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in Euclidean Annuli
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Abstract. We study the number of lattice points in Rd, d ≥ 2, lying inside an annulus as a function
of the centre of the annulus. The average number of lattice points there equals the volume of the
annulus, and we study the L1 and L2 norms of the remainder. We say that a dimension is critical,
if these norms do not have upper and lower bounds of the same order as the radius goes to infinity.
In [6], it was proved that in the case of the ball (instead of an annulus) the critical dimensions are
d ≡ 1 mod 4. We show that the behaviour of the width of an annulus as a function of the radius
determines which dimensions are critical now. In particular, if the width is bounded away from
zero and infinity, the critical dimensions are d ≡ 3 mod 4; if the width goes to infinity, but slower
than the radius, then all dimensions are critical, and if the width tends to zero as a power of the
radius, then there are no critical dimensions.
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1. Introduction

1.1. Motivation
Let Γ be a lattice of full rank in Rd with d ≥ 2; we assume that the volume of the unit cell
O := Rd/Γ is one. For k ∈ O and ρ > 0 we denote by Nρ(k) the number of lattice points in the
open ball B(k, ρ) centered at k of radius ρ. It is easy to see (and we will show this in the next
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section anyway) that
〈Nρ〉 = ωdρ

d,

where we denote 〈f〉 :=
∫
O f(k)dk, and ωd is the volume of the unit ball in Rd. Many efforts have

been spent on studying the upper bounds on the remainder

Rρ(k) := Nρ(k)− 〈Nρ〉,

and estimates with optimal powers of ρ have been obtained in dimensions d ≥ 4; for d = 2, 3 only
non-optimal estimates are known, see [4], [3], and [9] and references therein.

The question of the size of Rρ also plays a very important role in the periodic problems, in
particular, in proving the Bethe-Sommerfeld conjecture for periodic Schrödinger operators, see
e.g. [8] and [6]. However, the estimates required in periodic problems are of slightly different
nature than the classical uniform upper bounds. Namely, let us introduce the following functions:

σp(ρ) := ||Rρ||p = 〈|Rρ|p〉1/p, p = 1, 2;

the quantity σ1 can be thought of as an average deviation of N(·) from its average, and σ2(ρ) is
known as the standard deviation. We will study both upper and lower bounds of these functions,
although only lower bounds are needed for the proof of the Bethe-Sommerfeld conjecture. The
following theorem was completely proved in [6], although some partial results were obtained in
[5] (upper bound) and [8] (lower bound, the case d 6≡ 1 mod 4).

Theorem 1.
(a) (Upper bound)

There is c > 0 such that, for all ρ large enough, one has

σ1(ρ) ≤ σ2(ρ) ≤ cρ
d−1
2 . (1.1)

(b) (Lower bound)
Suppose d 6≡ 1 mod 4. There is c > 0 such that, for all ρ large enough, one has

σ1(ρ) ≥ cρ
d−1
2 . (1.2)

Suppose d ≡ 1 mod 4 and ε > 0. There is c > 0 such that, for all ρ large enough, one has

σ1(ρ) ≥ cρ
d−1
2
−ε. (1.3)

(c) (Exactness of the lower bound)
Suppose d ≡ 1 mod 4 and ε > 0. There exists a sequence ρn →∞ such that

σ2(ρn) ≤ ρ
d−1
2

n (ln ρn)(−1+ε)/d. (1.4)
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Using these estimates, one can prove Bethe-Sommerfeld conjecture for Schrödinger operators
in dimensions 2, 3, 4 and for some other periodic operators, see [6] and [7] for details; however,
these estimates are not sufficient to prove the conjecture for Schrödinger operators in dimensions
d ≥ 5.

An immediate observation one can make from Theorem 1 is the following: if d 6≡ 1 mod 4,
then both σ1 and σ2 have upper and lower bounds with the same power of ρ, whereas if d ≡
1 mod 4, such bounds do not exist. This makes it natural to call the cases d ≡ 1 mod 4 the critical
dimensions. The question we want to ask is whether there are different setups where (for similar
problems) the critical dimensions take other values.

1.2. Results
This paper deals with the situation when instead of counting lattice points inside the ball, we
count lattice points inside the annuli. Thus, we introduce two parameters: ρ (the radius of the
annulus) and η = η(ρ) (half-width of the annulus) which we assume to be a continuous function
of ρ with η < ρ. We denote by Nρ,η(k) the number of lattice points in the annulus B(k, ρ, η) :=
B(k, ρ + η) \B(k, ρ− η). Similar to the case of the ball, we have

〈Nρ,η〉 = ωd[(ρ + η)d − (ρ− η)d],

and we define
Rρ,η(k) := Nρ,η(k)− 〈Nρ,η〉.

The purpose of this paper is to find estimates of the following averages of R:

σp(ρ, η) := ||Rρ,η||p = 〈|Rρ,η|p〉1/p, p = 1, 2,

and, in particular, to establish which dimensions are critical. The answer will depend on how
exactly η depends on ρ. There are four essentially different regimes of the behaviour of η:

(i) η = cρ;

(ii) η →∞ but η/ρ → 0;

(iii) η ³ 1 (that is, η is bounded away from zero and infinity);

(iv) η → 0.

The first regime is the simplest one: here the answer is exactly the same as it is in the case of the
ball, namely, critical dimensions are d ≡ 1 mod 4. The proof of this fact is also very similar to the
case of the ball, and we will not discuss it in detail. The other regimes are much more interesting.
In particular, in the case (ii) all dimensions are critical, and in the case (iii) critical dimensions are
d ≡ 3 mod 4. The case (iv) is the most difficult one; we can only treat the case p = 2, and the
answer depends on how quickly η tends to zero. If η tends to zero slower than any power of ρ,
then the situation is similar to the case (iii), that is, critical dimensions are d ≡ 3 mod 4. If, on the
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other hand, η ³ ρ−γ with some positive γ, then there are no critical dimensions. We would like
to mention here that in the case d = 2 and η = cρ−1, a much more detailed information about the
behaviour of σ2 was obtained in [2]. We will formulate the precise theorems in the sections where
we discuss the corresponding regimes.

The paper is organized as follows. In Section 2 we prove some technical statements which are
relevant to several regimes of η simultaneously. In Section 3, 4, and 5 we discuss the regimes (ii),
(iii), and (iv), respectively.

Acknowledgement. We are very grateful to Richard Hill who took part in the early stages of
this work, but withdrew later. Some of the results of this paper were obtained with his participation.

1.3. Outline of the proofs
Denote

θ := π
d + 1

4
.

Denote by Γ∗ = {b ∈ Rd : ei〈a,b〉 ∈ 2πZ for all a ∈ Γ} the lattice (analytically) dual to Γ and
by {ej} any fixed basis of Γ∗. We also put O∗ := Rd/Γ∗. For any vector b ∈ Rd we denote by
b = |b| its Euclidean norm. For any integrable function f : O → C we denote by

f̂(b) =

∫

O
f(k)eibkdk, b ∈ Γ∗

its Fourier coeffiients.
First, we observe that σ1(ρ, η) and σ2(ρ, η) can be estimated in terms of the Fourier coefficients

as

|R̂ρ,η(b)| ≤ σ1(ρ, η) ≤ σ2(ρ, η) =
( ∑

b∈Γ∗
R̂2

ρ,η(b)
) 1

2
. (1.5)

Then we compute the values of the Fourier coefficients in terms of the Bessel functions of the first
kind and, using our knowledge about their asymptotic behaviour at infinity, compute the asymp-
totics of the Fourier coefficients

R̂ρ,η(ρ)(b) = cρ
d−1
2 b−

d+1
2 sin(bη(ρ)) sin(bρ− θ) + η(ρ)ρ

d−3
2 b−

d+1
2 O(1) (1.6)

as η/ρ → 0. Now the upper bound for σ2(ρ, η) can be easily obtained either from Parseval’s
identity (for the regime η(ρ) 6→ 0) or just simply from the upper bounds for the balls given in
Theorem 1.

