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Variable selection in clustering and classification

Variable selection is highly desirable for unsupervised or
supervised classification in high dimension contexts.
Actually, this question received a lot of attention in recent
years.
Different variable selection procedures have been
proposed from heuristic point of views.
Roughly speaking, the variables are separated into two
groups : the relevant variables and the independent
variables.
In the same spirit, sparse classification methods have been
proposed depending on some tuning parameters.
We opt for a mixture model which allows to deal properly
with variable selection in clustering and classification.



Gaussian mixture model for clustering
Purpose : Clustering of y = (y1, . . . , yn) where yi ∈ RQ are
iid observations with unknown pdf h

The pdf h is modelled with a Gaussian mixture

fclust(.|K , m, α) =
K∑

k=1

pkΦ(.|µk ,Σk )

with
α = (p, µ1, . . . , µK ,Σ1, . . . ,ΣK ) where p = (p1, . . . , pK ),

K∑
k=1

pk = 1

Φ(.|µk ,Σk ) the pdf of a NQ(µk ,Σk )

T = set of models (K , m) where
K ∈ N? = number of mixture components

m = Gaussian mixture type



The Gaussian mixture collection
It is based on the eigenvalue decomposition of the mixture
component variance matrices :

Σk = LkD′
kAkDk

Σk variance matrix with dimension Q ×Q
Lk = |Σk |1/Q (cluster volume)
Dk = Σk eigenvector matrix (cluster orientation)
Ak = Σk normalised eigenvalue diagonal matrix (cluster
shape)

⇒ 3 families :
spherical family
diagonal family
general family

 ⇒ 14 models

Free or fixed proportions

⇒ 28 Gaussian mixture models



Model selection
Asymptotic approximation of the integrated or completed
integrated likelihood
BIC (Bayesian Information Criterion)

2 ln [f (y|K , m)] ≈ 2 ln[f (y|K , m, α̂)]−λ(K,m) ln(n) = BICclust(y|K , m)

where α̂ is computed by the EM algorithm.

ICL (Integrated Likelihood Criterion)
ICL = BIC + Entropy of the fuzzy clustering matrix.

The classifier : ẑ = MAP(α̂) is

ẑik =

{
1 if p̂kΦ(yi |µ̂k , Σ̂k ) > p̂jΦ(yi |µ̂j , Σ̂j),∀j 6= k
0 otherwise

MIXMOD software
http ://www.mixmod.org



Variable selection in the mixture setting

Law, Figueiredo and Jain (2004) :
The irrelevant variables are assumed to be independent of
the relevant variables.

Raftery and Dean (2006) :
The irrelevant variable are linked with all the relevant
variables according to a linear regression.

Maugis, Celeux and Martin-Magniette (2009a, b) :
SRUW Model
The irrelevant variables could be linked to a subset of the
relevant variables according to a linear regression or
independent



The SRUW model : Four different variable roles

Modelling the pdf h :

x ∈ RQ 7→ fclust(yS|K , m, α) freg(yU |r , a+yRβ, Ω) findep(yW |`, γ, τ)

relevant variables(S) : Gaussian mixture density

fclust(yS|K , m, α) =
K∑

k=1

pkΦ(yS|µk ,Σk )

redundant variables (U) : linear regression of yU on yR

(R ⊆ S)

freg(yU |r , a + yRβ, Ω) = Φ(yU |a + yRβ, Ω(r))

independent variables (W ) : Gaussian density

findep(yW |`, γ, τ) = Φ(yW |γ, τ(`))



SRUW model
It is assumed that h can be written

y ∈ RQ 7→ fclust(yS|K , m, α) freg(yU |r , a+yRβ, Ω) findep(yW |`, γ, τ)

relevant variables (S) : Gaussian mixture pdf
redundant variables (U) : linear regression of yU with
respect to yR

independent variables (W ) : Gaussian pdf

Model collection :

N =

{
(K , m, r , `, V);

(K , m) ∈ T , V ∈ V
r ∈ {[LI], [LB], [LC]}, ` ∈ {[LI], [LB]}

}

where V =


(S, R, U, W );
S t U tW = {1, . . . , Q}
S 6= ∅, R ⊆ S
R = ∅ if U = ∅ and R 6= ∅ otherwise





Model selection criterion

Variable selection by maximising the integrated likelihood

(K̂ , m̂, r̂ , ˆ̀, V̂) = argmax
(K ,m,r ,`,V)∈N

crit(K , m, r , `, V) where

crit(K , m, r , `, V) = BICclust(yS|K , m) +

BICreg(yU |r , yR) + BICind(yW |`)

Theoretical properties :

The model collection is identifiable,

The selection criterion is consistent.



Selection algorithm (SelvarclustIndep)
It makes use of two embedded (for-back)ward stepwise
algorithms.
3 situations are possible for a candidate variable j :

M1 : fclust(yS, yj |K , m)

M2 : fclust(yS|K , m) freg(yj |[LI], yeR[j]) where
R̃[j] = R[j] ⊆ S, R̃[j] 6= ∅.

M3 : fclust(yS|K , m) findep(yj |[LI]) i.e.
fclust(yS|K , m) freg(yj |[LI], yeR[j]) where R̃[j] = ∅.

It reduces to comparing

fclust(yS, yj |K , m) versus fclust(yS|K , m)freg(yj |[LI], yeR[j])

=⇒ algorithm SelvarClust (SR model)

and
{

j in model M2 if R̃[j] 6= ∅
j in model M3 otherwise



Synopsis of the backward algorithm
1 For each mixture model (K , m) :

Step A- Backward stepwise selection for clustering :

I Initialisation : S(K , m) = {1, . . . , Q}

I exclusion step (remove a variable from S)

I inclusion step (add a variable in S)

9=;
using backward
stepwise variable
selection for regression (?)

⇒ two-cluster partition of the variables in Ŝ(K , m) and Ŝc(K , m).

Step B- Ŝc(K , m) is partitioned in Û(K , m) and Ŵ (K , m) with (?)

Step C- for each regression model form r :
selection with (?) of the variables R̂(K , m, r)
for each independent model form ` : estimation of the parameters θ̂
and calculation of the criterionfcrit(K , m, r , `) = crit(K , m, r , `, Ŝ(K , m), R̂(K , m, r), Û(K , m), Ŵ (K , m)).

2 Selection of (K̂ , m̂, r̂ , ˆ̀) maximising fcrit(K , m, r , `)
Selection of the model

“
K̂ , m̂, r̂ , ˆ̀, Ŝ(K̂ , m̂), R̂(K̂ , m̂, r̂), Û(K̂ , m̂), Ŵ (K̂ , m̂)

”



Alternative sparse clustering methods (1)

Model-based regularisation
Zhou and Pan (2009) propose to minimise a penalized
log-likelihood through an EM-like algorithm with the penalty

p(λ) = λ1

K∑
k=1

Q∑
j=1

|µjk |+ λ2

K∑
k=1

Q∑
j=1

Q∑
j ′=1

|Σ−1
k ;jj ′ |.

Choosing a grid of values for the regularisation parameters
λ1 and λ2 is a sensitive task.
As far as we know, grid choices are ad hoc. . .



Alternative sparse clustering methods (2)

Sparse clustering framework
Witten and Tibshirani (2010) define a general criterion∑Q

j=1 wj fj(y j , θ) with||w||2 ≤ 1, ||w||1 ≤ s, wj ≥ 0∀j , where fj
measures the clustering fit for variable j and s is a tuning
parameter.
This parameter is chosen by a permutation approach using the
gap statistics.
Example : for sparse K -means clustering, we have

fj =
Q∑

j=1

wj

1
n

n∑
i=1

n∑
i ′=1

d j
ii ′ −

K∑
k=1

1
nk

∑
i,i ′∈Ck

d j
ii ′

 .

This method is implemented in the R package SPARCL.



Comparing sparse clustering and MBC variable selection
Simulation Method CER card(ŝ).

n = 30, δ = 0.6 SparseKmeans 0.40(±0.03) 14.4(±1.3)
Kmeans 0.39(±0.04) 25.0(±0)
SU-LI 0.62(±0.06) 22.2(±1.2)
SRUW-LI 0.40(±0.03) 8.1(±1.9)

n = 30, δ = 1.7 SparseKmeans 0.08(±0.02) 8.2(±0.8)
Kmeans 0.25(±0.01) 25.0(±0)
SU-LI 0.57(±0.03) 23.1(±0.2)
SRUW-LI 0.085(±0.08) 6.8(±1.4)

n = 300, δ = 0.6 SparseKmeans 0.38(±0.003) 24.00(±0.5)
Kmeans 0.36(±0.003) 25.0(±0)
SU-LI 0.37(±0.03) 25.0(±0)
SRUW-LI 0.34(±0.02) 7.0(±1.7)

n = 300, δ = 1.7 SparseKmeans 0.05(±0.01) 25.0(±0)
Kmeans 0.16(±0.06) 25.0(±0)
SU-LI 0.05(±0.01) 14.6(±2.0)
SRUW-LI 0.05(±0.01) 5.6(±0.9)

Results from 20 simulations with Q = 25 and card(s) = 5

<
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FIG.: On the left, the proportion of relevant (square), redundant
(triangle) or independent (circle) variables with SRUW. On the right,
boxplots of the SparseKmeansweights



Comparing sparse clustering and MBC variable selection
Fifty independent simulated data sets with n = 2000, Q = 14, the first
two variables are a mixture of 4 equiprobable spherical Gaussian :
µ1 = (0, 0), µ2 = (4, 0), µ3 = (0, 2) and µ4 = (4, 2).
y{3,...,14}

i = ã + y{1,2}
i β̃ + εi with εi ∼ N (0, Ω̃) and ã = (0, 0, 0.4, . . . , 4)

and 2 different scenarios for β̃ and Ω̃.

Method Scenario 1 Scenario 2
Sparse Kmeans 0.47 (± 0.016) 0.31 (± 0.035)
Kmeans 0.52 (± 0.014) 0.57 (± 0.015)
SR-LI 0.39 (± 0.039) 0.42 (± 0.082)
SRUW-LI 0.57 (± 0.04) 0.60 (± 0.015)

The adjusted Rand index

Method Scenario 1 Scenario 2
Sparse Kmeans 14 (± 0) 13.5 (± 1.5)
Kmeans 14 (± 0) 14 (± 0)
SU-LI 12 (± 0) 3.96 (± 0.57)
SRUW-LI 2 (± 0.20) 2 (± 0)

The number of selected variables



Variable selection in a supervised Classification context
We turn now to an other variable selection problem.

Aim : classify observations described with Q variables in
one of K groups given a priori
The classifier is designed from a training sample

{(y1, z1), . . . , (yn, zn); yi ∈ RQ, zi ∈ {1, . . . , K}}

where the labels zi , i = 1, . . . , n are known.
We consider here generative models which assume a
parameterised form for the group conditional density
f (yi |zi = k).
From which, it follows that the density of the yi is a mixture
density with K components.
In such a decision-making context, variable selection is
often crucial to design an efficient classifier.



Variable selection for Gaussian Classifiers
The classifier is designed from a training sample

{(y1, z1), . . . , (yn, zn); yi ∈ RQ, zi ∈ {1, . . . , K}}

Gaussian generative model :{
f (yi |zi = k , m) = Φ(yi |µk ,Σk ), ∀i ∈ {1, . . . , n}
P(zi = k) = pk

LDA : m = [LC] (∀k ,Σk = Σ)
QDA : m = [Lk Ck ]
EDDA 14 models derived from the eigenvalue
decomposition of the group variance matrices.

Variable selection can be proceeded with the SRUW model
in a simple way since the classification is known.
The resulting (for-back)ward procedures generalise the
standard variable selection procedures for LDA. (Murphy et
al. 2010, Maugis et al. 2010)



Illustrations of variable selection in a supervised setting
Landsat Satellite Data set
It consists of the multi-spectral values of pixels in a tiny
sub-area of a satellite image. The data points are in R26 and
split into six classes. The original learning set has 4435
samples and a test set with 2000 samples is available.

LDA and QDA are compared.
1000 samples randomly selected 100 times from the
training data are used to estimate and select the model.
The same 12 variables are selected for both models in
average ; R̂ = Ŝ (r̂ = [LC]), and Ŵ = ∅.

with variable selection without variable selection
LDA QDA LDA QDA

21.00 16.21 18.05 17.90
± 0.53 ± 0.68 ± 0.48 ± 0.57

Averaged classification error rate



Illustrations of variable selection in a supervised setting
Leukemia data set
These data come from a study of gene expression divided in
two types of acute leukemias : 47 tumor samples for acute
lymphoblastic leukemia (ALL) and 25 for acute myeloid
leukemia (AML) measured on Q = 3571 genes.

We analyze the Leukemia data set using 38 (27 are ALL and 11
are AML) samples in the training set and 34 (20 are ALL and 14
are AML) samples in the test set.

Models LDA QDA [LkC]

card(Ŝ) 8 8 3
card(R̂) 2 2 3
card(Û) 3058 2848 1912
card(Ŵ ) 505 715 1656

Misc. test obs. (ALL, AML) (2,4) (0,0) (0,0)
Variable selection and misclassification error rate.



Discussion on variable selection in model-based clustering

Interest
The typology of the variable roles is realistic.
Variable selection is essentially useful to interpret the
clustering.
It may allow to choose relevant complex clustering models.

Drawbacks
The forward or backward procedures are painfully slow.
In many cases, the clusterings with and without variable
selection do not differ a lot. . .



Discussion on variable selection in model-based
classification

Interest
The typology of the variable roles is realistic.
Variable selection could dramatically improve the
classification error rates of the classifiers.
It may allow to highlight relevant complex generative
classifiers.

Drawback
The forward or backward procedures remain painfully
slow. . .



Perspectives

An alternative to forward or backward variable procedures is
desirable.

Defining an order of the variables through regularization

Let θ̂(λ, ρ) =
arg max

∑n
i=1 log(f (ȳi | θ)−λ

∑
k=1 ||µk ||1−ρ

∑
k=1 ||Σ

−1
k ||1

θ̂(λ, ρ) is estimated with an EM algorithm.
By increasing the regularization parameters from 0, we get
an order on the variables.
This order is used in the SRUW procedure which thus
does not require ranking the variables.
Obviously, there is no guarantee that this order is optimal.



An example
The selection from the order for 50 data sets with n = 2000,
Q = 14, with S={1, 2} ; U={3,. . . ,7} and W={8,. . . ,14}

S U W

1

0
20

40

S U W

2

0
10

25

S U W

3

0
20

40

S U W

4

0
20

40

S U W

5

0
20

40

S U W

6

0
20

40

S U W

7

0
10

25

S U W

8

0
20

40

S U W

9

0
20

40

S U W

10

0
20

40

S U W

11

0
20

40

S U W

12

0
20

40

S U W

13

0
20

40

S U W

14

0
20

40



Software

Free softwares can be downloaded from the Cathy Maugis
home page
http ://www.math.univ-toulouse.fr/∼maugis
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