Limiting Behavior of Surface Measures on Spaces of Trajectories

N. A. Sidorova

Received May 28, 2003

Key words: Smolyanov surface measure, Wiener process, Girsanov formula, Feynman-Kac formula, stochastic equation.

INTRODUCTION

We consider surface measures on the space of trajectories C([0,T],M) on a compact Riemann manifold M embedded in an enveloping space (Euclidean space \mathbb{R}^n or a manifold). These measures (also called the *Smolyanov surface measures*) were first introduced in [1]; later, they were studied in the case T=1 (see [2]). In this paper, we consider these measures for arbitrary T and study their convergence on a one-dimensional manifold M as $T\to\infty$.

1. SURFACE MEASURES FOR ARBITRARY TIME INTERVALS

Suppose that M is a compact Riemann manifold embedded in \mathbb{R}^n and $a_0 \in M$ is a fixed point. Suppose that $\mathbb{M}_{\varepsilon} = \{a \in \mathbb{R}^n : \operatorname{dist}(a, M) \leq \varepsilon\}$ is a tube ε -neighborhood of the manifold M, where $\operatorname{dist}(\cdot, \cdot)$ is the Euclidean metric in \mathbb{R}^n .

Suppose that A is one of the sets \mathbb{R}^n , M, or \mathbb{M}_{ε} . Denote by $C_{a_0}([0,T],A)$ the space of continuous functions $[0,T] \to A$ which equal a_0 at the origin.

Suppose that (b_t) is the Brownian motion in \mathbb{R}^n starting at the point a_0 . By the symbol $\mathbb{W}_{\varepsilon,T}$, let us denote the probability measure on the space $C_{a_0}([0,T],\mathbb{R}^n)$ (supported by the set $C_{a_0}([0,T],\mathbb{M}_{\varepsilon})$), which is the conditional distribution of the random process (b_t) , given the set of trajectories that do not exit the tube ε -neighborhood of the manifold during time T, i.e.,

$$\mathbb{W}_{\varepsilon,T} = \frac{\mathbb{W}_T|_{C_{a_0}([0,T],\mathbb{M}_{\varepsilon})}}{\mathbb{W}_T(C_{a_0}([0,T],\mathbb{M}_{\varepsilon}))},$$

where \mathbb{W}_T is the standard Wiener measure on $C_{a_0}([0,T],\mathbb{R}^n)$.

Definition 1. The weak limit \mathbb{S}_T of the family of measures $\mathbb{W}_{\varepsilon,T}$ as $\varepsilon \to 0$ is called a *surface measure* on the space $C_{a_0}([0,T],M)$.

By generalizing the result [2] for arbitrary T, we show that this measure exists, is absolutely continuous with respect to the Wiener measure \mathbb{W}_T^M on the space of trajectories on the manifold during time T, and its Radon–Nikodym density is given by

$$\frac{d\mathbb{S}_T}{d\mathbb{W}_T^M}(\omega) = \frac{\exp\{-\frac{1}{4} \int_0^T R(\omega_s) \, ds + \frac{1}{8} \int_0^T \|\sigma\|^2(\omega_s) \, ds\}}{\mathbb{E}_{\mathbb{W}_T^M} \exp\{-\frac{1}{4} \int_0^T R(\omega_s) \, ds + \frac{1}{8} \int_0^T \|\sigma\|^2(\omega_s) \, ds\}},$$

where R is the scalar curvature and σ is the vector of average curvature of the manifold multiplied by its dimension. If M is a compact one-dimensional manifold (i.e., a closed curve) in \mathbb{R}^n , this formula can be rewritten as follows:

$$\frac{d\mathbb{S}_T}{d\mathbb{W}_T^M}(\omega) = \frac{\exp\left[\int_0^T v(\omega_s) \, ds\right]}{\mathbb{E}_{\mathbb{W}_T^M} \exp\left[\int_0^T v(\omega_s) \, ds\right]}, \quad \text{where} \quad v(a) = \frac{1}{8}\kappa^2(a),$$

where κ is the curvature of M.

Consider the case dim M=1. Let (y_t^T) , $t \leq T$, be the stochastic process in M starting at a_0 and corresponding to the measure \mathbb{S}_T .