It is much more difficult to get lower bounds for σ1(ρ, η). In the regimes when η 6→ 0 the
estimate on the left hand side of (1.5) is good enough, but it will require lots of efforts to find an
element b of the dual lattice Γ∗ giving roughly the same contribution as all other terms together.
This is due to the trigonometric term in (1.6) which should be kept away from zero. In some
regimes and dimensions, for any ρ we can find such b in a bounded region around zero. This
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provides a lower bound which is the same as the upper bound and so such dimensions are non-
critical for the corresponding regimes. However, sometimes a suitable b can only be found at a
distance from the origin tending to infinity together with ρ. This reduces the lower bound by an
arbitrarily small power of ρ (due to the multiple b−

d+1
2 in (1.6)) and so creates a gap between the

lower and upper bound. This corresponds to critical dimensions.
For every critical dimension, we show that the gap between the lower and upper bound is not

an artifact in our proof, that is, that there are no lower and upper bounds with the same powers of
ρ. This is done using pigeonhole principle to find a sequence of specific ρn such that exceptionally
many of the Fourier coefficients are small. This gives a sequence ρn, for which σ2(ρn, η(ρn)) is
essentially smaller then the upper bound.

In the regime η → 0, the estimate on the left hand side of (1.5) is too weak, as a single Fourier
coefficient does not give a significant contribution anymore. Because of this, we are not able to
find a suitable lower bound for σ1(ρ, η) and restrict our study to σ2(ρ, η). For the latter, we are able
to identify a sufficient number of Fourier coefficients contributing to its value, and find a lower
bound using Parseval’s identity. Similarly to the other regimes, sometimes the properties of the
conributing elements b are good enough to provide a lower bound which is the same as the upper
bound, and sometimes they are not. This corresponds to non-critical and critical dimensions.

2. Preliminary results
In this section we prove some technical statements which will be used later and which are relevant
to several regimes of η simultaneously. In Lemma 2 we give simple upper and lower bounds for
the norms ||Rρ,η||1 and ||Rρ,η||2. Since the lower bound is in terms of the Fourier coefficients and
as we will later use Parseval’s identity to further estimate ||Rρ,η||2, in Lemma 3 we compute the
asymptotics of the Fourier coefficients in terms of the Bessel functions. In Lemma 4 we study two
explicit families of functions which are closely related to computing the lengths of elements of the
lattice. Finally, Lemma 5 is one of the most important tools to prove main results of the paper. It
guarantees that the leading term in the asymptotics of the Fourier coefficients found in Lemma 3
can be kept away from zero despite the oscillating trigonometric term.

Let B(ρ) denote the open ball of radius ρ > 0 in Rd centered at the origin and let χ(·, ρ) be its
characteristic function. Then, for k ∈ O and ρ > 0,

Nρ(k) =
∑
m∈Γ

χ(m− k, ρ)

and so
〈Nρ〉 =

∫

O

∑
m∈Γ

χ(m− k, ρ)dk =

∫

Rd

χ(k, ρ)dk = vol(B(ρ)) = ωdρ
d,

where ωd is the volume of the unit ball in Rd. Obviously, Nρ,η = Nρ+η −Nρ−η and hence

〈Nρ,η〉 = 〈Nρ+η〉 − 〈Nρ−η〉 = vol(B(ρ + η)\B(ρ− η)) = ωd[(ρ + η)d − (ρ− η)d].
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So the remainder term Rρ,η can be written as

Rρ,η = Rρ+η −Rρ−η.

Lemma 2. There is a constant c > 0 such that, for all 0 < η < ρ and b ∈ Γ∗

|R̂ρ,η(b)| ≤ σ1(ρ, η) ≤ σ2(ρ, η) < cρ
d−1
2 .

Proof. The lower bound follows from

||Rρ,η||1 =

∫

O
|Rρ,η(k)|dk ≥

∣∣∣
∫

O
Rρ,η(k)eibkdk

∣∣∣ = |R̂ρ,η(b)|.

To prove the upper bound, observe that according to [6, Th. 3.1] there is a constant c1 such that

||Rρ||2 < c1ρ
d−1
2 for all ρ > 0.

Although it has been formulated there only for ρ large enough, it is easy to see that it is actually
true for all ρ > 0 because of the continuity of ||Rρ||2 in ρ and since

||Rρ||22 ≤ vol(B(ρ))(1− vol(B(ρ))) ≤ ωdρ
d−1

for ρ small enough.
Using η < ρ, we obtain

||Rρ,η||1 ≤ ||Rρ,η||2 = ||Rρ+η −Rρ−η||2 ≤ ||Rρ+η||2 + ||Rρ−η||2
< 2c1(ρ + η)

d−1
2 < c12

d+1
2 ρ

d−1
2 ≤ cρ

d−1
2

for some c > 0. 2

Lemma 3. For any b ∈ Γ∗,

R̂ρ,η(b) =

{ (
2π(ρ+η)

b

)d/2

Jd/2(b(ρ + η))−
(

2π(ρ−η)
b

)d/2

Jd/2(b(ρ− η)) if b 6= 0,

0 if b = 0,
(2.1)

where Jν denotes the Bessel function of the first kind.
If η(ρ)/ρ → 0 as ρ →∞, then

R̂ρ,η(ρ)(b) = −2

√
2

π
(2π)

d
2 ρ

d−1
2 b−

d+1
2 sin(bη(ρ)) sin(bρ− θ) + η(ρ)ρ

d−3
2 b−

d+1
2 O(1) (2.2)

uniformly in b ∈ Γ∗\{0}.
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Proof. Repeating the computations from [6] we have, for all b ∈ Γ∗\{0},

N̂ρ(b) =

∫

O
Nρ(k)eibkdk =

∫

O

∑
m∈Γ

χ(m− k, ρ)eibkdk =

∫

|k|<ρ

eibkdk =
(2πρ

b

)d/2

Jd/2(bρ).

Similarly, N̂ρ(0) = ωdρ
d. Hence

R̂ρ(b) =

{ (
2πρ
b

)d/2

Jd/2(bρ) if b 6= 0,

0 if b = 0.

Now (2.1) follows from R̂ρ,η(b) = R̂ρ+η(b)− R̂ρ−η(b).
Suppose now that limρ→∞ η(ρ)/ρ = 0. The Bessel function Jd/2 has the following asymptotics

as x →∞ (see formula (4.8.5) of [1])

Jd/2(x) ∝
√

2

πx

(
cos(x− θ)

∞∑
n=0

(−1)na2nx−2n − sin(x− θ)
∞∑

n=0

(−1)na2n+1x
−2n−1

)

with a0 = 1 and some real coefficients ak, k ≥ 1. The symbol∝ here means that this asymptotic is
true when truncated after an arbitrary power x−k of x, with the error of order O(x−k−1). Moreover,
this asymptotics can be differentiated termwise.

Let

J̃d/2(x) = Jd/2(x)

√
πx

2
− cos(x− θ)

∝ cos(x− θ)
∞∑

n=1

(−1)na2nx
−2n − sin(x− θ)

∞∑
n=0

(−1)na2n+1x
−2n−1.

