The Gaussian process latent variable model with Cox regression

James Barrett

Institute for Mathematical and Molecular Biomedicine (IMMB), King's College London

Introduction

Q GPLVN

Results

4 Extension to Cox proportional hazards model

Integrating Multiple Data Sources via the GPLVM

The Gaussian process latent variable model (Lawrence, 2005) is a flexible non-parametric probabilistic dimensionality reduction method.

We want to:

- Represent each dataset in terms of latent variables.
- Extract information common to each data source.
- Retain information unique to each source.
- Account for dimension mismatch between multiple datasets

Also:

 Detect any intrinsic low dimensional structure.

- Introduction
- Q GPLVM
- Results

4 Extension to Cox proportional hazards model

Model Definition

- Observe S datasets $\mathbf{Y}_1 \in \mathbb{R}^{N \times d_1}, \dots, \mathbf{Y}_S \in \mathbb{R}^{N \times d_S}$.
- ullet It is assumed each column of \mathbf{Y}_s is normalised to zero mean and unit variance.
- Represent these data in terms of q latent variables \mathbf{x} where $q < \min_s(d_s)$.

For individual i and covariate μ in source s we write

$$y_{i\mu}^s = \sum_{m=1}^M w_{\mu m}^s \phi_m^s(\mathbf{x}_i) + \xi_{i\mu}^s$$

Where

- $\phi_m^s:\mathbb{R}^q o\mathbb{R}^M$ are non-linear mappings that may depend on hyperparameters ϕ_s
- $w_{\mu m}^s$ are mapping coefficients
- $\xi_{i\mu}^s$ are noise variables.

Data Likelihood

Assume Gaussian priors for $p(\mathbf{W}_s)$ and $p(\boldsymbol{\xi}_s|\beta_s)$ with zero mean and covariances given by

$$\left\langle w_{\mu m}^{\mathfrak s} w_{\nu n}^{\mathfrak s'} \right\rangle = \delta_{\mathfrak s \mathfrak s'} \delta_{\mu \nu} \delta_{\mathfrak m n} \quad \text{and} \quad \left\langle \xi_{i \mu}^{\mathfrak s} \xi_{j \nu}^{\mathfrak s'} \right\rangle = \beta_{\mathfrak s}^{-1} \delta_{\mathfrak s \mathfrak s'} \delta_{i j} \delta_{\mu \nu}.$$

For notational simplicity we define $\beta = \{\beta_1, \dots, \beta_S\}$, $\Phi = \{\phi_1, \dots, \phi_S\}$, $\mathbf{W} = \{\mathbf{W}_1, \dots, \mathbf{W}_S\}$, $\boldsymbol{\xi} = \{\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_S\}$ and $\mathbf{Y} = \{\mathbf{Y}_1, \dots, \mathbf{Y}_S\}$. The data likelihood factorises over samples

$$p(\mathbf{Y}|\mathbf{X},\mathbf{W},\boldsymbol{\xi},\boldsymbol{eta},\mathbf{\Phi}) = \prod_{i=1}^{N} p(\mathbf{y}_{i}|\mathbf{x}_{i},\mathbf{W},\boldsymbol{\xi}_{i},\boldsymbol{eta},\mathbf{\Phi})$$

Marginalising **W** and $\boldsymbol{\xi}$ we get a Gaussian distribution for **Y** with mean $\langle y_{i\mu} \rangle = 0$ and covariance

$$\begin{aligned} \left\langle y_{i\mu}^{s} y_{j\nu}^{s'} \right\rangle &= \delta_{ss'} \delta_{\mu\nu} \left(\sum_{m} \phi_{m}^{s}(\mathbf{x}_{i}) \phi_{m}^{s}(\mathbf{x}_{j}) + \beta_{s}^{-1} \delta_{ij} \right) \\ &= \delta_{ss'} \delta_{\mu\nu} K_{s}(\mathbf{x}_{i}, \mathbf{x}_{j}) \end{aligned}$$