Theorem 1. For each T, the stochastic process (y_t^T) , $t \leq T$, satisfies the stochastic differential equation

 $dy_t^T = db_t + (\nabla \log u)(T - t, y_t^T) dt \tag{1}$

with initial condition $y_0^T = a_0$, where u is the solution of the equation

$$\partial_t u = \frac{1}{2} \Delta u + vu \tag{2}$$

with initial condition u(0, x) = 1 for all x.

Proof. Note that, instead of measures, processes, and equations corresponding to the closed curve, one can consider their periodic analogs corresponding to \mathbb{R} . By the Feynman–Kac formula, we have

$$u(t, x) = \mathbb{E}_{W_T^x} \exp\left[\int_0^t v(\omega_s) ds\right],$$

where W_T^x is the Wiener measure on $C_x([0,T],\mathbb{R})$. Consider (y_t^T) as a coordinate process (ω_t) on the probability space $(C_0([0,T],\mathbb{R}),\mathcal{F}_t,\mathbb{S}_T)$. Since (ω_t) is a Brownian motion with respect to the Wiener measure \mathbb{W}_T^0 , which is equivalent to the measure \mathbb{S}_T , Girsanov's theorem yields the equation $d\omega_t = db_t + dr_t d\omega_t/r_t$, where

$$r_t = \mathbb{E}[d\mathbb{S}_T/d\mathbb{W}_T^0|\mathcal{F}_t] = \frac{\mathbb{E}\left[\exp\left(\int_0^T v(\omega_s) \, ds\right) \middle| \mathcal{F}_t\right]}{u(T,0)}$$
$$= \frac{\exp\left(\int_0^t v(\omega_s) \, ds\right) \mathbb{E}\left[\exp\left(\int_t^T v(\omega_s) \, ds\right) \middle| \mathcal{F}_t\right]}{u(T,0)} = \frac{\exp\left[\int_0^t v(\omega_s) \, ds\right] u(T-t,\omega_t)}{u(T,0)}.$$

Hence

$$\frac{dr_t d\omega_t}{r_t} = \frac{\left(\exp\left[\int_0^t v(\omega_s) ds\right] \nabla u(T-t, \omega_t) dt\right) / u(T, 0)}{\left(\exp\left[\int_0^t v(\omega_s) ds\right] u(T-t, \omega_t)\right) / u(T, 0)} = \nabla \log u(T-t, \omega_t) dt,$$

which gives the desired drift coefficient in Eq. (1).

2. CONVERGENCE AS $T \to \infty$

Note that for different T, the measures \mathbb{S}_T are defined on different spaces $C_{a_0}([0,T],M)$; let us extend them arbitrarily as σ -additive measures to the joint space $C_{a_0}([0,\infty],M)$.

Lemma 1. The linear operator $\frac{1}{2}\Delta + v$ has exactly one eigenvalue c such that the corresponding eigenfunction φ is positive. In this case, φ is unique up to a positive multiplier.

Proof. Let us consider the periodic interpretation of the problem in \mathbb{R} . In this case, the required eigenfunction must be not only positive, but also periodic.

Set

$$L = \frac{1}{2}\Delta + v$$
 and $C_L(\mathbb{R}) = \{u \in C^2(\mathbb{R}) : Lu = 0 \text{ and } u > 0\}.$

Following [3] (see also [4]), for each $\lambda \in \mathbb{R}$, we denote

$$\Gamma_{\lambda} = \{ \nu \in \mathbb{R} : \exists u \in C_{L-\lambda}(\mathbb{R}), \text{ of the form } u(t) = e^{\nu t} \psi_{\nu}(t), \text{ where } \psi_{\nu} \text{ is a periodic function } \},$$

$$K_{\lambda} = \{ \nu \in \mathbb{R} : \exists u \in C^{2}(\mathbb{R}) \text{ such that } (L - \lambda)u \leq 0 \text{ and } u > 0,$$
 of the form $u(t) = e^{\nu t}\psi_{\nu}(t)$, where ψ_{ν} is a periodic function $\}$.