Then J̃d/2(x) = O(x−1) and J̃ ′d/2(x) = O(x−1) as x →∞. Using (2.1) we obtain for b ∈ Γ∗\{0},

R̂ρ,η(ρ)(b) =
(2π(ρ + η(ρ))

b

)d/2

Jd/2

(
b(ρ + η(ρ))

)−
(2π(ρ− η(ρ))

b

)d/2

Jd/2

(
b(ρ− η(ρ))

)

=

√
2

π
(2π)

d
2 (ρ + η(ρ))

d−1
2 b−

d+1
2

(
J̃d/2

(
b(ρ + η(ρ))

)
+ cos

(
b(ρ + η(ρ))− θ

))

−
√

2

π
(2π)

d
2 (ρ− η(ρ))

d−1
2 b−

d+1
2

(
J̃d/2

(
b(ρ− η(ρ))

)
+ cos

(
b(ρ− η(ρ))− θ

))

=

√
2

π
(2π)

d
2 ρ

d−1
2 b−

d+1
2

(
cos

(
b(ρ + η(ρ))− θ

)− cos
(
b(ρ− η(ρ))− θ

)

+ J̃d/2

(
b(ρ + η(ρ))

)− J̃d/2

(
b(ρ− η(ρ))

)
+ O

(
η(ρ)/ρ

))

=

√
2

π
(2π)

d
2 ρ

d−1
2 b−

d+1
2

(
− 2 sin(bη(ρ)) sin(bρ− θ) + 2bη(ρ) + J̃ ′d/2(ξ(b, ρ))

+ O
(
η(ρ)/ρ

))
,
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where ξ(b, ρ) ∈ (b(ρ− η(ρ), b(ρ + η(ρ)) and O(·) is uniform in b. Using the asymptotics for J̃ ′d/2

we obtain J̃ ′d/2(ξ(b, ρ)) = (bρ)−1O(1) uniformly in b, which completes the proof. 2

Lemma 4. (1) Let u > 0 and w be such that |w| < u. Let m ∈ N and I > 0. For each t > 0,
x ∈ [0, I] and2 k ∈ Z ∩ [1,m] denote

fk,x(t) =
√

(1 + xt)2 + k2t2u2 + 2kt(1 + xt)w.

Then there is tf > 0 such that

fk,x(t) =
∞∑

n=0

an(k, x)tn (2.3)

on [0, tf ], where a0(k, x) = 1, a1(k, x) = x + kw, and an(k, ·) is a polynomial in x of degree
exactly n− 2 for all n ≥ 2.

(2) Let v ∈ R and let m ∈ N. For each t > 0 and x ∈ [−1, 1], denote

gx(t) =
√

1 + 2tx + t2.

Then there is tg > 0 such that

gx(t) =
∞∑

n=0

bn(x)tn (2.4)

uniformly on [−1, 1]× [0, tg], where bn(·) is a polynomial in x of degree exactly n for all n ≥ 0.

Proof. (1) First, let us show that the functions fk,x (considered as functions on the complex plane)
have no singularities in the open ball of radius 1/(I + mu) around zero (which would imply the
choice of tf ). Indeed, observe that, since |w| < u,

f 2
k,x(t) = (x2 + k2u2 + 2kxw)t2 + 2(x + kw)t + 1 (2.5)

has two complex roots

t1,2 =
−x− kw ± ik

√
u2 − w2

x2 + k2u2 + 2kxw

and so
|t1,2| = (x2 + k2u2 + 2kxw)−1/2 ≥ 1/(x + ku) ≥ 1/(I + mu).

Further, using an(k, x) = f
(n)
k,x (0)/n! and differentiating (2.5) we obtain the required formulas

for a0 and a1 as well as a2(k, x) = k2(u2 − w2)/2. Continuing for n ≥ 3 we get

2fk,xf
(n)
k,x + 2nf

(1)
k,xf

(n−1)
k,x +

n−2∑
j=2

(
n

j

)
f

(j)
k,xf

(n−j)
k,x = 0.

2There was a mistake here: k should not be equal to zero, othervise the polynomials degenerate.
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Evaluating it at zero and using induction we obtain that f
(1)
k,x(0)f

(n−1)
k,x (0) is a polynomial of de-

gree n − 2 and f
(j)
k,x(0)f

(n−j)
k,x (0) are polynomials of degree n − 4, which implies that f

(n)
k,x (0) is a

polynomial of degree n− 2 and so is an(k, ·).
(2) First, let us show that the functions gk,x (considered as functions on the complex plane)

have no singularities in the open ball of radius 1 around zero (which would imply the choice of tg).
Indeed, since |x| < 1 it has two zeroes t1,2 = −x± i

√
1− x2, which satisfy |t1,2| = 1.

Further, using bn(x) = g
(n)
x (0)/n! and differentiating g2

x(t) = 1+2tx+ t2 we obtain b0(x) = 1,
b1(x) = x and b2(x) = (1− x2)/2. Continuing for n ≥ 3, we get

2gxg
(n)
x +

n−1∑
j=1

(
n

j

)
g(j)

x g(n−j)
x = 0. (2.6)

Evaluating it at zero and using induction we obtain that g
(j)
x (0)g

(n−j)
x (0) are polynomials of degree

n, which implies that g
(n)
x (0) is a polynomial of degree at most n.

To prove that the degree of g
(n)
x (0) (and so of bn) is exactly equal to n, denote its coefficient at

xn by pn. Then p0 = 1, p1 = 1, p2 = −1 and (2.6) implies the following recurrent formula for
n ≥ 3

pn = −1

2

n−1∑
j=1

(
n

j

)
pjpn−j.

It can be easily seen by induction that pn = (−1)n+1|pn| for n ≥ 1 and pn 6= 0 as pjpn−j =
(−1)n|pj||pn−j| for all 1 ≤ j ≤ n− 1.

It remains to prove that the series representing gx(t) converges uniformly in x and t. Let
qn, n ∈ N ∪ {0} be Catalan numbers, that is, q0 = 1 and qn+1 =

∑n
j=0 qjqn−j for n ≥ 0. Let

us prove that |g(n)
x (0)| ≤ 2n!qn−1 for all n ∈ N. For n = 1 we have |g(1)

x (0)| = |x| ≤ 1 and for
n = 2 we have |g(2)

x (0)| = 1 − x2 ≤ 1, which imply the required formulas. For n ≥ 3, it follows
inductively from (2.6) as

|g(n)
x (0)| ≤ 1

2

n−1∑
j=1

n!

j!(n− j)!
|g(j)

x (0)||g(n−j)
x (0)| = 2n!

n−2∑
i=0

qiqn−2−i = 2n!qn−1.

This implies |bn(x)tn| ≤ 2qn−1t
n
g . Since the radius of convergence of the series

∑∞
n=1 qnt

n is 1/4,
the series (2.4) converges uniformy in x and t once tg < 1/4. 2

For each x ∈ R we denote by ω[x] the distance from x/π to the nearest integer. Observe that
ω satisfies the triangle inequality and ω[nx] ≤ nω[x] for any x ∈ R and n ∈ Z.

Lemma 5. Suppose η is such that

lim inf
ρ→∞

log η(ρ)

log ρ
≥ 0. (2.7)
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Then for any ε > 0 there exists α ∈ (0, 1/2) such that for any ρ large enough one can find an
element b(ρ) ∈ Γ∗ with the properties b(ρ) ≤ ρε, ω[b(ρ)ρ− θ] ≥ α, and ω[b(ρ)η(ρ)] ≥ α.