The data likelihood can then be written as

$$p(\mathbf{Y}|\mathbf{X}, \boldsymbol{\beta}, \boldsymbol{\Phi}) = \prod_{s=1}^{S} \prod_{\mu=1}^{d_s} \frac{e^{-\frac{1}{2}\mathbf{y}_{s,\mu}^{s}} \mathbf{K}_{s}^{-1} \mathbf{y}_{s,\mu}^{s}}{(2\pi)^{\frac{N}{2}} |\mathbf{K}_{s}|^{\frac{1}{2}}}$$

Bayesian Inference

We specify three levels of uncertainty:

- Microscopic parameters: {X}
- Hyperparameters: $\{\beta, \Phi\}$
- Models: $H = \{q, \phi_m\}$

Posterior distributions are

$$\rho(\mathbf{X}|\mathbf{Y},\boldsymbol{\beta},\mathbf{\Phi},H) = \frac{p(\mathbf{Y}|\mathbf{X},\boldsymbol{\beta},\mathbf{\Phi},H)p(\mathbf{X}|H)}{\int d\mathbf{X}'p(\mathbf{Y}|\mathbf{X}',\boldsymbol{\beta},\mathbf{\Phi},H)p(\mathbf{X}'|H)}$$

$$p(\boldsymbol{\beta},\mathbf{\Phi}|\mathbf{Y},H) = \frac{p(\mathbf{Y}|\boldsymbol{\beta},\mathbf{\Phi},H)p(\boldsymbol{\beta},\mathbf{\Phi}|H)}{\int d\boldsymbol{\beta}'d\mathbf{\Phi}'p(\mathbf{Y}|\boldsymbol{\beta}',\mathbf{\Phi}',H)p(\boldsymbol{\beta}',\mathbf{\Phi}'|H)}$$

$$P(H|\mathbf{Y}) = \frac{p(\mathbf{Y}|H)p(H)}{\sum_{H'}p(\mathbf{Y}|H')p(H')},$$

where

$$p(\mathbf{Y}|\boldsymbol{\beta}, \boldsymbol{\Phi}, H) = \int d\mathbf{X} p(\mathbf{Y}|\mathbf{X}, \boldsymbol{\beta}, \boldsymbol{\Phi}, H) p(\mathbf{X}|H)$$
$$p(\mathbf{Y}|H) = \int d\boldsymbol{\beta} d\boldsymbol{\Phi} p(\mathbf{Y}|\boldsymbol{\beta}, \boldsymbol{\Phi}, H) p(\boldsymbol{\beta}, \boldsymbol{\Phi}|H).$$

Inferring latent variables

To find the optimal latent variable representation, \mathbf{X}^* we will numerically minimise the negative log likelihood of $p(\mathbf{X}|\mathbf{Y}, \boldsymbol{\beta}, \boldsymbol{\Phi}, \boldsymbol{H})$

$$\mathcal{L}_X(\mathbf{X};\boldsymbol{\beta},\boldsymbol{\Phi}) = \sum_s \left[\frac{d_s}{2N} \mathrm{tr}(\mathbf{K}_s^{-1} \mathbf{S}_s) + \frac{d_s}{2N} \log |\mathbf{K}_s| + \frac{d_s}{2} \log 2\pi \right]$$

where $\mathbf{S}_s = \frac{1}{d_s} \mathbf{Y}_s \mathbf{Y}_s^T$. Should we rescale the contribution from each source by d_{tot}/d_s where $d_{tot} = \sum_s d_s$? Expand to second order

$$\mathcal{L}_X(\mathbf{X};oldsymbol{eta},oldsymbol{\Phi}) pprox \mathcal{L}_X(\mathbf{X}^\star;oldsymbol{eta},oldsymbol{\Phi}) + rac{1}{2}\sum_{i,j}^N\sum_{\mu,
u}^q (x_{i\mu}^\star - x_{i\mu})(x_{j
u}^\star - x_{j
u})A_{i\mu,j
u}$$

where

$$A_{i\mu,j\nu} = \frac{\partial^2}{\partial x_{i\mu}\partial x_{j\nu}} \mathcal{L}_X(\mathbf{X};\boldsymbol{\beta},\boldsymbol{\Phi}) \bigg|_{\mathbf{X} = \mathbf{X}^*}$$

