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Our Setup

Input set X, output set Y

Linear model:
ŷ := arg max

y∈Y
w>f(x , y)

where f : X× Y→ RD is a feature map

Learning the model parameters from data {(xn, yn)}Nn=1 ⊆ X× Y:

ŵ = arg min
w

1

N

N∑
n=1

L(w; xn, yn)︸ ︷︷ ︸
empirical risk

+ Ω(w)︸ ︷︷ ︸
regularizer

This talk: we focus on the regularizer Ω

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 3 / 62



Our Setup

Input set X, output set Y

Linear model:
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The Bet On Sparsity (Friedman et al., 2004)

Sparsity hypothesis: not all dimensions of f are needed (many features
are irrelevant)

Setting the corresponding weights to zero leads to a sparse w

Models with just a few features:

are easier to explain/interpret

have a smaller memory footprint

are faster to run (less features need to be evaluated)

generalize better
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(Automatic) Feature Selection

Domain experts are often good at engineering features.

Can we automate the process of selecting which ones to keep?

Three main classes of methods (Guyon and Elisseeff, 2003):

1 filters

(inexpensive and simple, but very suboptimal)

2 wrappers

(better, but very expensive)

3 embedded methods

(this talk)
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Embedded Methods for Feature Selection

Formulate the learning problem as a trade-off between

minimizing loss (fitting the training data, achieving good accuracy on
the training data, etc.)

choosing a desirable model (e.g., with no more features than needed)

min
w

1

N

N∑
n=1

L(w; xn, yn) + Ω(w)

Design Ω to select relevant features (sparsity-inducing regularization)

Key advantage: declarative statements of model “desirability” often lead
to well-understood, convex optimization problems.
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Convex Loss Functions

Squared (linear regression) 1
2

(
y −w>f(x)

)2

Log-linear (MaxEnt, CRF, logistic) −w>f(x , y) + log
∑
y ′∈Y

exp(w>f(x , y ′))

Hinge (SVMs) −w>f(x , y) + max
y ′∈Y

(
w>f(x , y ′) + c(y , y ′)

)
Perceptron −w>f(x , y) + max

y ′∈Y
w>f(x , y ′)
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Regularization Formulations

Tikhonov regularization: ŵ = arg min
w
λΩ(w) +

N∑
n=1

L(w; xn, yn)

Ivanov regularization

ŵ = arg min
w

N∑
n=1

L(w; xn, yn)

subject to Ω(w) ≤ τ

Morozov regularization

ŵ = arg min
w

Ω(w)

subject to
N∑

n=1

L(w; xn, yn) ≤ δ

Equivalent, under mild conditions (namely convexity).
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Norms: a Quick Review

Any norm is a convex function (follows from triangle inequality)

`p-norms (p ≥ 1): ‖w‖p = (
∑

i |wi |p)1/p

x 1 x 2 x ∞

‖w‖1 =
∑
i

|wi |, ‖w‖2 =
∑
i

w 2
i , ‖w‖∞ = max

i
|wi |

Side note: the infamous `0 “norm” (non-convex, not a norm):

‖w‖0 = lim
p→0
‖w‖pp = |{i : wi 6= 0}|
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Ridge and Lasso Regularizers

Ridge or `2 regularization: Ω(w) = λ
2‖w‖

2
2

goes back to Tikhonov (1943) and Wiener (1949)

corresponds to a zero-mean Gaussian prior

Pros: smooth and convex, thus benign for optimization.

Cons: doesn’t promote sparsity (no explicit feature selection)

Lasso or `1 regularization: Ω(w) = λ‖w‖1

goes back to Claerbout and Muir (1973); Taylor et al. (1979);
Tibshirani (1996)

corresponds to zero-mean Laplacian prior

Pros: encourages sparsity: embedded feature selection.