Proof. Let ε > 0 be given. Without loss of generality we assume ε < 1. Let m ∈ N be such that
0 < 1

m−2
< ε/8, L = 2m, and I = Lm + 1.

Observe that the inequality ω[b(ρ)ρ−θ] ≥ α follows from the inequality ω[4b(ρ)ρ] ≥ 4α since
θ ∈ (π/4)Z. We will prove the statement of the lemma with the latter inequality instead of the
former.

Step 1. We start by slightly generalising the proof of Lemma 3.3 from [6]. Namely, we will find
α ∈ (0, 1/6), an integer valued function n(ρ) satisfying n(ρ) ³ ρ

1
m−1 and integer-valued functions

ki(ρ), 0 ≤ i ≤ I , taking values between 1 and m such that all elements

bi(ρ) = (n(ρ) + i)e1 + ki(ρ)e2, 0 ≤ i ≤ I, (2.8)

satisfy bi(ρ) ≤ ρε/3, ω[4bi(ρ)ρ] ≥ 8α.
For any n ∈ N and k ∈ Z ∩ [1,m], the length of the vector ne1 + ke2 is given by

Bn(k) =
√

n2|e1|2 + k2|e2|2 + 2nk〈e1, e2〉.

Denote B
(1)
n (k) = Bn(k + 1) − Bn(k), k ∈ Z ∩ [1,m − 1], and, for all 2 ≤ i ≤ m − 1,

B
(i)
n (k) = B

(i−1)
n (k + 1) − B

(i−1)
n (k), k ∈ [1, m − i]. Slightly adjusting the proof of Lemma 3.3

from [6], we obtain that

B(m−1)
n (1) = An2−m(1 + O(n−1)),

where A 6= 0. Define

n(ρ) = b(8|A|π−1ρ)
1

m−2 c, (2.9)

where b·c denotes taking the integer part. Then, for each 0 ≤ i ≤ I ,

|4B(m−1)
n(ρ)+i(1)ρ| = π/2 + o(1)

as ρ →∞, so that

ω
[
4B

(m−1)
n(ρ)+i(1)ρ

]
= 1/2 + o(1). (2.10)

Now let α be such that 2m+2α < 1/4, which in particular implies α ∈ (0, 1/6). For each i, if
ω[4Bn(ρ)+i(k)ρ] < 8α for all k ∈ Z ∩ [1,m] then ω[4B

(m−1)
n(ρ)+i(1)ρ] < 2m−18α < 1/4, which

contradicts (2.10) for ρ large enough. Hence for each i and ρ there is ki(ρ) ∈ Z ∩ [1,m] such that
ω[4Bn(ρ)+i(ki(ρ))ρ] ≥ 8α and so the elements bi defined in (2.8) satisfy ω[4bi(ρ)ρ] ≥ 8α. The
estimate bi(ρ) ≤ ρε/3 follows from 1

m−2
< ε/8 < ε/3.

Step 2. Denote u = |e2|/|e1| and w = 〈e1, e2〉/|e1|2. Obviously, |w| < u.

10
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Let k ∈ Z ∩ [1,m] be fixed. For any n ∈ N, let hk,n : [0, I] → R be defined by

hk,n(x) = |(n + x)e1 + ke2| = |e1|nfk,x(1/n),

where fk,x is defined in Lemma 4. That lemma implies that, for all n ≥ 1/tf , one has

hk,n(x) = |e1|
∞∑
i=0

ai(k, x)n1−i. (2.11)

Let 0 ≤ l ≤ L and let 0 ≤ x0 < · · · < xl ≤ I be some integers. Let us consider∑l
j=0 cjhk,n(xj) and choose integer coefficients cj , 1 ≤ j ≤ l, in such a way that the first l+2 lead-

ing terms in the decomposition with respect to the powers of n disappear. To do so we use (2.11)
to get

l∑
j=0

cjhk,n(xj) = |e1|
∞∑
i=0

n1−i

l∑
j=0

cjai(k, xj).

Equating the first l + 2 coefficients to zero, we obtain the linear system

l∑
j=0

cjai(k, xj) = 0, 0 ≤ i ≤ l + 1

of l + 2 equations in l + 1 variables. According to Lemma 4, it is equivalent to the linear system

l∑
j=0

cjx
i
j = 0, 0 ≤ i ≤ l − 1,

of l equations in l+1 variables. Since the system has integer coefficients, it has an integer non-zero
solution cj(x), 0 ≤ j ≤ l, where x = (x0, . . . , xl). Moreover, since al+2(k, ·) is a polynomial of
degree l, we have

l∑
j=0

cj(x)al+2(k, xj) =: C(k, x) 6= 0.

This implies

l∑
j=0

cj(x)hk,n(xj) = |e1|C(k, x)n−l−1 + o(n−l−1).

Observe that this asymptotics is uniform in l, x, and k as they can take only finitely many values.
Hence

M1n
−l−1 <

∣∣∣
l∑

j=0

cj(x)hk,n(xj)
∣∣∣ < M2n

−l−1, (2.12)

11
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for all l, x, and k, with some constants M1,M2 > 0.

Step 3. Now we will show that there is i(ρ) ∈ Z ∩ [0, I] such that ω[bi(ρ)(ρ)η(ρ)] > ρ−ε/3.
First, let us choose l(ρ) ∈ Z ∩ [0, L] in such a way that it satisfies

ρ−ε/4 < ρ−
l(ρ)+1
m−2 η(ρ) < ρ−ε/8. (2.13)

This is equivalent to

log η(ρ)

log ρ
+ ε/8 <

l(ρ) + 1

m− 2
<

log η(ρ)

log ρ
+ ε/4.

By the assumption on η and since it is bounded by ρ from above, we have

lim inf
ρ→∞

log η(ρ)

log ρ
≥ 0 and lim sup

ρ→∞

log η(ρ)

log ρ
≤ 1.

Now the existence of l(ρ) for all ρ large enough follows from 1
m−2

< ε/8 and L+1
m−2

= 2m+1
m−1

> 2 >
1 + ε/4.

Second, since I = Lm + 1, by the pigeonhole principle there are integers 0 ≤ x0(ρ) < · · · <
xl(ρ)(ρ) ≤ I such that all kxi(ρ)(ρ) are equal, 0 ≤ i ≤ l(ρ). Denote the corresponding value by
k(ρ). Using uniform bound (2.12), formula (2.9), and estimate (2.13) we obtain

η(ρ)
∣∣∣

l(ρ)∑
j=0

cj(x(ρ))hk(ρ),n(ρ)(xj(ρ))
∣∣∣ > M1n(ρ)−l(ρ)−1η(ρ) ³ ρ−

l(ρ)+1
m−2 η(ρ) > ρ−ε/4.

On the other hand, by (2.12)

η(ρ)
∣∣∣

l(ρ)∑
j=0

cj(x(ρ))hk(ρ),n(ρ)(xj(ρ))
∣∣∣ < M2n(ρ)−l(ρ)−1η(ρ) ³ ρ−

l(ρ)+1
m−2 η(ρ) < ρ−ε/8 < 1/2

and so

ω
[
η(ρ)

l(ρ)∑
j=0

cj(x(ρ))hk(ρ),n(ρ)(xj(ρ))
]

> M3ρ
−ε/4 (2.14)

with some constant M3 > 0 for all ρ large enough.
Third, assume ω[bi(ρ)η(ρ)] ≤ ρ−ε/3 for all i ∈ Z ∩ [0, I]. For i ∈ {x0(ρ), . . . , xl(ρ)(ρ)} we

have

ω[hk(ρ),n(ρ)(i)η(ρ)] = [bi(ρ)η(ρ)] ≤ ρ−ε/3.

By the triangle inequality and using the fact that all cj(x) are integers we then obtain

ω
[
η(ρ)

l(ρ)∑
j=0

cj(x(ρ))hk(ρ),n(ρ)(xj(ρ))
]
≤

l(ρ)∑
j=0

|cj(x(ρ))|ω
[
hk(ρ),n(ρ)(xj(ρ))η(ρ)

]
< M4ρ

−ε/3,

12
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where M4 = 2 supx

∑l
j=0 |cj(x)|. It remains to compare this to (2.14) to get a contradiction.

Step 4. Let us now construct an element b(ρ) with the required properties.
If ω[bi(ρ)(ρ)η(ρ)] ≥ α then we can take b(ρ) = bi(ρ)(ρ) since bi(ρ)(ρ) ≤ ρε/3 ≤ ρε and

ω[4bi(ρ)(ρ)ρ] ≥ 8α ≥ 4α.
Suppose ω[bi(ρ)(ρ)η(ρ)] < α. Define

q := b3αω[bi(ρ)(ρ)η(ρ)]−1c ≤ 3αρε/3, (2.15)

where the inequality follows from the Step 3. Since

qω[bi(ρ)(ρ)η(ρ)] ≤ 3α < 1/2,

we have

ω[qbi(ρ)(ρ)η(ρ)] = qω[bi(ρ)(ρ)η(ρ)]

≥ (
3αω[bi(ρ)(ρ)η(ρ)]−1 − 1

)
ω[bi(ρ)(ρ)η(ρ)] > 3α− α = 2α. (2.16)

If ω[4qbi(ρ)(ρ)ρ] ≥ 4α then we can take b(ρ) = qbi(ρ)(ρ). Indeed, by (2.15) and since
bi(ρ)(ρ) < ρε/3 according to Step 1 we have

b(ρ) = qbi(ρ)(ρ) ≤ 3αρ2ε/3 ≤ ρε

if ρ is large enough, ω[4b(ρ)ρ] ≥ 4α follows from the assumption above, and ω[b(ρ)η(ρ)] ≥ α
holds by (2.16).

Suppose ω[4qbi(ρ)(ρ)ρ] < 4α. Then we take b(ρ) = (q − 1)bi(ρ)(ρ). The bound b(ρ) ≤ ρε

holds by the same argument as above. The estimates

ω[4b(ρ)ρ] = ω[4bi(ρ)(ρ)ρ− 4qbi(ρ)(ρ)ρ] > 8α− 4α = 4α

ω[b(ρ)η(ρ)] = ω[qbi(ρ)(ρ)η(ρ)− bi(ρ)(ρ)η(ρ)] > 2α− α = α

follow from the triangle inequality, (2.16) and the assumptions above. 2

3. Annuli of bounded width
In this section we consider the case when η is bounded away from zero and infinity (although one
of the results is proved in a more general setting). It turns out that σ1(ρ, η) and σ2(ρ, η) behave
differently depending on whether d ≡ 3 mod 4 or not. In the case d 6≡ 3 mod 4 the precise
asymptotics is computed in Theorem 7, as in such dimensions the trigonometric term appearing
in the asymptotics of the Fourier coefficients can be easily kept away from zero (see Lemma 6).
In the case d ≡ 3 mod 4 controlling the trigonometric term becomes more difficult (this is done
using Lemma 5), which results in an upper and lower bound becoming different and not delivering
a precise asymptotics. Moreover, it turns out that such an asymptotics does not exist as the norms
behave differently along subsequences. Hence the dimensions d ≡ 3 mod 4 are critical and we
study them in Theorem 8.

13
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Lemma 6. Assume η ³ 1 and d 6≡ 3 mod 4. Then there are positive constants c1, c2 such that for
all ρ > 0 there is b(ρ) ∈ Γ∗ satisfying b(ρ) < c1 and

|sin(b(ρ)η(ρ)) sin(b(ρ)ρ− θ)| > c2.

Proof. Let us first prove that there are two vectors b1,b2 ∈ Γ∗ such that b1/b2 /∈ Q. Suppose
this is not true. Then, without loss of generality (by rescaling the lattice), we can assume that the
numbers |e1|, |e2|, and |e1 + e2| are integers. Thus,

〈e1, e2〉 =
|e1 + e2|2 − |e1|2 − |e2|2

2
∈ Z.

This implies that any a(n) = ne1 + e2 satisfies |a(n)|2 ∈ Z. Since |a(n)| ∈ Q this implies
|a(n)| ∈ Z. On the other hand,

|a(n)| =
√

n2|e1|2 + |e2|2 + 2n〈e1, e2〉 = n|e1|+ 〈e1, e2〉
|e1| +

|e1|2|e2|2 − 〈e1, e2〉2
2n|e1|3 + o(1/n)

as n → ∞. Since e1 and e2 are not collinear, the coefficient in front if the term of order 1/n is
non-zero. This contradicts |a(n)| being integer for all n.

Let now b1,b2 ∈ Γ∗ be such that b1/b2 /∈ Q. We will show that, for any ρ > 0, we may choose
b(ρ) to be one of the four points b1, b2, 2b1, 2b2, so we choose c1 to be larger than max{2b1, 2b2}.

Since b1/b2 /∈ Q, we have

|sin(2b1x)|+ |sin(2b2x)| 6= 0 for all x 6= 0.

As η takes values in a compact interval not containing zero, there is a constant ĉ1 > 0 such that

|sin(2b1η(ρ))|+ |sin(2b2η(ρ))| > ĉ1 for all ρ > 0.

Hence for any ρ, there is i(ρ) ∈ {1, 2} such that
∣∣sin(2bi(ρ)η(ρ))

∣∣ > ĉ1/2.

Using the double angle formula, we obtain
∣∣sin(bi(ρ)η(ρ))

∣∣ > ĉ1/4.

On the other hand, since θ 6= πm, we have

| sin(x− θ)|+ | sin(2x− θ)| 6= 0 for all x ∈ R.

Since this is a continuous periodic function, it is bounded away from zero by a constant ĉ2 > 0 and
so

∣∣sin(bi(ρ)ρ− θ)
∣∣ +

∣∣sin(2bi(ρ)ρ− θ)
∣∣ > ĉ2.

Hence we have for either b(ρ) = bi(ρ) or b = 2bi(ρ),

|sin(b(ρ)ρ− θ)| > ĉ2/2.

The result follows with c2 = ĉ1ĉ2/8. 2

14
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Theorem 7. Assume η(ρ) ³ 1 and d 6≡ 3 mod 4. Then

σ1(ρ, η(ρ)) ³ σ2(ρ, η(ρ)) ³ ρ
d−1
2 .

Proof. The upper bound follows from Lemma 2. To get the lower bound, observe that θ 6= πm as
d 6≡ 3 mod 4. Hence for each ρ we can pick b = b(ρ) according to Lemma 6. Then by Lemma 3

|R̂ρ,η(ρ)(b(ρ))| > cρ
d−1
2 ,

since the trigonometric part of the first term on the right hand side of (2.2) is bounded away from
zero by Lemma 6 and the second term is then negligible. The lower bound follows now from
Lemma 2. 2

In the following theorem, the condition η ³ 1 is replaced by a weaker condition: η(ρ) does not
have to be separated from zero but should not approach it too fast.

Theorem 8. Assume η satisfies (2.7) and is bounded from above, and d ≡ 3 mod 4.
(1) For any δ > 0, there is a positive constants c such that for all ρ sufficiently large

ρ
d−1
2
−δ < σ1(ρ, η(ρ)) ≤ σ2(ρ, η(ρ)) < cρ

d−1
2 .