$$p(\mathbf{Y}|\boldsymbol{\beta}, \boldsymbol{\Phi}, H) = \int d\mathbf{X} e^{-N\mathcal{L}_{\mathbf{X}}(\mathbf{X}; \boldsymbol{\beta}, \boldsymbol{\Phi})}$$

$$= p(\mathbf{Y}|\mathbf{X}^{*}, \boldsymbol{\beta}, \boldsymbol{\Phi}, H) \int d\mathbf{X} e^{-\frac{1}{2}\sum_{ij}\sum_{\mu\nu}(x_{i\mu}^{*} - x_{i\mu})(x_{j\nu}^{*} - x_{j\nu})A_{i\mu,j\nu}}$$

$$= p(\mathbf{Y}|\mathbf{X}^{*}, \boldsymbol{\beta}, \boldsymbol{\Phi}, H)(2\pi)^{Nq/2}|\mathbf{A}(\mathbf{X}^{*}, \boldsymbol{\beta}, \boldsymbol{\Phi})|^{-1/2}$$

Invariance under Unitary Transformations

The kernel functions considered here are all invariant under arbitrary unitary transformations. Let \mathbf{U} be a unitary matrix, such that $\mathbf{U}^\mathsf{T}\mathbf{U} = \mathbf{U}\mathbf{U}^\mathsf{T} = \mathbf{I}$ and let $\tilde{\mathbf{x}} = \mathbf{U}\mathbf{x}$. Then

$$\tilde{\mathbf{x}}_i \cdot \tilde{\mathbf{x}}_j = \mathbf{x}_i \mathbf{U}^\mathsf{T} \mathbf{U} \mathbf{x}_j = \mathbf{x}_i \cdot \mathbf{x}_j$$

and

$$(\tilde{\mathbf{x}}_i - \tilde{\mathbf{x}}_j)^2 = (\mathbf{x}_i - \mathbf{x}_j)\mathbf{U}^\mathsf{T}\mathbf{U}(\mathbf{x}_i - \mathbf{x}_j) = (\mathbf{x}_i - \mathbf{x}_j)^2.$$

This invariance under unitary transformations induces symmetries in the posterior search space of $\mathbf{X} \in \mathbb{R}^{N \times q}$. Fix with

$$\mathbf{X} = \begin{pmatrix} x_{11} & 0 & 0 & 0 \\ x_{21} & x_{22} & 0 & 0 \\ x_{31} & x_{32} & x_{33} & 0 \\ x_{41} & x_{42} & x_{43} & x_{44} \\ \vdots & & \vdots \end{pmatrix}.$$

We 'pin down' the latent variables and optimise over the $Nq-(q^2-q)/2$ non zero entries.

Introduction

- Q GPLVN
- Results
- 4 Extension to Cox proportional hazards model

Synthetic Data

(a) 'True' latent variables

(b) Retrieved latent variables

We can define three ad hoc error measures

$$\mathcal{E}_{\textit{radial}} = \frac{1}{|C|} \sum_{i \in C} \frac{|\mathbf{x}_i| - \tilde{r}}{\tilde{r}} \qquad \mathcal{E}_{\textit{angular}} = \frac{1}{|C|} \sum_{i \in C} \frac{\Delta \theta_i - \tilde{\theta}}{\tilde{\theta}} \qquad \mathcal{E}_{\textit{linear}} = \frac{\textit{SS}_{\textit{err}}}{\textit{SS}_{\textit{tot}}}$$

where $SS_{err} = \sum (x_{i2} - \alpha x_{i1})^2$ and $SS_{tot} = \sum (x_{i2} - \bar{x}_{i2})^2$.

