standard” sparsity is wasteful—we may still need all the input features

What we want: discard some input features

Solution: one group per input feature (conjoined with each of the labels)

Similar structure: multi-task learning (Caruana, 1997; Obozinski et al., 2010),
multiple kernel learning (Lanckriet et al., 2004)

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 16 / 62

Example: Sparsity in a Grid

Assume the feature map decomposes as f(x , y) = f(x)⊗ ey

In words: we’re conjoining each input feature with each output class

input features

la
b
e
ls

“Standard” sparsity is wasteful—we may still need all the input features

What we want: discard some input features

Solution: one group per input feature (conjoined with each of the labels)

Similar structure: multi-task learning (Caruana, 1997; Obozinski et al., 2010),
multiple kernel learning (Lanckriet et al., 2004)

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 16 / 62

Example: Sparsity in a Grid

Assume the feature map decomposes as f(x , y) = f(x)⊗ ey

In words: we’re conjoining each input feature with each output class

input features

la
b
e
ls

“Standard” sparsity is wasteful—we may still need all the input features

What we want: discard some input features

Solution: one group per input feature (conjoined with each of the labels)

Similar structure: multi-task learning (Caruana, 1997; Obozinski et al., 2010),
multiple kernel learning (Lanckriet et al., 2004)

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 16 / 62

Example: Sparsity in a Grid

Assume the feature map decomposes as f(x , y) = f(x)⊗ ey

In words: we’re conjoining each input feature with each output class

input features

la
b
e
ls

“Standard” sparsity is wasteful—we may still need all the input features

What we want: discard some input features

Solution: one group per input feature (conjoined with each of the labels)

Similar structure: multi-task learning (Caruana, 1997; Obozinski et al., 2010),
multiple kernel learning (Lanckriet et al., 2004)

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 16 / 62

Example: Sparsity in a Grid

Assume the feature map decomposes as f(x , y) = f(x)⊗ ey

In words: we’re conjoining each input feature with each output class

input features

la
b
e
ls

“Standard” sparsity is wasteful—we may still need all the input features

What we want: discard some input features

Solution: one group per input feature (conjoined with each of the labels)

Similar structure: multi-task learning (Caruana, 1997; Obozinski et al., 2010),
multiple kernel learning (Lanckriet et al., 2004)

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 16 / 62

Group Sparsity

D features

M groups G1, . . . ,GM , each
Gm ⊆ {1, . . . ,D}
parameter subvectors w1, . . . ,wM

Group-Lasso (Bakin, 1999; Yuan and Lin, 2006):

Ω(w) =
∑M

m=1 ‖wm‖2

Intuitively: the `1 norm of the `2 norms

Technically, still a norm (called a mixed norm, denoted `2,1)

λm: prior weight for group Gm (different groups have different sizes)

Statisticians call these composite absolute penalties (Zhao et al.,
2009)

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 17 / 62

Group Sparsity

D features

M groups G1, . . . ,GM , each
Gm ⊆ {1, . . . ,D}
parameter subvectors w1, . . . ,wM

Group-Lasso (Bakin, 1999; Yuan and Lin, 2006):

Ω(w) =
∑M

m=1 ‖wm‖2

Intuitively: the `1 norm of the `2 norms

Technically, still a norm (called a mixed norm, denoted `2,1)

λm: prior weight for group Gm (different groups have different sizes)

Statisticians call these composite absolute penalties (Zhao et al.,
2009)

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 17 / 62

Group Sparsity

D features

M groups G1, . . . ,GM , each
Gm ⊆ {1, . . . ,D}
parameter subvectors w1, . . . ,wM

Group-Lasso (Bakin, 1999; Yuan and Lin, 2006):

Ω(w) =
∑M

m=1 ‖wm‖2

Intuitively: the `1 norm of the `2 norms

Technically, still a norm (called a mixed norm, denoted `2,1)

λm: prior weight for group Gm (different groups have different sizes)

Statisticians call these composite absolute penalties (Zhao et al.,
2009)

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 17 / 62

Group Sparsity

D features

M groups G1, . . . ,GM , each
Gm ⊆ {1, . . . ,D}
parameter subvectors w1, . . . ,wM

Group-Lasso (Bakin, 1999; Yuan and Lin, 2006):

Ω(w) =
∑M

m=1 ‖wm‖2

Intuitively: the `1 norm of the `2 norms

Technically, still a norm (called a mixed norm, denoted `2,1)

λm: prior weight for group Gm (different groups have different sizes)

Statisticians call these composite absolute penalties (Zhao et al.,
2009)

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 17 / 62

Group Sparsity

D features

M groups G1, . . . ,GM , each
Gm ⊆ {1, . . . ,D}
parameter subvectors w1, . . . ,wM

Group-Lasso (Bakin, 1999; Yuan and Lin, 2006):

Ω(w) =
∑M

m=1 λm‖wm‖2

Intuitively: the `1 norm of the `2 norms

Technically, still a norm (called a mixed norm, denoted `2,1)

λm: prior weight for group Gm (different groups have different sizes)

Statisticians call these composite absolute penalties (Zhao et al.,
2009)

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 17 / 62

Group Sparsity

D features

M groups G1, . . . ,GM , each
Gm ⊆ {1, . . . ,D}
parameter subvectors w1, . . . ,wM

Group-Lasso (Bakin, 1999; Yuan and Lin, 2006):

Ω(w) =
∑M

m=1 λm‖wm‖2

Intuitively: the `1 norm of the `2 norms

Technically, still a norm (called a mixed norm, denoted `2,1)

λm: prior weight for group Gm (different groups have different sizes)

Statisticians call these composite absolute penalties (Zhao et al.,
2009)

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 17 / 62

Lasso versus group-Lasso

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 18 / 62

Lasso versus group-Lasso

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 18 / 62

Three Scenarios

Non-overlapping groups

Tree-structured groups

Arbitrary groups

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 19 / 62

Three Scenarios

Non-overlapping groups

Tree-structured groups

Arbitrary groups

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 19 / 62

Non-overlapping Groups

Assume G1, . . . ,GM are disjoint

⇒ Each feature belongs to exactly one group

Ω(w) =
∑M

m=1 λm‖wm‖2

Trivial choices of groups recover unstructured regularizers:

`2-regularization: one large group G1 = {1, . . . ,D}
`1-regularization: D singleton groups Gd = {d}

Examples of non-trivial groups:

label-based groups (groups are columns of a matrix)

template-based groups (next)