(2) There is a sequence ρn →∞ such that

σ2(ρn, η(ρn)) = ρ
d−1
2

n

( log log ρn

log ρn

) 1
2d

O(1) = ρ
d−1
2

n o(1),

that is, σ1(ρ, η(ρ)) 6³ ρ
d−1
2 and σ2(ρ, η(ρ)) 6³ ρ

d−1
2 .

Proof. (1) The upper bound follows from Lemma 2. To get the lower bound, observe that since
d ≡ 3 mod 4 we have θ = πm for some m ∈ Z. Without loss of generality we assume that δ < 1
and let 0 < ε < 2δ

d+1
. For each ρ, we pick b = b(ρ) according to Lemma 5. It follows from

Lemma 3 that

R̂ρ,η(ρ)(b(ρ)) = −2

√
2

π
(2π)

d
2 ρ

d−1
2 b(ρ)−

d+1
2 (−1)m sin(b(ρ)η(ρ)) sin(b(ρ)ρ)

+ η(ρ)ρ
d−3
2 b(ρ)−

d+1
2 O(1).

The trigonometric part of the first term on the right hand side is bounded away from zero by
Lemma 5 and the second term is then negligible. This, together with the estimate b(ρ) ≤ ρε,
implies that there is a constant c1 > 0 such that for ρ large enough

|R̂ρ,η(ρ)(b)| > c1ρ
d−1
2
−ε d+1

2 > ρ
d−1
2
−δ.

The lower bound follows now from Lemma 2.
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(2) The existence of such a sequence ρn follows from the argument in the proof of Theorem 3.1
in [6]. Let n ∈ N and Mn = {b/(2π) : b ∈ Γ∗, 0 < b ≤ n}. Lemma 3.4 from [6] states that for any
set of reals {α1, . . . , αm} and any Q ∈ N there are integers p1, . . . , pm and q with Q ≤ q < Qm+1

such that |αiq − pi| < Q−1 for all i. We apply this lemma to the set Mn. So for Q =
√

n there is a
natural number ρn such that

n
1
2 ≤ ρn < n

#Mn+1
2 (3.1)

(by # we denote the number of elements in the set) and

| sin(bρn)| ≤ | sin(2πn−1/2)| ≤ 2πn−1/2 for all b ∈ Γ∗ with b ≤ n. (3.2)

Since η(·) is bounded from above, it follows from Lemma 3 that there is a constant c1 such that

R̂2
ρ,η(ρ)(b) ≤ c1ρ

d−1b−d−1 sin2(bρ) + c1ρ
d−3b−d−1

for all sufficiently large ρ and all b ∈ Γ∗\{0}. Using Parseval’s identity and (3.2) we obtain, for
all n large enough,

||Rρn,η(ρn)||22 =
∑

b∈Γ∗
R̂2

ρn,η(ρn)(b) =
∑

b∈Γ∗,0<b≤n

R̂ρn,η(ρn)(b) +
∑

b∈Γ∗,b>n

R̂ρn,η(ρn)(b)

≤ c1ρ
d−1
n

∑

b∈Γ∗,0<b≤n

b−d−1 sin2(bρn) + c1ρ
d−1
n

∑

b∈Γ∗,b>n

b−d−1 + c1ρ
d−3
n

∑

b∈Γ∗\{0}
b−d−1

≤ c2ρ
d−1
n n−1 + c2ρ

d−3
n ≤ c3ρ

d−1
n n−1, (3.3)

with some positive constants c2, c3 since ρn ≥
√

n by (3.1).
Finally, we use the second of the inequalities (3.1) and the estimate #Mn+1

2
≤ (c4n)d with some

c4 > 0 to obtain

log ρn ≤ (c4n)d log n (3.4)

for all large n. Consider the function f(x) = c4x(log x)
1
d . It is easy to see that its inverse satisfies

f−1(y) = c−1
4 y(log y)−

1
d (1 + o(1)) as y → ∞. Using (3.4) and the monotonicity of f for large

values of the argument we obtain

n ≥ f−1
(
(log ρn)

1
d

)
=

( log ρn

log log ρn

) 1
d
O(1)

for large n. Combining this with (3.3), we arrive at

||Rρn,η(ρn)||2 = ρ
d−1
2

n

( log log ρn

log ρn

) 1
2d

O(1)

for all large n. This completes the proof. 2
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4. Annuli of width tending to infinity
In this section we are mainly interested in the case when η(ρ) → ∞ and η(ρ) = o(ρ), although
the theorem below is proved for a slightly more general case. It turns out that in that case all
dimensions are critical.

Theorem 9. Assume lim supρ→∞ η(ρ) = ∞, η(ρ) = o(ρ), and η satisfies (2.7).
(1) For any δ > 0, there is a positive constant c such that for all ρ sufficiently large

ρ
d−1
2
−δ < σ1(ρ, η(ρ)) ≤ σ2(ρ, η(ρ)) < cρ

d−1
2 .

(2) There is a sequence ρn →∞ such that

σ2(ρn, η(ρn)) = ρ
d−1
2

n o(1),

that is, σ1(ρ, η(ρ)) 6³ ρ
d−1
2 and σ2(ρ, η(ρ)) 6³ ρ

d−1
2 .

Proof. (1) The upper bound follows from Lemma 2. To get the lower bound, let ε < 2δ
d+1

and, for
each ρ, pick b = b(ρ) according to Lemma 5. It follows from Lemma 3 that

R̂ρ,η(ρ)(b(ρ)) = −2

√
2

π
(2π)

d
2 ρ

d−1
2 b(ρ)−

d+1
2 sin(b(ρ)η(ρ)) sin(b(ρ)ρ− θ)

+ η(ρ)ρ
d−3
2 b(ρ)−

d+1
2 O(1).

The trigonometric part of the first term on the right hand side is bounded away from zero by
Lemma 5 and the second term is then negligible. This, together with the estimate b(ρ) ≤ ρε,
implies that there is a constant c1 > 0 such that for ρ large enough

|R̂ρ,η(ρ)(b)| > c1ρ
d−1
2
−ε d+1

2 > ρ
d−1
2
−δ.

The lower bound follows now from Lemma 2.

(2) The existence of such a sequence ρn is proved similarly to Theorem 3.1 in [6]. Let n ∈ N
and Mn = {b/(2π) : b ∈ Γ∗, 0 < b ≤ n}. Lemma 3.4 from [6] states that for any set of reals
{α1, . . . , αm} and any Q ∈ N there are integers p1, . . . , pm and q with Q ≤ q < Qm+1 such that
|αiq− pi| < Q−1 for all i. We apply this lemma to the set Mn, choosing the corresponding natural
numbers Qn in such a way that Qn → ∞. Then, for each n, there is a natural number qn ≥ Qn

such that

| sin(bqn)| ≤ | sin(2πQ−1
n )| ≤ 2πQ−1

n for all b ∈ Γ∗ with b ≤ n. (4.1)

Since η is continuous and lim supρ→∞ η(ρ) = ∞, for all n large enough there is ρn such that
η(ρn) = qn. Obviously, ρn →∞.
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It follows from Lemma 3 that there is a constant c1 such that

R̂2
ρ,η(ρ)(b) ≤ c1ρ

d−1b−d−1 sin2(bη(ρ)) + c1η(ρ)2ρd−3b−d−1

for all sufficiently large ρ uniformly in b ∈ Γ∗\{0}. Using Parseval’s identity and (4.1) we obtain,
for all n large enough,

||Rρn,η(ρn)||22 =
∑

b∈Γ∗
R̂2

ρn,η(ρn)(b) =
∑

b∈Γ∗,0<b≤n

R̂ρn,η(ρn)(b) +
∑

b∈Γ∗,b>n

R̂ρn,η(ρn)(b)