Dependence on β and d

β	\mathcal{E}_{radial}	$\mathcal{E}_{angular}$	$\mathcal{E}_{\mathit{linear}}$	d	\mathcal{E}_{i}
0.1	0.0060	0.0046	0.0079	10	0.0
0.5	0.0766	0.0813	0.2577	100	0.0
1.0	0.0998	0.1701	0.3263	1000	0.0

d	\mathcal{E}_{radial}	$\mathcal{E}_{angular}$	$\mathcal{E}_{\mathit{linear}}$
10	0.0944	0.0454	0.5491
100	0.0061	0.0051	0.0108
1000	0.0004	0.0008	0.0016

(a) Dependence on β

(b) Dependence on d

Table: (a) The magnitude of the errors increases as more noise is added (for fixed d) to the synthetic data. (b) For fixed noise levels the greater d is the better the extraction of the 'true' low dimensional structure from a dataset.

Dimensionality detection

Figure: Plot of the minimal values of \mathcal{L}_{hyp} obtained for different values of q and two different kernels, the linear kernel and the polynomial kernel. Both the kernel types detect that q=2 is the optimal dimension. Furthermore, the model can distinguish that the linear kernel offers the best explanation of the data in this case.

Integration of two sources

Classification experiment

We generated N = 100 samples with q = 2.

- 50 samples from a Gaussian with unit variance and mean (1,1) with class +1.
- 50 samples from a unit variance Gaussians with means $(-\frac{1}{2},-\frac{1}{2})$ and $(\frac{1}{2},-\frac{1}{2})$ with class -1.
- Projected into d = 100 space with a linear mapping.

	Y (d = 100)	$\mathbf{X}^{\star} \ (q=2)$
Training Success	86.3%	86.6%
Validation Success	74.0%	83.0%

We repeated this 300 times. The mean improvement between the validation success on \mathbf{Y} and the success on \mathbf{X}^{\star} was found to be 8.7% with a standard deviation of 4.8%.

Introduction

- Q GPLVM
- Results
- Extension to Cox proportional hazards model

What is Survival Analysis?

Suppose we have a group of N cancer patients. For each individual i we measure:

- The time $\tau_i \ge 0$ until an event of interest occurs, for example the time to metastasis.
- A vector of covariates (also called features or input variables) $\mathbf{x}_i \in \mathbb{R}^d$
- We will assume one risk and use an indicator variable

$$\Delta_i =
\begin{cases}
0 & \text{if } i \text{ is censored} \\
1 & \text{if the primary risk occurs}
\end{cases}$$

Aim

To extract any statistical relationship between ${\bf x}$ and τ for each risk.

Challenges:

- How can we incorporate information from censored individuals?
- How can we deal with non-negative outputs?

Linking Survival Data to Latent Variables

For each patient we observe covariates y, time to event t, and event type Δ .

$$\begin{split} \rho(\mathbf{X}|\mathbf{Y},\mathbf{t}) &\propto \rho(\mathbf{Y},\mathbf{t}|\mathbf{X}) \rho(\mathbf{X}) \\ &= \underbrace{\rho(\mathbf{Y}|\mathbf{X})}_{\text{GPLVM}} \underbrace{\rho(\mathbf{t}|\mathbf{X})}_{\text{Cox}} \rho(\mathbf{X}) \end{split}$$

where as above

$$p(\mathbf{Y}|\mathbf{X}) = \prod_{\mu=1}^{d} \frac{e^{-\frac{1}{2}\mathbf{y}_{:,\mu}^{\mathsf{T}}\mathbf{K}^{-1}\mathbf{y}_{:,\mu}}}{(2\pi)^{\frac{N}{2}}|\mathbf{K}|^{\frac{1}{2}}}$$

and for the Cox model

$$p(\mathbf{t}|\mathbf{X}) = \prod_{i=1}^{N} \lambda_0(t) e^{\boldsymbol{\beta} \cdot \mathbf{x}_i} e^{-e^{\boldsymbol{\beta} \cdot \mathbf{x}_i} \Lambda_0(t)}$$

Predictions

If we observe a new patient with \mathbf{y}^{\star} we predict the corresponding event time t^{\star} via

$$\mathbf{y}^{\star} \xrightarrow{GPLVM} \mathbf{x}^{\star} \xrightarrow{Cox} \mathbf{t}^{\star}$$

We can also use Cox to generate survival curves:

