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Integrating Multiple Data Sources via the GPLVM

The Gaussian process latent variable model (Lawrence, 2005) is a flexible non-parametric

probabilistic dimensionality reduction method.

We want to:
@ Represent each dataset in
terms of latent variables.

@ Extract information common
to each data source.

@ Retain information unique to
each source.

@ Account for dimension
mismatch between multiple
datasets.

Also:

@ Detect any intrinsic low
dimensional structure.

Observed Data

Y

2

Latent Variables
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Model Definition

o Observe S datasets Y; € RV | Ys e RVX,
@ It is assumed each column of Y, is normalised to zero mean and unit variance.

© Represent these data in terms of g latent variables x where g < mins(ds).

For individual i and covariate u in source s we write

.yl',u Z m¢m ) +£:su

Where
o ¢ : RY — RM are non-linear mappings that may depend on hyperparameters ¢,
® w,,, are mapping coefficients

@ &, are noise variables.
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Data Likelihood

Assume Gaussian priors for p(Ws) and p(&,|3s) with zero mean and covariances given by

(WomWin) = G55t 6 Omn and  (€5,65,) = B 5051 66,u0

For notational simplicity we define 8 = {f1,...,8s}, ® = {¢y,...,Ps},
W={Wi,...,Ws}, £€={&,...,&} and Y ={Y1,...,Ys}. The data likelihood
factorises over samples

N
p(Y|X, W, ¢, B,) = [ ply,|xi, W, &, 3, ®)

i=1

Marginalising W and & we get a Gaussian distribution for Y with mean (y;,) = 0 and
covariance

(Viudio) = GO (Z Gm(x1) D (%}) + BJ%)
= 655/5,,WK5(X,'7 XJ‘)

The data likelihood can then be written as

p(YIX, 5, ® HH

pulc et (27r)2|K |2
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Bayesian Inference

We specify three levels of uncertainty:
@ Microscopic parameters: {X}
@ Hyperparameters: {3, ®}
e Models: H={q, ¢m}
Posterior distributions are
p(Y|X, B, ®, H)p(X|H)
X|Y,B3,®, H) =
PIXIY- 5.2 1) = T 4% p(Y X', .. H)p(X'H)
p(Y|B,®, H)p(B, ®|H)
DY, H) =
PO H) = T 45407 oY1, 0", H)p( 8, &' )
_ _ p(Y[H)p(H)
PN = 5 oY H p()

where
p(Y|3, 0, H) = / dXp(Y[X, 3, ., H)p(X|H)

p(Y|H) = / dB3dd p(Y|3, @, H)p(B, B|H).
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Inferring latent variables

To find the optimal latent variable representation, X* we will numerically minimise the
negative log likelihood of p(X|Y, 3, ®, H)

ds _ ds ds
Lx(X;8,®) = Z {ﬁtr(Ks 1Ss) + N log |Ks| + > log 27

where S, = diYSYST. Should we rescale the contribution from each source by diot/ds
where dior = Es ds? Expand to second order

N q
* 1 * *
Lx(X; B, ®) ~ Lx(X"38,®) + 5D > (6 = Xin) (55 = i) A
Ij v
where
82

OXipOXju

Lx(X; B, ®})

Aiu,jv =

X=X*

P(Y|,8, ¢7 H) = /dXefNLX(X:ﬂ,‘b)
=p(YIX", 8, @, H) /dxei% i 2w O =i ) O =25 YA o
= p(YIX", B, @, H)(2r)"/?|A(X", B, @) /2
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Invariance under Unitary Transformations

The kernel functions considered here are all invariant under arbitrary unitary
transformations. Let U be a unitary matrix, such that UTU = UUT =1 and let X = Ux.
Then

X - ij = X,‘UTUXj = Xj - Xj

and
(% — %)% = (x = x)UTU(xi — ;) = (xi — x7)°.

This invariance under unitary transformations induces symmetries in the posterior search
space of X € RY*9_ Fix with

x1 O 0 0
x1 x2 0 0
X=| X1 x:2 xs3 0

Xa1  Xa2  Xa3  Xas

We 'pin down’ the latent variables and optimise over the Ng — (¢° — q)/2 non zero
entries.
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Synthetic Data

(a) ‘True' latent variables (b) Retrieved latent variables

We can define three ad hoc error measures

1 |xi| — 7 1 N -
grad/a/ - |C‘ Z 7 gangular - |C| Z é glmear -

iec iec
where SS.,, = S (x2 — axi1)® and SSwr = 3 (x2 — Xi2)>.
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Dependence on 3 and d

6 gradia/ gangular 5Iinear d 5radia/ gangular glinear
0.1 | 0.0060 | 0.0046 | 0.0079 10 0.0944 | 0.0454 | 0.5491
0.5 | 0.0766 | 0.0813 | 0.2577 100 | 0.0061 | 0.0051 | 0.0108
1.0 | 0.0998 | 0.1701 | 0.3263 1000 | 0.0004 | 0.0008 | 0.0016

Table: (a) The magnitude of the errors increases as more noise is added (for fixed d) to the

(a) Dependence on 8

(b) Dependence on d

synthetic data. (b) For fixed noise levels the greater d is the better the extraction of the ‘true’
low dimensional structure from a dataset.
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Dimensionality detection

i —8— Linear
—o—Polynomia

—30p 2 3 7 5 6
No of latent variables ¢

Figure: Plot of the minimal values of L, obtained for different values of g and two different
kernels, the linear kernel and the polynomial kernel. Both the kernel types detect that g =2 is
the optimal dimension. Furthermore, the model can distinguish that the linear kernel offers the
best explanation of the data in this case.
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Integration of two sources
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Classification experiment

We generated N = 100 samples with g = 2.
@ 50 samples from a Gaussian with unit variance and mean (1,1) with class +1.
@ 50 samples from a unit variance Gaussians with means (—3,—1) and (1, —1) with
class —1.
@ Projected into d = 100 space with a linear mapping.

Y (d =100) | X* (¢ =2)
Training Success 86.3% 86.6%
Validation Success 74.0% 83.0%

We repeated this 300 times. The mean improvement between the validation success on
Y and the success on X* was found to be 8.7% with a standard deviation of 4.8%.
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What is Survival Analysis?

Suppose we have a group of N cancer patients. For each individual / we measure:

@ The time 7; > 0 until an event of interest
occurs, for example the time to metastasis.

@ A vector of covariates (also called features or
input variables) x; € RY

@ We will assume one risk and use an indicator
variable

0
Y

if i is censored
if the primary risk occurs

Aim

Event Time 7 (years)

vow e o

R U

e Primary events
o Censoring events
5 6 —000- — — — — @ — — — — — — —
.
[
.
.
*°*
o
o
=3 -2 -1 0 1

Covariate x

To extract any statistical relationship between x and 7 for each risk.

Challenges:

@ How can we incorporate information from censored individuals?

@ How can we deal with non-negative outputs?
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Linking Survival Data to Latent Variables

For each patient we observe covariates y, time to event t, and event type A.

Covariates

p(X|Y,t) o p(Y, t|X)p(X)

= p(Y[X) p(t|X) p(X)
—_—

GPLVM  Cox
Latent
Variables

where as above

d _—1yT k=1y
p(YIX)=]] T
=1 (2m) 2 |K]? Survival
Data

and for the Cox model

N
p(t]X) = [T ho(t)e? e~ Mo®
i=1
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Predictions

If we observe a new patient with y* we predict the corresponding event time t* via

GPLVM Co;
y* X* X t*

We can also use Cox to generate survival curves:

True survival curves and retrieved True survival curves and
low dimensional survival curves high dimensional survival curves

1 True Survival 1 True Survival
0.9 Retrieved Low Dim Survival 0.9 — High Dim Survival
0.8 0.8
0.7 0.7
0.6 0.6
0.5 0.5
0.4 0.4
0.3 0.3
0.2 0.2
0.1 0.1

00 2 4 6 8 10 O0 2 4 6 8 10
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