Cons: convex, but non-smooth: more challenging optimization.
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The Lasso and Sparsity

Why does the Lasso yield sparsity?
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Take-Home Messages

Sparsity is desirable for interpretability, computational savings, and
generalization

`1-regularization gives an embedded method for feature selection

Another view of `1: a convex surrogate for direct penalization of
cardinality (`0)

Under some conditions, `1 guarantees exact support recovery (Candès
et al., 2006; Donoho, 2006)

However: the currently known sufficient conditions are too strong and
not met in typical ML problems
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Models

`1 regularization promotes sparse models

A very simple sparsity pattern: small cardinality

Main question: how to promote less trivial sparsity patterns?
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Structured Sparsity and Groups

Main goal: promote structural patterns, not just penalize cardinality

Group sparsity: discard entire groups of features

density inside each group

sparsity with respect to the groups which are selected

choice of groups: prior knowledge about the intended sparsity patterns

Yields statistical gains if prior assumptions are correct (Stojnic et al., 2009)
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Example: Sparsity in a Grid

Assume the feature map decomposes as f(x , y) = f(x)⊗ ey

In words: we’re conjoining each input feature with each output class

input features

la
b
e
ls

“Standard” sparsity is wasteful—we may still need all the input features

What we want: discard some input features

Solution: one group per input feature (conjoined with each of the labels)

Similar structure: multi-task learning (Caruana, 1997; Obozinski et al., 2010),
multiple kernel learning (Lanckriet et al., 2004)
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Group Sparsity

D features

M groups G1, . . . ,GM , each
Gm ⊆ {1, . . . ,D}
parameter subvectors w1, . . . ,wM

Group-Lasso (Bakin, 1999; Yuan and Lin, 2006):

Ω(w) =
∑M

m=1 ‖wm‖2

Intuitively: the `1 norm of the `2 norms

Technically, still a norm (called a mixed norm, denoted `2,1)

λm: prior weight for group Gm (different groups have different sizes)

Statisticians call these composite absolute penalties (Zhao et al.,
2009)
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Lasso versus group-Lasso
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Three Scenarios

Non-overlapping groups

Tree-structured groups

Arbitrary groups
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Non-overlapping Groups

Assume G1, . . . ,GM are disjoint

⇒ Each feature belongs to exactly one group

Ω(w) =
∑M

m=1 λm‖wm‖2

Trivial choices of groups recover unstructured regularizers:

`2-regularization: one large group G1 = {1, . . . ,D}
`1-regularization: D singleton groups Gd = {d}

Examples of non-trivial groups:

label-based groups (groups are columns of a matrix)

template-based groups (next)
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Example: Feature Template Selection

5 5

Input: We want to explore the feature space
PRP VBP TO VB DT NN NN

Output: (NP) (VP VP VP) (NP NP NP)

Goal: Select relevant feature templates

⇒ Make each group correspond to a feature template
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Three Scenarios

Non-overlapping groups

Tree-structured groups

Arbitrary groups
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Tree-Structured Groups

Assumption: if two groups overlap, one contains the other

⇒ hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

What is the sparsity pattern?

If a group is discarded, all its descendants are also discarded
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Arbitrary Groups

In general: groups can be represented as a directed acyclic graph

set inclusion induces a partial order on groups (Jenatton et al., 2009)

feature space becomes a poset

sparsity patterns: given by this poset
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Example: Coarse-to-Fine Regularization

1 Define a partial order between basic feature templates (e.g., p0 � w0)

2 Extend this partial order to all templates by lexicographic closure:
p0 � p0p1 � w0w1

Goal: only include finer features if coarser ones are also in the model
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Things to Keep in Mind

Structured sparsity cares about the structure of the feature space

Group-Lasso regularization generalizes `1 and it’s still convex

Choice of groups: problem dependent, opportunity to use prior
knowledge to favour certain structural patterns

Next: algorithms

We’ll see that optimization is easier with non-overlapping or
tree-structured groups than with arbitrary overlaps
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Outline

1 Sparsity and Feature Selection

2 Structured Sparsity

3 Algorithms

Batch Algorithms

Online Algorithms

4 Applications

5 Conclusions
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Learning the Model

Recall that learning involves solving

min
w

Ω(w)︸ ︷︷ ︸
regularizer

+
1

N

N∑
i=1

L(w, xi , yi )︸ ︷︷ ︸
total loss

,

Two kinds of optimization algorithms:

batch algorithms (attacks the complete problem);

online algorithms (use the training examples one by one)

We’ll focus on proximal gradient algorithms (both batch and online)
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A Key Ingredient: Proximity Operator

The Ω-proximity operator is the following RD → RD map:

w 7→ proxΩ(w) = arg minu
1
2‖u−w‖2 + Ω(u)

(A generalization of Euclidean projection)

`2 regularization Ω(w) = λ
2‖w‖

2
2 ⇒ scaling operation

`1 regularization Ω(w) = λ‖w‖1 ⇒ soft-thresholding:

[proxΩ(w)]d =


wd − λ if wd > λ
0 if |wd | ≤ λ
wd + λ if wd < −λ.
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Proximity Operators for Structured Sparsity

Ω(w) =
∑M

m=1 λm‖wm‖2

Non-overlapping ⇒ vector soft-thresholding:

[proxΩ(w)]m =

{
0 if ‖wm‖2 ≤ λm
‖wm‖2−λm
‖wm‖2

wm otherwise.