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 20 / 62

Non-overlapping Groups

Assume G1, . . . ,GM are disjoint

⇒ Each feature belongs to exactly one group

Ω(w) =
∑M

m=1 λm‖wm‖2

Trivial choices of groups recover unstructured regularizers:

`2-regularization: one large group G1 = {1, . . . ,D}
`1-regularization: D singleton groups Gd = {d}

Examples of non-trivial groups:

label-based groups (groups are columns of a matrix)

template-based groups (next)

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 20 / 62

Non-overlapping Groups

Assume G1, . . . ,GM are disjoint

⇒ Each feature belongs to exactly one group

Ω(w) =
∑M

m=1 λm‖wm‖2

Trivial choices of groups recover unstructured regularizers:

`2-regularization: one large group G1 = {1, . . . ,D}
`1-regularization: D singleton groups Gd = {d}

Examples of non-trivial groups:

label-based groups (groups are columns of a matrix)

template-based groups (next)

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 20 / 62

Non-overlapping Groups

Assume G1, . . . ,GM are disjoint

⇒ Each feature belongs to exactly one group

Ω(w) =
∑M

m=1 λm‖wm‖2

Trivial choices of groups recover unstructured regularizers:

`2-regularization: one large group G1 = {1, . . . ,D}
`1-regularization: D singleton groups Gd = {d}

Examples of non-trivial groups:

label-based groups (groups are columns of a matrix)

template-based groups (next)

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 20 / 62

Example: Feature Template Selection

5 5

Input: We want to explore the feature space
PRP VBP TO VB DT NN NN

Output: (NP) (VP VP VP) (NP NP NP)

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 21 / 62

Example: Feature Template Selection

5 5

Input: We want to explore the feature space
PRP VBP TO VB DT NN NN

Output: (NP) (VP VP VP) (NP NP NP)

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 21 / 62

Example: Feature Template Selection

5 5

Input: We want to explore the feature space
PRP VBP TO VB DT NN NN

Output: (NP) (VP VP VP) (NP NP NP)

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 21 / 62

Example: Feature Template Selection

5

5

Input: We want to explore the feature space
PRP VBP TO VB DT NN NN

Output: (NP) (VP VP VP) (NP NP NP)

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 21 / 62

Example: Feature Template Selection

5

5

Input: We want to explore the feature space
PRP VBP TO VB DT NN NN

Output: (NP) (VP VP VP) (NP NP NP)

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 21 / 62

Example: Feature Template Selection

5

5
Input: We want to explore the feature space

PRP VBP TO VB DT NN NN
Output: (NP) (VP VP VP) (NP NP NP)

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

"the feature"

"explore the"

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 21 / 62

Example: Feature Template Selection

5 5

Input: We want to explore the feature space
PRP VBP TO VB DT NN NN

Output: (NP) (VP VP VP) (NP NP NP)

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

"the feature"

"explore the"

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 21 / 62

Example: Feature Template Selection

5

5

Input: We want to explore the feature space
PRP VBP TO VB DT NN NN

Output: (NP) (VP VP VP) (NP NP NP)

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

"the feature"

"explore the"

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 21 / 62

Example: Feature Template Selection

5

5
Input: We want to explore the feature space

PRP VBP TO VB DT NN NN
Output: (NP) (VP VP VP) (NP NP NP)

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

"the feature"

"explore the"

"DT NN NN"

"VB DT NN"

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 21 / 62

Example: Feature Template Selection

5 5

Input: We want to explore the feature space
PRP VBP TO VB DT NN NN

Output: (NP) (VP VP VP) (NP NP NP)

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

"the feature"

"explore the"

"DT NN NN"

"VB DT NN"

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 21 / 62

Example: Feature Template Selection

5 5

Input: We want to explore the feature space
PRP VBP TO VB DT NN NN

Output: (NP) (VP VP VP) (NP NP NP)

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

"DT NN NN"

"VB DT NN"

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 21 / 62

Example: Feature Template Selection

5 5

Input: We want to explore the feature space
PRP VBP TO VB DT NN NN

Output: (NP) (VP VP VP) (NP NP NP)

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 21 / 62

Example: Feature Template Selection

5 5

Input: We want to explore the feature space
PRP VBP TO VB DT NN NN

Output: (NP) (VP VP VP) (NP NP NP)

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 21 / 62

Example: Feature Template Selection

5 5

Input: We want to explore the feature space
PRP VBP TO VB DT NN NN

Output: (NP) (VP VP VP) (NP NP NP)

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 21 / 62

Three Scenarios

Non-overlapping groups

Tree-structured groups

Arbitrary groups

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 22 / 62

Three Scenarios

Non-overlapping groups

Tree-structured groups

Arbitrary groups

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 22 / 62

Tree-Structured Groups

Assumption: if two groups overlap, one contains the other

⇒ hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

What is the sparsity pattern?

If a group is discarded, all its descendants are also discarded

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 23 / 62

Tree-Structured Groups

Assumption: if two groups overlap, one contains the other

⇒ hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

What is the sparsity pattern?

If a group is discarded, all its descendants are also discarded

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 23 / 62

Tree-Structured Groups

Assumption: if two groups overlap, one contains the other

⇒ hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

What is the sparsity pattern?

If a group is discarded, all its descendants are also discarded

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 23 / 62

Tree-Structured Groups

Assumption: if two groups overlap, one contains the other

⇒ hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

What is the sparsity pattern?

If a group is discarded, all its descendants are also discarded

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 23 / 62

Tree-Structured Groups

Assumption: if two groups overlap, one contains the other

⇒ hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

What is the sparsity pattern?

If a group is discarded, all its descendants are also discarded

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 23 / 62

Tree-Structured Groups

Assumption: if two groups overlap, one contains the other

⇒ hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

What is the sparsity pattern?

If a group is discarded, all its descendants are also discarded

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 23 / 62

Tree-Structured Groups

Assumption: if two groups overlap, one contains the other

⇒ hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

What is the sparsity pattern?