≤ c1ρ
d−1
n

∑

b∈Γ∗,0<b≤n

b−d−1 sin2(bη(ρn))

+ c1ρ
d−1
n

∑

b∈Γ∗,b>n

b−d−1 + c1η(ρ)2ρd−3
n

∑

b∈Γ∗\{0}
b−d−1

≤ c2ρ
d−1
n (Q−2

n + n−1 + η(ρ)2/ρ2) = ρd−1
n o(1),

with some positive constant c2. 2

5. Annuli of width tending to zero
In this section we study the case when η(ρ) tends to zero. In this regime, we are only able to deal
with σ2(ρ, η). We prove an upper bound for it in Lemma 10 and then show in Theorem 11 that
the dimensions d 6≡ 3 mod 4 are non-critical. Then in Theorem 13 we prove that the dimensions
d ≡ 3 mod 4 are critical if η goes to zero slowly, but these dimensions are non-critical, if η goes
to zero sufficiently quickly.

Lemma 10. Assume η(ρ) → 0 as ρ → ∞. Then there is a positive constant c such that for all ρ
large enough

σ2(ρ, η(ρ)) < cρ
d−1
2 η(ρ)

1
2 .

Proof. It follows from Lemma 3 that there is a constant c1 such that

R̂2
ρ,η(ρ)(b) ≤ c1ρ

d−1b−d−1 sin2(bη(ρ)) + c1η(ρ)2ρd−3b−d−1.

Using Parseval’s identity and the inequality | sin(x)| ≤ |x| we obtain

||Rρ,η(ρ)||22 =
∑

b∈Γ∗
R̂2

ρ,η(ρ)(b) =
∑

b∈Γ∗,0<b≤1/η(ρ)

R̂2
ρ,η(ρ)(b) +

∑

b∈Γ∗,b>1/η(ρ)

R̂2
ρ,η(ρ)(b)

≤ c1ρ
d−1η(ρ)2

∑

b∈Γ∗,0<b≤1/η(ρ)

b−d+1 + c1ρ
d−1

∑

b∈Γ∗,b>1/η(ρ)

b−d−1 + c1ρ
d−3η(ρ)2

∑

b∈Γ∗\{0}
b−d−1

= c2ρ
d−1η(ρ) + c2ρ

d−3η(ρ)2.

The observation that η(ρ)2 = o(η(ρ)) completes the proof. 2
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Theorem 11. Assume η(ρ) → 0 as ρ →∞ and d 6≡ 3 mod 4. Then

σ2(ρ, η(ρ)) ³ ρ
d−1
2 η(ρ)

1
2 .

Proof. The upper bound follows from Lemma 10. To prove the lower bound we use the fact that
d 6≡ 3 mod 4.

It follows from Lemma 3 that

R̂2
ρ,η(ρ)(b) ≥ 8

π2
(2π)dρd−1b−d−1 sin2(bη(ρ)) sin2(bρ− θ)− ρd−2b−d−1η(ρ)O(1)

uniformly in b ∈ Γ∗\{0}. For all b ∈ Γ∗\{0} satisfying b < 1/η(ρ) we have | sin(bη(ρ))| ≥
1
2
bη(ρ). Hence

R̂2
ρ,η(ρ)(b) ≥ 2

π2
(2π)dρd−1b−d+1η(ρ)2 sin2(bρ− θ)− ρd−2b−d−1η(ρ)O(1)

uniformly for those b.
Since d 6≡ 3 mod 4 we have θ 6= πm for any m ∈ Z and so

sin2(x− θ) + sin2(2x− θ) 6= 0 for all x ∈ R.

Since this is a continuous periodic function, it is bounded away from zero.
Using Parseval’s identity we get

||Rρ,η(ρ)||22 =
∑

b∈Γ∗
R̂2

ρ,η(ρ)(b) ≥ 1/2
∑

b∈Γ∗,0<b<1/η(ρ)

(
R̂2

ρ,η(ρ)(b) + R̂2
ρ,η(ρ)(2b)

)

=
1

π2
(2π)dρd−1η(ρ)2

∑

b∈Γ∗,0<b<1/η(ρ)

(
b−d+1 sin2(bρ− θ) + (2b)−d+1 sin2(2bρ− θ)

)− ρd−2η(ρ)O(1)

≥ 2πd−2ρd−1η(ρ)2
∑

b∈Γ∗,0<b<1/η(ρ)

b−d+1
(
sin2(bρ− θ) + sin2(2bρ− θ)

)− o(ρd−1η(ρ))

≥ c1ρ
d−1η(ρ)2

∑

b∈Γ∗,0<b<1/η(ρ)

b−d+1 − o(ρd−1η(ρ))

≥ c2ρ
d−1η(ρ)− o(ρd−1η(ρ)),

which some positive constants c1, c2. 2

For each α ∈ (0, 1/2) and r > 0, denote

Bα(r, ρ) = {a ∈ Γ∗ : r < a < 2r and ω[aρ] ≥ α}.

Lemma 12. Let r be a function of ρ such that, as ρ → ∞, either r(ρ)ρ−γ → ∞ for all γ or
r(ρ) ³ ργ for some γ > 0. Then there is α ∈ (0, 1/2) and c ∈ (0, π/4) such that

#Bα(cr(ρ), ρ) ³ r(ρ)d.
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Proof. For each α ∈ (0, 1/2), c ∈ (0, π/4) and m ∈ N, denote

Aα,c,m(ρ) = {a ∈ Γ∗ : cr(ρ) < a < 2cr(ρ) and at least one of the points a + ke1, 0 ≤ k ≤ m,

satisfies ω[|a + ke1|ρ] ≥ α}.
It is sufficient to show that there are parameters α ∈ (0, 1/2), c ∈ (0, π/4) and m ∈ N such that
#Aα,c,m(ρ) ³ r(ρ)d.

Denote θ = 〈a,e1〉
|a| |e1| ∈ [−1, 1]. Compute

|a + ke1| =
√

a2 + 2ka|e1|θ + k2|e1|2 = agθ(k|e1|/a) =
∞∑
i=0

bi(θ)k
i|e1|ia1−i,

according to Lemma 4.
Put m = 1 if r(ρ)ρ−γ →∞ for all γ > 0 and 1/γ < m ≤ 1/γ + 1 if r(ρ) ³ ργ . Consider

m∑

k=0

ck|a + ke1| =
∞∑
i=0

a1−ibi(θ)|e1|i
m∑

k=0

ckk
i

and choose the coefficients ck, 0 ≤ k ≤ m, in such a way that the first m leading terms in the
decomposition disappear. To do so, we need to solve the linear system

∑m
k=0 ckk

i = 0, 0 ≤ i ≤
m−1, of m equations in m+1 variables. Since the system has integer coefficients it has an integer
non-zero solution ck, 0 ≤ k ≤ m. Moreover, since the Wandermonde matrix is non-degenerated,
we have

|e1|m
m∑

k=0

ckk
m =: C 6= 0.

We have

ρ

m∑

k=0

ck|a + ke1| = ρ

∞∑
i=0

a1−ibi(θ)|e1|i
m∑

k=0

ckk
i

= Cρa1−mbm(θ) + O(ρa−m) = Cρa1−mbm(θ) + o(1),

(5.1)

where the remainder estimate is uniform in θ.
Let α > 0 be such that α

∑m
k=0 |ck| < 1/8.