Tree-structured: can be computed recursively (Jenatton et al., 2010)

Arbitrary groups: no efficient procedure is known

The problem can be sidestepped with sequential proximity steps
(Martins et al., 2011a) (more later).
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Iterative Shrinkage-Thresholding (IST)

min
w

Ω(w) + Λ(w) , where Λ(w) :=
1

N

N∑
i=1

L(w, xi , yi )

Building blocks:

loss gradient/subgradient ∇Λ, proximity operator proxΩ

wt+1 ← proxηtΩ (wt − ηt∇Λ(wt))

Can be derived with different tools:

expectation-maximization (EM) (Figueiredo and Nowak, 2003);

majorization-minimization (Daubechies et al., 2004);

forward-backward splitting (Combettes and Wajs, 2006);

separable approximation (Wright et al., 2009).

Convergence: requires O(1/ε) iterations for ε-accurate objective.
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Other Proximal-Gradient Variants

SpaRSA (Wright et al., 2009): the same IST update scheme, but setting
ηt to mimic a Newton step (Barzilai and Borwein, 1988):

η−1
t I ≈ H(wt) (Hessian)

Works very well in pratice!

FISTA (Beck and Teboulle, 2009): compute wt+1 based, not only on wt ,
but also on wt−1 (Nesterov, 1983):

bt+1 =
1+
√

1+4 b2
t

2

z = wt + bt−1
bt+1

(wt −wt−1)

wt+1 = proxηΩ (z− η∇Λ(z))

Iteration bound: O(1/
√
ε) as opposed to O(1/ε).
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Many Other Batch Algorithms

coordinate descent (Shevade and Keerthi, 2003; Genkin et al., 2007;
Krishnapuram et al., 2005; Tseng and Yun, 2009)

Least Angle Regression (LARS) and homotopy/continuation methods
(Efron et al., 2004; Osborne et al., 2000; Figueiredo et al., 2007)

shooting method (Fu, 1998)

grafting (Perkins et al., 2003) and grafting-light (Zhu et al., 2010)

orthant-wise limited-memory quasi-Newton (OWL-QN) (Andrew and
Gao, 2007; Gao et al., 2007)

alternating direction method of multipliers (ADMM) (Afonso et al.,
2010; Figueiredo and Bioucas-Dias, 2011).

...several more; this is an active research area!
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Why Online?

1 Suitable for large datasets

2 Suitable for structured prediction

3 Faster to approach a near-optimal region

4 Slower convergence, but this is fine in machine learning (“the
tradeoffs of large scale learning” by Bottou and Bousquet (2007))
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Plain Stochastic (Sub-)Gradient Descent

min
w

Ω(w) +
1

N

N∑
i=1

L(w, xi , yi ),

initialize w = 0
for t = 1, 2, . . . do

take training pair (xt , yt)
(sub-)gradient step: w ← w − ηt

(
∇̃Ω(w) + ∇̃L(w; xt , yt)

)
end for

`1-regularization Ω(w) = λ‖w‖1 =⇒ ∇̃Ω(w) = λsign(w)

w ← w − ηtλsign(w)︸ ︷︷ ︸
constant penalty

− ηt∇̃L(w; xt , yt)

Problem: iterates are never sparse!

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 38 / 62



Plain Stochastic (Sub-)Gradient Descent

min
w

Ω(w) +
1

N

N∑
i=1

L(w, xi , yi ),

initialize w = 0
for t = 1, 2, . . . do

take training pair (xt , yt)
(sub-)gradient step: w ← w − ηt

(
∇̃Ω(w) + ∇̃L(w; xt , yt)

)
end for

`1-regularization Ω(w) = λ‖w‖1 =⇒ ∇̃Ω(w) = λsign(w)

w ← w − ηtλsign(w)︸ ︷︷ ︸
constant penalty

− ηt∇̃L(w; xt , yt)

Problem: iterates are never sparse!
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Plain SGD with `1-regularization
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“Sparse” Online Algorithms

Truncated Gradient (Langford et al., 2009)

Online Forward-Backward Splitting (Duchi and Singer, 2009)

Regularized Dual Averaging (Xiao, 2010)

Online Proximal Gradient (Martins et al., 2011a)

André F. T. Martins (Priberam/IT) Structured Sparsity in ML BCS/AG DANK 2013 40 / 62



Truncated Gradient (Langford et al., 2009)

take gradients-step only with respect to the loss

apply soft-thresholding

converges to ε-accurate objective after O(1/ε2) iterations
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Online Forward-Backward Splitting (Duchi and
Singer, 2009)

initialize w = 0
for t = 1, 2, . . . do

take training pair (xt , yt)
gradient step: w ← w − ηt∇L(w; xt , yt)
proximal step: w ← proxηtΩ(w)

end for

generalizes truncated gradient to arbitrary regularizers Ω

can tackle non-overlapping or hierarchical group-Lasso, but arbitrary
overlaps are difficult to handle (more later)

converges to ε-accurate objective after O(1/ε2) iterations
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Prox-Grad with Overlaps (Martins et al., 2011a)

Key idea: decompose Ω(w) =
∑J

j=1 Ωj(w), where each Ωj is
non-overlapping, and apply sequential proximal steps:

gradient step: w ← w − ηt∇L(θ; xt , yt)

proximal steps: w ← proxηtΩJ

(
proxηtΩJ−1

(
. . . proxηtΩ1

(w)
))

still convergent, same O(1/ε2) iteration bound

gradient step: linear in # of features that fire, independent of D.

proximal steps: linear in # of groups M.

other implementation tricks (debiasing, budget-driven shrinkage, etc.)
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Memory Footprint

5 epochs for identifying relevant groups, 10 epochs for debiasing
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Summary of Algorithms

Converges Rate Sparse Groups Overlaps
Coord. desc. X ? X Maybe No
Prox-grad X O(1/ε) Yes/No X Not easy
OWL-QN X ? Yes/No No No
SpaRSA X O(1/ε) or better Yes/No X Not easy
FISTA X O(1/

√
ε) Yes/No X Not easy

ADMM X O(1/ε) No X X
Online subgrad. X O(1/ε2) No X No
Truncated grad. X O(1/ε2) X No No
FOBOS X O(1/ε2) Sort of X Not easy
Online prox-grad X O(1/ε2) X X X
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Outline

1 Sparsity and Feature Selection

2 Structured Sparsity

3 Algorithms

Batch Algorithms

Online Algorithms

4 Applications

5 Conclusions
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Applications of Structured Sparsity in ML

We will focus on two recent NLP applications (Martins et al., 2011b):

Named entity recognition

Dependency parsing

We use feature templates as groups.
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Named Entity Recognition

Only France and Britain backed Fischler ’s proposal .
RB NNP CC NNP VBD NNP POS NN .

LOCATION LOCATION PERSON

Spanish, Dutch, and English CoNLL datasets

452 feature templates using POS tags, words, shapes, affixes, with
various context sizes

Comparison between:

`2-regularization (MIRA), best λ on dev-set, all features

`1-regularization (Lasso), varying λ

`2,1-regularization (Group Lasso), varying the template budget
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Dependency Parsing

* Logic plays a minimal role here

Arabic, Danish, Dutch, Japanese, Slovene, Spanish CoNLL datasets

684 feature templates (using words, lemmas, POS, contextual POS,
arc length and direction)

Comparison between:

`2-regularization (MIRA), all features

filter-based template selection (information gain)

`1-regularization (Lasso)

`2,1-regularization (Group Lasso, coarse-to-fine regularization)
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Dependency Parsing (c’ed)
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Group−Lasso
Group−Lasso (C2F)
Lasso
Filter−based (IG)

Template-based group lasso is better at selecting feature templates than
the IG criterion, and slightly better than coarse-to-fine.
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Summary

Sparsity is desirable in machine learning: feature selection, runtime,
memory footprint, interpretability

Beyond plain sparsity: structured sparsity can be promoted through
group-Lasso regularization

Choice of groups reflects prior knowledge about the desired sparsity
patterns.

Small/medium scale: many batch algorithms available, with fast
convergence (IST, FISTA, SpaRSA, ...)

Large scale: online proximal-gradient algorithms suitable to explore
large feature spaces
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Thank you!

Questions?
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