If a group is discarded, all its descendants are also discarded

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 23 / 62

Three Scenarios

Non-overlapping groups

Tree-structured groups

Arbitrary Groups

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 24 / 62

Three Scenarios

Non-overlapping groups

Tree-structured groups

Arbitrary Groups

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 24 / 62

Arbitrary Groups

In general: groups can be represented as a directed acyclic graph

set inclusion induces a partial order on groups (Jenatton et al., 2009)

feature space becomes a poset

sparsity patterns: given by this poset

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 25 / 62

Example: Coarse-to-Fine Regularization

1 Define a partial order between basic feature templates (e.g., p0 � w0)

2 Extend this partial order to all templates by lexicographic closure:
p0 � p0p1 � w0w1

Goal: only include finer features if coarser ones are also in the model

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 26 / 62

Things to Keep in Mind

Structured sparsity cares about the structure of the feature space

Group-Lasso regularization generalizes `1 and it’s still convex

Choice of groups: problem dependent, opportunity to use prior
knowledge to favour certain structural patterns

Next: algorithms

We’ll see that optimization is easier with non-overlapping or
tree-structured groups than with arbitrary overlaps

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 27 / 62

Things to Keep in Mind

Structured sparsity cares about the structure of the feature space

Group-Lasso regularization generalizes `1 and it’s still convex

Choice of groups: problem dependent, opportunity to use prior
knowledge to favour certain structural patterns

Next: algorithms

We’ll see that optimization is easier with non-overlapping or
tree-structured groups than with arbitrary overlaps

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 27 / 62

Things to Keep in Mind

Structured sparsity cares about the structure of the feature space

Group-Lasso regularization generalizes `1 and it’s still convex

Choice of groups: problem dependent, opportunity to use prior
knowledge to favour certain structural patterns

Next: algorithms

We’ll see that optimization is easier with non-overlapping or
tree-structured groups than with arbitrary overlaps

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 27 / 62

Outline

1 Sparsity and Feature Selection

2 Structured Sparsity

3 Algorithms

Batch Algorithms

Online Algorithms

4 Applications

5 Conclusions

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 28 / 62

Learning the Model

Recall that learning involves solving

min
w

Ω(w)︸ ︷︷ ︸
regularizer

+
1

N

N∑
i=1

L(w, xi , yi)︸ ︷︷ ︸
total loss

,

Two kinds of optimization algorithms:

batch algorithms (attacks the complete problem);

online algorithms (use the training examples one by one)

We’ll focus on proximal gradient algorithms (both batch and online)

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 29 / 62

Learning the Model

Recall that learning involves solving

min
w

Ω(w)︸ ︷︷ ︸
regularizer

+
1

N

N∑
i=1

L(w, xi , yi)︸ ︷︷ ︸
total loss

,

Two kinds of optimization algorithms:

batch algorithms (attacks the complete problem);

online algorithms (use the training examples one by one)

We’ll focus on proximal gradient algorithms (both batch and online)

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 29 / 62

Learning the Model

Recall that learning involves solving

min
w

Ω(w)︸ ︷︷ ︸
regularizer

+
1

N

N∑
i=1

L(w, xi , yi)︸ ︷︷ ︸
total loss

,

Two kinds of optimization algorithms:

batch algorithms (attacks the complete problem);

online algorithms (use the training examples one by one)

We’ll focus on proximal gradient algorithms (both batch and online)

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 29 / 62

A Key Ingredient: Proximity Operator

The Ω-proximity operator is the following RD → RD map:

w 7→ proxΩ(w) = arg minu
1
2‖u−w‖2 + Ω(u)

(A generalization of Euclidean projection)

`2 regularization Ω(w) = λ
2‖w‖

2
2 ⇒ scaling operation

`1 regularization Ω(w) = λ‖w‖1 ⇒ soft-thresholding:

[proxΩ(w)]d =


wd − λ if wd > λ
0 if |wd | ≤ λ
wd + λ if wd < −λ.

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 30 / 62

A Key Ingredient: Proximity Operator

The Ω-proximity operator is the following RD → RD map:

w 7→ proxΩ(w) = arg minu
1
2‖u−w‖2 + Ω(u)

(A generalization of Euclidean projection)

`2 regularization Ω(w) = λ
2‖w‖

2
2 ⇒ scaling operation

`1 regularization Ω(w) = λ‖w‖1 ⇒ soft-thresholding:

[proxΩ(w)]d =


wd − λ if wd > λ
0 if |wd | ≤ λ
wd + λ if wd < −λ.

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 30 / 62

A Key Ingredient: Proximity Operator

The Ω-proximity operator is the following RD → RD map:

w 7→ proxΩ(w) = arg minu
1
2‖u−w‖2 + Ω(u)

(A generalization of Euclidean projection)

`2 regularization Ω(w) = λ
2‖w‖

2
2 ⇒ scaling operation

`1 regularization Ω(w) = λ‖w‖1 ⇒ soft-thresholding:

[proxΩ(w)]d =


wd − λ if wd > λ
0 if |wd | ≤ λ
wd + λ if wd < −λ.

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 30 / 62

A Key Ingredient: Proximity Operator

The Ω-proximity operator is the following RD → RD map:

w 7→ proxΩ(w) = arg minu
1
2‖u−w‖2 + Ω(u)

(A generalization of Euclidean projection)

`2 regularization Ω(w) = λ
2‖w‖

2
2 ⇒ scaling operation

`1 regularization Ω(w) = λ‖w‖1 ⇒ soft-thresholding:

[proxΩ(w)]d =


wd − λ if wd > λ
0 if |wd | ≤ λ
wd + λ if wd < −λ.

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 30 / 62

Proximity Operators for Structured Sparsity

Ω(w) =
∑M

m=1 λm‖wm‖2

Non-overlapping ⇒ vector soft-thresholding:

[proxΩ(w)]m =

{
0 if ‖wm‖2 ≤ λm
‖wm‖2−λm
‖wm‖2

wm otherwise.

Tree-structured: can be computed recursively (Jenatton et al., 2010)

Arbitrary groups: no efficient procedure is known

The problem can be sidestepped with sequential proximity steps
(Martins et al., 2011a) (more later).

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 31 / 62

Proximity Operators for Structured Sparsity

Ω(w) =
∑M

m=1 λm‖wm‖2

Non-overlapping ⇒ vector soft-thresholding:

[proxΩ(w)]m =

{
0 if ‖wm‖2 ≤ λm
‖wm‖2−λm
‖wm‖2

wm otherwise.

Tree-structured: can be computed recursively (Jenatton et al., 2010)

Arbitrary groups: no efficient procedure is known

The problem can be sidestepped with sequential proximity steps
(Martins et al., 2011a) (more later).

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 31 / 62

Proximity Operators for Structured Sparsity

Ω(w) =
∑M

m=1 λm‖wm‖2

Non-overlapping ⇒ vector soft-thresholding:

[proxΩ(w)]m =

{
0 if ‖wm‖2 ≤ λm
‖wm‖2−λm
‖wm‖2

wm otherwise.

Tree-structured: can be computed recursively (Jenatton et al., 2010)

Arbitrary groups: no efficient procedure is known

The problem can be sidestepped with sequential proximity steps
(Martins et al., 2011a) (more later).

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 31 / 62

Proximity Operators for Structured Sparsity

Ω(w) =
∑M

m=1 λm‖wm‖2

Non-overlapping ⇒ vector soft-thresholding:

[proxΩ(w)]m =

{
0 if ‖wm‖2 ≤ λm
‖wm‖2−λm
‖wm‖2

wm otherwise.

Tree-structured: can be computed recursively (Jenatton et al., 2010)

Arbitrary groups: no efficient procedure is known

The problem can be sidestepped with sequential proximity steps
(Martins et al., 2011a) (more later).

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 31 / 62

Outline

1 Sparsity and Feature Selection

2 Structured Sparsity

3 Algorithms

Batch Algorithms

Online Algorithms

4 Applications

5 Conclusions

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 32 / 62

Iterative Shrinkage-Thresholding (IST)

min
w

Ω(w) + Λ(w) , where Λ(w) :=
1

N

N∑
i=1

L(w, xi , yi)

Building blocks:

loss gradient/subgradient ∇Λ, proximity operator proxΩ

wt+1 ← proxηtΩ (wt − ηt∇Λ(wt))

Can be derived with different tools:

expectation-maximization (EM) (Figueiredo and Nowak, 2003);

majorization-minimization (Daubechies et al., 2004);

forward-backward splitting (Combettes and Wajs, 2006);

separable approximation (Wright et al., 2009).

Convergence: requires O(1/ε) iterations for ε-accurate objective.

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 33 / 62

Iterative Shrinkage-Thresholding (IST)

min
w

Ω(w) + Λ(w) , where Λ(w) :=
1

N

N∑
i=1

L(w, xi , yi)

Building blocks:

loss gradient/subgradient ∇Λ, proximity operator proxΩ

wt+1 ← proxηtΩ (wt − ηt∇Λ(wt))

Can be derived with different tools:

expectation-maximization (EM) (Figueiredo and Nowak, 2003);

majorization-minimization (Daubechies et al., 2004);

forward-backward splitting (Combettes and Wajs, 2006);

separable approximation (Wright et al., 2009).

Convergence: requires O(1/ε) iterations for ε-accurate objective.

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 33 / 62

Iterative Shrinkage-Thresholding (IST)

min
w

Ω(w) + Λ(w) , where Λ(w) :=
1

N

N∑
i=1

L(w, xi , yi)

Building blocks:

loss gradient/subgradient ∇Λ, proximity operator proxΩ

wt+1 ← proxηtΩ (wt − ηt∇Λ(wt))

Can be derived with different tools:

expectation-maximization (EM) (Figueiredo and Nowak, 2003);

majorization-minimization (Daubechies et al., 2004);

forward-backward splitting (Combettes and Wajs, 2006);

separable approximation (Wright et al., 2009).

Convergence: requires O(1/ε) iterations for ε-accurate objective.

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 33 / 62

Iterative Shrinkage-Thresholding (IST)

min
w

Ω(w) + Λ(w) , where Λ(w) :=
1

N

N∑
i=1

L(w, xi , yi)

Building blocks:

loss gradient/subgradient ∇Λ, proximity operator proxΩ

wt+1 ← proxηtΩ (wt − ηt∇Λ(wt))

Can be derived with different tools:

expectation-maximization (EM) (Figueiredo and Nowak, 2003);

majorization-minimization (Daubechies et al., 2004);

forward-backward splitting (Combettes and Wajs, 2006);

separable approximation (Wright et al., 2009).

Convergence: requires O(1/ε) iterations for ε-accurate objective.

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 33 / 62

Iterative Shrinkage-Thresholding (IST)

min
w

Ω(w) + Λ(w) , where Λ(w) :=
1

N

N∑
i=1

L(w, xi , yi)

Building blocks:

loss gradient/subgradient ∇Λ, proximity operator proxΩ

wt+1 ← proxηtΩ (wt − ηt∇Λ(wt))

Can be derived with different tools:

expectation-maximization (EM) (Figueiredo and Nowak, 2003);

majorization-minimization (Daubechies et al., 2004);

forward-backward splitting (Combettes and Wajs, 2006);

separable approximation (Wright et al., 2009).

Convergence: requires O(1/ε) iterations for ε-accurate objective.
André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 33 / 62

Other Proximal-Gradient Variants

SpaRSA (Wright et al., 2009): the same IST update scheme, but setting
ηt to mimic a Newton step (Barzilai and Borwein, 1988):

η−1
t I ≈ H(wt) (Hessian)

Works very well in pratice!

FISTA (Beck and Teboulle, 2009): compute wt+1 based, not only on wt ,
but also on wt−1 (Nesterov, 1983):

bt+1 =
1+
√

1+4 b2
t

2

z = wt + bt−1
bt+1

(wt −wt−1)

wt+1 = proxηΩ (z− η∇Λ(z))

Iteration bound: O(1/
√
ε) as opposed to O(1/ε).

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 34 / 62

Other Proximal-Gradient Variants

SpaRSA (Wright et al., 2009): the same IST update scheme, but setting
ηt to mimic a Newton step (Barzilai and Borwein, 1988):

η−1
t I ≈ H(wt) (Hessian)

Works very well in pratice!

FISTA (Beck and Teboulle, 2009): compute wt+1 based, not only on wt ,
but also on wt−1 (Nesterov, 1983):

bt+1 =
1+
√

1+4 b2
t

2

z = wt + bt−1
bt+1

(wt −wt−1)

wt+1 = proxηΩ (z− η∇Λ(z))

Iteration bound: O(1/
√
ε) as opposed to O(1/ε).

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 34 / 62

Other Proximal-Gradient Variants

SpaRSA (Wright et al., 2009): the same IST update scheme, but setting
ηt to mimic a Newton step (Barzilai and Borwein, 1988):

η−1
t I ≈ H(wt) (Hessian)

Works very well in pratice!

FISTA (Beck and Teboulle, 2009): compute wt+1 based, not only on wt ,
but also on wt−1 (Nesterov, 1983):

bt+1 =
1+
√

1+4 b2
t

2

z = wt + bt−1
bt+1

(wt −wt−1)

wt+1 = proxηΩ (z− η∇Λ(z))

Iteration bound: O(1/
√
ε) as opposed to O(1/ε).

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 34 / 62

Many Other Batch Algorithms

coordinate descent (Shevade and Keerthi, 2003; Genkin et al., 2007;
Krishnapuram et al., 2005; Tseng and Yun, 2009)

Least Angle Regression (LARS) and homotopy/continuation methods
(Efron et al., 2004; Osborne et al., 2000; Figueiredo et al., 2007)

shooting method (Fu, 1998)

grafting (Perkins et al., 2003) and grafting-light (Zhu et al., 2010)

orthant-wise limited-memory quasi-Newton (OWL-QN) (Andrew and
Gao, 2007; Gao et al., 2007)

alternating direction method of multipliers (ADMM) (Afonso et al.,
2010; Figueiredo and Bioucas-Dias, 2011).

...several more; this is an active research area!

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 35 / 62

Outline

1 Sparsity and Feature Selection

2 Structured Sparsity

3 Algorithms

Batch Algorithms

Online Algorithms

4 Applications

5 Conclusions

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 36 / 62

Why Online?

1 Suitable for large datasets

2 Suitable for structured prediction

3 Faster to approach a near-optimal region

4 Slower convergence, but this is fine in machine learning (“the
tradeoffs of large scale learning” by Bottou and Bousquet (2007))

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 37 / 62

Why Online?

1 Suitable for large datasets

2 Suitable for structured prediction

3 Faster to approach a near-optimal region

4 Slower convergence, but this is fine in machine learning (“the
tradeoffs of large scale learning” by Bottou and Bousquet (2007))

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 37 / 62

Why Online?

1 Suitable for large datasets

2 Suitable for structured prediction

3 Faster to approach a near-optimal region

4 Slower convergence, but this is fine in machine learning (“the
tradeoffs of large scale learning” by Bottou and Bousquet (2007))

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 37 / 62

Why Online?

1 Suitable for large datasets

2 Suitable for structured prediction

3 Faster to approach a near-optimal region

4 Slower convergence, but this is fine in machine learning (“the
tradeoffs of large scale learning” by Bottou and Bousquet (2007))

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 37 / 62

Plain Stochastic (Sub-)Gradient Descent

min
w

Ω(w) +
1

N

N∑
i=1

L(w, xi , yi),

initialize w = 0
for t = 1, 2, . . . do

take training pair (xt , yt)
(sub-)gradient step: w ← w − ηt

(
∇̃Ω(w) + ∇̃L(w; xt , yt)

)
end for

`1-regularization Ω(w) = λ‖w‖1 =⇒ ∇̃Ω(w) = λsign(w)

w ← w − ηtλsign(w)︸ ︷︷ ︸
constant penalty

− ηt∇̃L(w; xt , yt)

Problem: iterates are never sparse!

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 38 / 62

Plain Stochastic (Sub-)Gradient Descent

min
w

Ω(w) +
1

N

N∑
i=1

L(w, xi , yi),

initialize w = 0
for t = 1, 2, . . . do

take training pair (xt , yt)
(sub-)gradient step: w ← w − ηt

(
∇̃Ω(w) + ∇̃L(w; xt , yt)

)
end for

`1-regularization Ω(w) = λ‖w‖1 =⇒ ∇̃Ω(w) = λsign(w)

w ← w − ηtλsign(w)︸ ︷︷ ︸
constant penalty

− ηt∇̃L(w; xt , yt)

Problem: iterates are never sparse!

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 38 / 62

Plain Stochastic (Sub-)Gradient Descent

min
w

Ω(w) +
1

N

N∑
i=1

L(w, xi , yi),

initialize w = 0
for t = 1, 2, . . . do

take training pair (xt , yt)
(sub-)gradient step: w ← w − ηt

(
∇̃Ω(w) + ∇̃L(w; xt , yt)

)
end for

`1-regularization Ω(w) = λ‖w‖1 =⇒ ∇̃Ω(w) = λsign(w)

w ← w − ηtλsign(w)︸ ︷︷ ︸
constant penalty

− ηt∇̃L(w; xt , yt)

Problem: iterates are never sparse!

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 38 / 62

Plain Stochastic (Sub-)Gradient Descent

min
w

Ω(w) +
1

N

N∑
i=1

L(w, xi , yi),

initialize w = 0
for t = 1, 2, . . . do

take training pair (xt , yt)
(sub-)gradient step: w ← w − ηt

(
∇̃Ω(w) + ∇̃L(w; xt , yt)

)
end for

`1-regularization Ω(w) = λ‖w‖1 =⇒ ∇̃Ω(w) = λsign(w)

w ← w − ηtλsign(w)︸ ︷︷ ︸
constant penalty

− ηt∇̃L(w; xt , yt)

Problem: iterates are never sparse!

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 38 / 62

Plain SGD with `1-regularization

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 39 / 62

Plain SGD with `1-regularization

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 39 / 62

Plain SGD with `1-regularization

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 39 / 62

Plain SGD with `1-regularization

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 39 / 62

Plain SGD with `1-regularization

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 39 / 62

Plain SGD with `1-regularization

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 39 / 62

Plain SGD with `1-regularization

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 39 / 62

Plain SGD with `1-regularization

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 39 / 62

Plain SGD with `1-regularization

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 39 / 62

Plain SGD with `1-regularization

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 39 / 62

“Sparse” Online Algorithms

Truncated Gradient (Langford et al., 2009)

Online Forward-Backward Splitting (Duchi and Singer, 2009)

Regularized Dual Averaging (Xiao, 2010)

Online Proximal Gradient (Martins et al., 2011a)

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 40 / 62

Truncated Gradient (Langford et al., 2009)

take gradients-step only with respect to the loss

apply soft-thresholding

converges to ε-accurate objective after O(1/ε2) iterations

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 41 / 62

Truncated Gradient (Langford et al., 2009)

take gradients-step only with respect to the loss

apply soft-thresholding

converges to ε-accurate objective after O(1/ε2) iterations

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 41 / 62

Truncated Gradient (Langford et al., 2009)

take gradients-step only with respect to the loss

apply soft-thresholding

converges to ε-accurate objective after O(1/ε2) iterations

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 41 / 62

Truncated Gradient (Langford et al., 2009)

take gradients-step only with respect to the loss

apply soft-thresholding

converges to ε-accurate objective after O(1/ε2) iterations

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 41 / 62

Truncated Gradient (Langford et al., 2009)

take gradients-step only with respect to the loss

apply soft-thresholding

converges to ε-accurate objective after O(1/ε2) iterations

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 41 / 62

Truncated Gradient (Langford et al., 2009)

take gradients-step only with respect to the loss

apply soft-thresholding

converges to ε-accurate objective after O(1/ε2) iterations

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 41 / 62

Truncated Gradient (Langford et al., 2009)

take gradients-step only with respect to the loss

apply soft-thresholding

converges to ε-accurate objective after O(1/ε2) iterations

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 41 / 62

Truncated Gradient (Langford et al., 2009)

take gradients-step only with respect to the loss

apply soft-thresholding

converges to ε-accurate objective after O(1/ε2) iterations

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 41 / 62

Truncated Gradient (Langford et al., 2009)

take gradients-step only with respect to the loss

apply soft-thresholding

converges to ε-accurate objective after O(1/ε2) iterations

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 41 / 62

Truncated Gradient (Langford et al., 2009)

take gradients-step only with respect to the loss

apply soft-thresholding

converges to ε-accurate objective after O(1/ε2) iterations

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 41 / 62

“Sparse” Online Algorithms

Truncated Gradient (Langford et al., 2009)

Online Forward-Backward Splitting (Duchi and Singer, 2009)

Regularized Dual Averaging (Xiao, 2010)

Online Proximal Gradient (Martins et al., 2011a)

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 42 / 62

Online Forward-Backward Splitting (Duchi and
Singer, 2009)

initialize w = 0
for t = 1, 2, . . . do

take training pair (xt , yt)
gradient step: w ← w − ηt∇L(w; xt , yt)
proximal step: w ← proxηtΩ(w)

end for

generalizes truncated gradient to arbitrary regularizers Ω

can tackle non-overlapping or hierarchical group-Lasso, but arbitrary
overlaps are difficult to handle (more later)

converges to ε-accurate objective after O(1/ε2) iterations

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 43 / 62

“Sparse” Online Algorithms

Truncated Gradient (Langford et al., 2009)

Online Forward-Backward Splitting (Duchi and Singer, 2009)

Regularized Dual Averaging (Xiao, 2010)

Online Proximal Gradient (Martins et al., 2011a)

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 44 / 62

Prox-Grad with Overlaps (Martins et al., 2011a)

Key idea: decompose Ω(w) =
∑J

j=1 Ωj(w), where each Ωj is
non-overlapping, and apply sequential proximal steps:

gradient step: w ← w − ηt∇L(θ; xt , yt)

proximal steps: w ← proxηtΩJ

(
proxηtΩJ−1

(
. . . proxηtΩ1

(w)
))

still convergent, same O(1/ε2) iteration bound

gradient step: linear in # of features that fire, independent of D.

proximal steps: linear in # of groups M.

other implementation tricks (debiasing, budget-driven shrinkage, etc.)

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 45 / 62

Prox-Grad with Overlaps (Martins et al., 2011a)

Key idea: decompose Ω(w) =
∑J

j=1 Ωj(w), where each Ωj is
non-overlapping, and apply sequential proximal steps:

gradient step: w ← w − ηt∇L(θ; xt , yt)

proximal steps: w ← proxηtΩJ

(
proxηtΩJ−1

(
. . . proxηtΩ1

(w)
))

still convergent, same O(1/ε2) iteration bound

gradient step: linear in # of features that fire, independent of D.

proximal steps: linear in # of groups M.

other implementation tricks (debiasing, budget-driven shrinkage, etc.)

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 45 / 62

Memory Footprint

5 epochs for identifying relevant groups, 10 epochs for debiasing

0 5 10 15
0

2

4

6
x 10

6

Epochs

Fe

at
ur

es

MIRA

Sparceptron + MIRA (B=30)

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 46 / 62

Summary of Algorithms

Converges Rate Sparse Groups Overlaps
Coord. desc. X ? X Maybe No
Prox-grad X O(1/ε) Yes/No X Not easy
OWL-QN X ? Yes/No No No
SpaRSA X O(1/ε) or better Yes/No X Not easy
FISTA X O(1/

√
ε) Yes/No X Not easy

ADMM X O(1/ε) No X X
Online subgrad. X O(1/ε2) No X No
Truncated grad. X O(1/ε2) X No No
FOBOS X O(1/ε2) Sort of X Not easy
Online prox-grad X O(1/ε2) X X X

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 47 / 62

Outline

1 Sparsity and Feature Selection

2 Structured Sparsity

3 Algorithms

Batch Algorithms

Online Algorithms

4 Applications

5 Conclusions

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 48 / 62

Applications of Structured Sparsity in ML

We will focus on two recent NLP applications (Martins et al., 2011b):

Named entity recognition

Dependency parsing

We use feature templates as groups.

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 49 / 62

Named Entity Recognition

Only France and Britain backed Fischler ’s proposal .
RB NNP CC NNP VBD NNP POS NN .

LOCATION LOCATION PERSON

Spanish, Dutch, and English CoNLL datasets

452 feature templates using POS tags, words, shapes, affixes, with
various context sizes

Comparison between:

`2-regularization (MIRA), best λ on dev-set, all features

`1-regularization (Lasso), varying λ

`2,1-regularization (Group Lasso), varying the template budget

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 50 / 62

Named Entity Recognition

Only France and Britain backed Fischler ’s proposal .
RB NNP CC NNP VBD NNP POS NN .

LOCATION LOCATION PERSON

Spanish, Dutch, and English CoNLL datasets

452 feature templates using POS tags, words, shapes, affixes, with
various context sizes

Comparison between:

`2-regularization (MIRA), best λ on dev-set, all features

`1-regularization (Lasso), varying λ

`2,1-regularization (Group Lasso), varying the template budget

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 50 / 62

Named Entity Recognition

Only France and Britain backed Fischler ’s proposal .
RB NNP CC NNP VBD NNP POS NN .

LOCATION LOCATION PERSON

Spanish, Dutch, and English CoNLL datasets

452 feature templates using POS tags, words, shapes, affixes, with
various context sizes

Comparison between:

`2-regularization (MIRA), best λ on dev-set, all features

`1-regularization (Lasso), varying λ

`2,1-regularization (Group Lasso), varying the template budget

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 50 / 62

Named Entity Recognition

Only France and Britain backed Fischler ’s proposal .
RB NNP CC NNP VBD NNP POS NN .

LOCATION LOCATION PERSON

Spanish, Dutch, and English CoNLL datasets

452 feature templates using POS tags, words, shapes, affixes, with
various context sizes

Comparison between:

`2-regularization (MIRA), best λ on dev-set, all features

`1-regularization (Lasso), varying λ

`2,1-regularization (Group Lasso), varying the template budget

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 50 / 62

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

Spanish Dutch English

MIRA
Lasso (0.1)
Lasso (0.5)
Lasso (1)
Group Lasso (100)
Group Lasso (200)
Group Lasso (300)

Named entity models: number of features. (Lasso C = 1/λN.)

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 51 / 62

60

65

70

75

80

85

Spanish Dutch English

MIRA
Lasso (0.1)
Lasso (0.5)
Lasso (1)
Group Lasso (100)
Group Lasso (200)
Group Lasso (300)

Named entity models: F1 accuracy on the test set. (Lasso C = 1/λN.)

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 52 / 62

Dependency Parsing

* Logic plays a minimal role here

Arabic, Danish, Dutch, Japanese, Slovene, Spanish CoNLL datasets

684 feature templates (using words, lemmas, POS, contextual POS,
arc length and direction)

Comparison between:

`2-regularization (MIRA), all features

filter-based template selection (information gain)

`1-regularization (Lasso)

`2,1-regularization (Group Lasso, coarse-to-fine regularization)

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 53 / 62

Dependency Parsing

* Logic plays a minimal role here

Arabic, Danish, Dutch, Japanese, Slovene, Spanish CoNLL datasets

684 feature templates (using words, lemmas, POS, contextual POS,
arc length and direction)

Comparison between:

`2-regularization (MIRA), all features

filter-based template selection (information gain)

`1-regularization (Lasso)

`2,1-regularization (Group Lasso, coarse-to-fine regularization)

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 53 / 62

Dependency Parsing

* Logic plays a minimal role here

Arabic, Danish, Dutch, Japanese, Slovene, Spanish CoNLL datasets

684 feature templates (using words, lemmas, POS, contextual POS,
arc length and direction)

Comparison between:

`2-regularization (MIRA), all features

filter-based template selection (information gain)

`1-regularization (Lasso)

`2,1-regularization (Group Lasso, coarse-to-fine regularization)

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 53 / 62

Dependency Parsing (c’ed)

2 4 6 8 10 12

x 10
6

76.5

77

77.5

78

78.5

Number of Features

U
A

S
 (

%
)

Arabic

0 5 10 15

x 10
6

89

89.2

89.4

89.6

89.8

90
Danish

0 2 4 6 8

x 10
6

92

92.5

93

93.5
Japanese

0 2 4 6 8 10

x 10
6

81

82

83

84
Slovene

0 0.5 1 1.5 2

x 10
7

82

82.5

83

83.5

84
Spanish

0 5 10 15

x 10
6

74

74.5

75

75.5

76
Turkish

Group−Lasso
Group−Lasso (C2F)
Lasso
Filter−based (IG)

Template-based group lasso is better at selecting feature templates than
the IG criterion, and slightly better than coarse-to-fine.

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 54 / 62

Outline

1 Sparsity and Feature Selection

2 Structured Sparsity

3 Algorithms

Batch Algorithms

Online Algorithms

4 Applications

5 Conclusions

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 55 / 62

Summary

Sparsity is desirable in machine learning: feature selection, runtime,
memory footprint, interpretability

Beyond plain sparsity: structured sparsity can be promoted through
group-Lasso regularization

Choice of groups reflects prior knowledge about the desired sparsity
patterns.

Small/medium scale: many batch algorithms available, with fast
convergence (IST, FISTA, SpaRSA, ...)

Large scale: online proximal-gradient algorithms suitable to explore
large feature spaces

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 56 / 62

Thank you!

Questions?

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 57 / 62

Acknowledgments

National Science Foundation (USA), CAREER grant IIS-1054319

Fundação para a Ciência e Tecnologia (Portugal), grant
PEst-OE/EEI/LA0008/2011.

Fundação para a Ciência e Tecnologia and Information and
Communication Technologies Institute (Portugal/USA), through the
CMU-Portugal Program.

Priberam: QREN/POR Lisboa (Portugal), EU/FEDER programme,
Discooperio project, contract 2011/18501.

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 58 / 62

References I

Afonso, M., Bioucas-Dias, J., and Figueiredo, M. (2010). Fast image recovery using variable splitting and constrained
optimization. IEEE Transactions on Image Processing, 19:2345–2356.

Andrew, G. and Gao, J. (2007). Scalable training of L1-regularized log-linear models. In Proc. of ICML. ACM.

Bakin, S. (1999). Adaptive regression and model selection in data mining problems. PhD thesis, Australian National University.

Barzilai, J. and Borwein, J. (1988). Two point step size gradient methods. IMA Journal of Numerical Analysis, 8:141–148.

Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal
on Imaging Sciences, 2(1):183–202.

Bolstad, A., Veen, B. V., and Nowak, R. (2009). Space-time event sparse penalization for magnetoelectroencephalography.
NeuroImage, 46:1066–1081.

Bottou, L. and Bousquet, O. (2007). The tradeoffs of large scale learning. NIPS, 20.

Buchholz, S. and Marsi, E. (2006). CoNLL-X shared task on multilingual dependency parsing. In Proc. of CoNLL.

Candès, E., Romberg, J., and Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete
frequency information. IEEE Transactions on Information Theory, 52:489–509.

Caruana, R. (1997). Multitask learning. Machine Learning, 28(1):41–75.

Claerbout, J. and Muir, F. (1973). Robust modelling of erratic data. Geophysics, 38:826–844.

Combettes, P. and Wajs, V. (2006). Signal recovery by proximal forward-backward splitting. Multiscale Modeling and
Simulation, 4:1168–1200.

Daubechies, I., Defrise, M., and De Mol, C. (2004). An iterative thresholding algorithm for linear inverse problems with a
sparsity constraint. Communications on Pure and Applied Mathematics, 11:1413–1457.

Donoho, D. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52:1289–1306.

Duchi, J., Shalev-Shwartz, S., Singer, Y., and Chandra, T. (2008). Efficient projections onto the L1-ball for learning in high
dimensions. In ICML.

Duchi, J. and Singer, Y. (2009). Efficient online and batch learning using forward backward splitting. JMLR, 10:2873–2908.

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least angle regression. Annals of Statistics, 32:407–499.

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 59 / 62

References II
Eisenstein, J., Smith, N. A., and Xing, E. P. (2011). Discovering sociolinguistic associations with structured sparsity. In Proc. of

ACL.

Figueiredo, M. and Bioucas-Dias, J. (2011). An alternating direction algorithm for (overlapping) group regularization. In Signal
processing with adaptive sparse structured representations–SPARS11. Edinburgh, UK.

Figueiredo, M. and Nowak, R. (2003). An EM algorithm for wavelet-based image restoration. IEEE Transactions on Image
Processing, 12:986–916.

Figueiredo, M., Nowak, R., and Wright, S. (2007). Gradient projection for sparse reconstruction: application to compressed
sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing: Special Issue on Convex
Optimization Methods for Signal Processing, 1:586–598.

Friedman, J., Hastie, T., Rosset, S., Tibshirani, R., and Zhu, J. (2004). Discussion of three boosting papers. Annals of
Statistics, 32(1):102–107.

Fu, W. (1998). Penalized regressions: the bridge versus the lasso. Journal of computational and graphical statistics, pages
397–416.

Gao, J., Andrew, G., Johnson, M., and Toutanova, K. (2007). A comparative study of parameter estimation methods for
statistical natural language processing. In Proc. of ACL.

Genkin, A., Lewis, D., and Madigan, D. (2007). Large-scale Bayesian logistic regression for text categorization. Technometrics,
49:291–304.

Graça, J., Ganchev, K., Taskar, B., and Pereira, F. (2009). Posterior vs. parameter sparsity in latent variable models. Advances
in Neural Information Processing Systems.

Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research,
3:1157–1182.

Hastie, T., Taylor, J., Tibshirani, R., and Walther, G. (2007). Forward stagewise regression and the monotone lasso. Electronic
Journal of Statistics, 1:1–29.

Jenatton, R., Audibert, J.-Y., and Bach, F. (2009). Structured variable selection with sparsity-inducing norms. Technical report,
arXiv:0904.3523.

Jenatton, R., Mairal, J., Obozinski, G., and Bach, F. (2010). Proximal methods for sparse hierarchical dictionary learning. In
Proc. of ICML.

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 60 / 62

References III
Kim, S. and Xing, E. (2010). Tree-guided group lasso for multi-task regression with structured sparsity. In Proc. of ICML.

Krishnapuram, B., Carin, L., Figueiredo, M., and Hartemink, A. (2005). Sparse multinomial logistic regression: Fast algorithms
and generalization bounds. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27:957–968.

Lanckriet, G. R. G., Cristianini, N., Bartlett, P., Ghaoui, L. E., and Jordan, M. I. (2004). Learning the kernel matrix with
semidefinite programming. JMLR, 5:27–72.

Langford, J., Li, L., and Zhang, T. (2009). Sparse online learning via truncated gradient. JMLR, 10:777–801.

Mairal, J., Jenatton, R., Obozinski, G., and Bach, F. (2010). Network flow algorithms for structured sparsity. In Advances in
Neural Information Processing Systems.

Martins, A. F. T., Figueiredo, M. A. T., Aguiar, P. M. Q., Smith, N. A., and Xing, E. P. (2011a). Online learning of structured
predictors with multiple kernels. In Proc. of AISTATS.

Martins, A. F. T., Smith, N. A., Aguiar, P. M. Q., and Figueiredo, M. A. T. (2011b). Structured Sparsity in Structured
Prediction. In Proc. of Empirical Methods for Natural Language Processing.

McDonald, R. T., Pereira, F., Ribarov, K., and Hajic, J. (2005). Non-projective dependency parsing using spanning tree
algorithms. In Proc. of HLT-EMNLP.

Nesterov, Y. (1983). A method of solving a convex programming problem with convergence rate O(1/k2). Soviet Math.
Doklady, 27:372–376.

Obozinski, G., Taskar, B., and Jordan, M. (2010). Joint covariate selection and joint subspace selection for multiple
classification problems. Statistics and Computing, 20(2):231–252.

Osborne, M., Presnell, B., and Turlach, B. (2000). A new approach to variable selection in least squares problems. IMA Journal
of Numerical Analysis, 20:389–403.

Perkins, S., Lacker, K., and Theiler, J. (2003). Grafting: Fast, incremental feature selection by gradient descent in function
space. Journal of Machine Learning Research, 3:1333–1356.

Quattoni, A., Carreras, X., Collins, M., and Darrell, T. (2009). An efficient projection for l1,∞ regularization. In Proc. of ICML.

Sang, E. (2002). Introduction to the CoNLL-2002 shared task: Language-independent named entity recognition. In Proc. of
CoNLL.

Sang, E. and De Meulder, F. (2003). Introduction to the CoNLL-2003 shared task: Language-independent named entity
recognition. In Proc. of CoNLL.

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 61 / 62

References IV

Shevade, S. and Keerthi, S. (2003). A simple and efficient algorithm for gene selection using sparse logistic regression.
Bioinformatics, 19:2246–2253.

Stojnic, M., Parvaresh, F., and Hassibi, B. (2009). On the reconstruction of block-sparse signals with an optimal number of
measurements. Signal Processing, IEEE Transactions on, 57(8):3075–3085.

Taylor, H., Bank, S., and McCoy, J. (1979). Deconvolution with the `1 norm. Geophysics, 44:39–52.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society B., pages
267–288.

Tikhonov, A. (1943). On the stability of inverse problems. In Dokl. Akad. Nauk SSSR, volume 39, pages 195–198.

Tseng, P. and Yun, S. (2009). A coordinate gradient descent method nonsmooth seperable approximation. Mathematical
Programmin (series B), 117:387–423.

Wiener, N. (1949). Extrapolation, Interpolation, and Smoothing of Stationary Time Series. Wiley, New York.

Wright, S., Nowak, R., and Figueiredo, M. (2009). Sparse reconstruction by separable approximation. IEEE Transactions on
Signal Processing, 57:2479–2493.

Xiao, L. (2010). Dual averaging methods for regularized stochastic learning and online optimization. Journal of Machine
Learning Research, 11:2543–2596.

Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of the Royal
Statistical Society (B), 68(1):49.

Zhao, P., Rocha, G., and Yu, B. (2009). Grouped and hierarchical model selection through composite absolute penalties. Annals
of Statistics, 37(6A):3468–3497.

Zhu, J., Lao, N., and Xing, E. (2010). Grafting-light: fast, incremental feature selection and structure learning of markov
random fields. In Proc. of International Conference on Knowledge Discovery and Data Mining, pages 303–312.

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 62 / 62

	Sparsity and Feature Selection
	Structured Sparsity
	Algorithms
	Batch Algorithms
	Online Algorithms

	Applications
	Conclusions