If all points a + ke1, 0 ≤ k ≤ m, satisfy ω[|a + ke1|ρ] < α then by the triangle inequality and
since all ck are integers one has

ω
[
ρ

m∑

k=0

ck|a + ke1|
]
≤

m∑

k=0

|ck|ω[|a + ke1|ρ] < 1/8.

Hence it suffices to show that there is c ∈ (0, π/4) such that

#
{
a ∈ Γ∗ : cr(ρ) < a < 2cr(ρ), ω

[
ρ

m∑

k=0

ck|a + ke1|
]
≥ 1/8

}
³ r(ρ)d,
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which, according to (5.1), would follow from

#
{
a ∈ Γ∗ : cr(ρ) < a < 2cr(ρ), ω

[
Cρa1−mbm(θ)

]
> 1/4

}
³ r(ρ)d.

Obviously, the condition ω[Cρa1−mbm(θ)] > 1/4 is equivalent to

πn + π/4 < Cρa1−mbm(θ) < πn + 3π/4 for some n ∈ Z. (5.2)

Since bm is a polynomial of degree m ≥ 1 it is non-constant and so we can assume without loss
of generality (as we can reflect it with respect to the coordinate axes, if necessary) that there are
intervals [p, q] ⊂ [−1, 1] and [P, Q] ⊂ (0,∞) such that bm : [p, q] → [P, Q] is an increasing
bijection. Denote by b−1

m the inverse of bm from [P, Q] to [p, q].
Observe that (5.2) follows from the set of conditions

π(n + 1/4)am−1

Cρ
> P,

π(n + 3/4)am−1

Cρ
< Q,

b−1
m

(π(n + 1/4)am−1

Cρ

)
< θ < b−1

m

(π(n + 3/4)am−1

Cρ

)
. (5.3)

Let us denote by S the set of points satisfying (5.3). We need to find a lower bound for #(S ∩Γ∗).
Let us also denote by S̃ the set of points satisfying

π(n + 1/4)am−1

Cρ
> P,

π(n + 3/4)am−1

Cρ
< Q,

b−1
m

(π(n + 2/5)am−1

Cρ

)
< θ < b−1

m

(π(n + 3/5)am−1

Cρ

)
. (5.4)

A little thought shows that S̃ is a subset of S; moreover, the distance from each point of S̃ to
the complement of S is at least diam(O∗) (for large enough ρ). Therefore, a standard covering
argument implies that

#(S ∩ Γ∗) ≤ vol(S̃)

vol(O∗)
. (5.5)

Now let us estimate the RHS of (5.5). For each a such that cr(ρ) < a < 2cr(ρ) the number
M(a, ρ) of admissible integers n (i.e. integers n satisfying the first two conditions in (5.4)) can be
estimated by

M(a, ρ) ≥ π−1(Q− P )Cρa1−m − 3/2 ≥ π−1(Q− P )Cρ(2cr(ρ))1−m − 3/2. (5.6)

If m 6= 1/γ + 1 then we pick any c ∈ (0, π/4). Since the expression in the right hand side of (5.6)
tends to infinity with ρ, there is κ1 > 0 such that M(a, ρ) > κ1ρr(ρ)1−m. If m = 1/γ + 1 we pick
c ∈ (0, π/4) so small that M(a, ρ) ≥ 1.

Each admissible n gives an interval of values of θ via the last inequality in (5.4), and by the
mean value theorem there is a constant κ1 (depending only on the polynomial bm) such that the
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lengths of all those intervals are bounded below by κ1ρ
−1am−1. Each such interval corresponds to

belts of widths greater than κ2ρ
−1am → ∞ (with some κ2 > 0) on the sphere of radius a. The

total width of all belts is bounded below by M(a, ρ)κ2ρ
−1am, and thus is bounded below by κ3r

for some κ3 > 0. This implies that the admissible area of each sphere of radius a is proportional
to the area of the sphere, and so the admissible volume of the annulus cr(ρ) < a < 2cr(ρ) is
proportional to the volume of the whole annulus. Thus,

vol(S̃) ³ r(ρ)d,

which completes the proof. 2

Theorem 13. Assume η(ρ) → 0 as ρ →∞ and d ≡ 3 mod 4.
(1) If η(ρ)ργ → 0 for all γ > 0 or η(ρ) ³ ρ−γ for some γ > 0 then

σ2(ρ, η(ρ)) ³ ρ
d−1
2 η(ρ)

1
2 .

(2) If η(ρ)ργ →∞ for all γ > 0 then for any δ > 0 there is a positive constant c such that for
all ρ sufficiently large

ρ
d−1
2
−δ < σ2(ρ, η(ρ)) < cρ

d−1
2 η(ρ)

1
2 .

If

η(ρ)
( log ρ

log log ρ

) 1
d →∞ as ρ →∞ (5.7)

then there is a sequence ρn →∞ such that

σ2(ρn, η(ρn)) = ρ
d−1
2

n η(ρn)
1
2 o(1),

that is, σ2(ρ, η(ρ)) 6³ ρ
d−1
2 η(ρ)

1
2

Proof. Observe that the upper bound in both statements has been proved in Lemma 10, and the
lower bound in (2) has been proved in Theorem 8, as its assumption (2.7) is satisfied. So it suffices
to prove the lower bound in (1) and construct a sequence ρn.

(1) Since d ≡ 3 mod 4 we have θ = πm for some m ∈ Z. It follows from Lemma 3 that, for
some constants c1, c2 > 0,

R̂2
ρ,η(ρ)(b) ≥ c1ρ

d−1b−d−1 sin2(bη(ρ)) sin2(bρ)− c2ρ
d−2b−d−1η(ρ)

uniformly in b ∈ Γ∗\{0}.
Let r(ρ) = 1/η(ρ). By Lemma 12 there is α ∈ (0, 1/2) and c3 ∈ (0, π/4) such that

|Bα(c3r(ρ), ρ)| ³ r(ρ)d. Observe that for any b ∈ Bα(c3r(ρ), ρ) we have 0 < c3 ≤ bη(ρ) ≤
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2c3 < π/2 and so sin(bη(ρ)) ≥ 2
π
bη. Further, any b ∈ Bα(c3r(ρ), ρ) satisfies ω[bρ] ≥ α and so

sin2(bρ) ≥ c4 for some c4 > 0. Using Parseval’s identity we obtain

||Rρ,η(ρ)||22 =
∑

b∈Γ∗
R̂2

ρ,η(ρ)(b) ≥
∑

b∈Bα(c3r(ρ),ρ)

R̂2
ρ,η(ρ)(b)

≥ c5ρ
d−1η(ρ)2

∑

b∈Bα(c3r(ρ),ρ)

b−d+1 − ρd−2η(ρ)O(1)

≥ c6ρ
d−1η(ρ)2

∑

b∈Γ∗,c3r(ρ)<b<2c3r(ρ)

b−d+1 − o(ρd−1η(ρ))

≥ c7ρ
d−1η(ρ)2r(ρ) + o(ρd−1η(ρ)) = c7ρ

d−1η(ρ) + o(ρd−1η(ρ))

with some positive constants c5, c6, c7.

(2) Consider the sequence ρn constructed in Theorem 8. Since its assumption (2.7) on η is
satisfied we have

||Rρn,η(ρn)||2 = ρ
d−1
2

n

( log log ρn

log ρn

) 1
2d

O(1) = ρ
d−1
2

n η(ρn)
1
2 o(1)

due to (5.7). 2
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