By Theorem A1 from [3], there exists a real number λ^* such that

- (1) if $\lambda = \lambda^*$, then $\Gamma_{\lambda} = K_{\lambda} = \{\nu_0\}$ with some $\nu_0 \in \mathbb{R}$;
- (2) if $\lambda < \lambda^*$, then $\Gamma_{\lambda} = K_{\lambda} = \emptyset$;
- (3) if $\lambda > \lambda^*$, then K_{λ} is strictly convex and compact, and $\Gamma_{\lambda} = \partial K_{\lambda}$;
- (4) $K_{\lambda_1} \subseteq K_{\lambda_2}$ for all $\lambda^* \leq \lambda_1 < \lambda_2$;
- (5) $K_{\lambda}^* = -K_{\lambda}$, where K^* corresponds to the dual operator L^* .

Now, according to Corollary A3 from [3], for each function $u \in C_{L-\lambda}(\mathbb{R})$ there exists a unique finite measure μ_u on the set Γ_{λ} such that

$$u(t) = \int_{\Gamma_{\lambda}} e^{\nu t} \psi_{\nu}(t) \,\mu_{u}(d\nu), \tag{3}$$

where the corresponding function ψ_{ν} is periodic for each $\nu \in \Gamma_{\lambda}$. Since in this case the operator L is self-adjoint, we have $K_{\lambda^*} = -K_{\lambda^*}$; hence $\nu_0 = 0$, according to Property (5).

Suppose that $c = \lambda^*$ and $u \in C_{L-c}(\mathbb{R})$; formula (3) and properties (1) and (5) imply that $u(x) = K\psi_{\nu_0}(x)$, where K > 0 is a constant. Hence the set of positive eigenfunctions of the operator $\frac{1}{2}\Delta + v$ with eigenvalue $c = \lambda^*$ consists of a unique function (up to multiplication by a positive number) which, moreover, is periodic.

If $c < \lambda^*$, then $\Gamma_c = \emptyset$ according to property (2), and $C_{L-c}(\mathbb{R}) = \emptyset$ because of (3). If $c > \lambda^*$, then Lemma 3 from [3] implies that $\Gamma_{\lambda} = \{ \nu \in \mathbb{R} : \lambda_0(\nu) = \lambda \}$, where λ_0 is a continuous function. Hence $0 = \nu_0 \notin \Gamma_c$. Using properties (3) and (4), we can write $K_c = [a_c, b_c]$, where $a_c < 0 < b_c$, and $\Gamma_c = \{a_c, b_c\}$. Suppose that $u \in C_{L-c}(\mathbb{R})$. Then

$$u(t) = e^{a_c t} \psi_{a_c}(t) \mu(\{a_c\}) + e^{b_c t} \psi_{b_c}(t) \mu(\{b_c\})$$

because of Eq. (3), and hence u cannot be periodic. Thus, the operator $\frac{1}{2}\Delta + v$ does not have positive periodic eigenfunctions with eigenvalues $c \neq \lambda^*$. \square

Lemma 2. The following equality holds:

$$u(t, x) = e^{ct}\varphi(x)w(t, x);$$

here w(t, x) is a solution of the equation

$$\partial_t w = Lw \quad \text{with the operator} \quad L = \frac{1}{2}\Delta + (\nabla \log \varphi)\nabla.$$
 (4)

Proof. It suffices to substitute the function $u(t,x) = e^{ct}\varphi(x)w(t,x)$ into Eq. (2) and use the fact that φ is an eigenfunction of the operator $\frac{1}{2}\Delta + v$ with eigenvalue c. \square

Lemma 3. Suppose that w is a solution of Eq. (4) with some continuous initial condition f. Then

- (1) $w(t,x) \to c$ as $t \to \infty$ uniformly in x; if f > 0, then $c \neq 0$;
- (2) $\nabla w(t,x) \to 0$ as $t \to \infty$ uniformly in x;
- (3) if f > 0, then $\nabla \log w(t, x) \to 0$ as $t \to \infty$ uniformly in x.

Proof. (1) Suppose that (y_t) is a stochastic process on M generated by L and starting at the point $x \in M$. By the symbol P_x we denote its probability distribution. Since (y_t) is a diffusion process on the circle, it possesses an invariant measure μ such that $\mu(M) = 1$ (see, for example, [3]). Then, by Theorem 3.4 from [5], we have

$$w(t, x) \rightarrow \int_{M} f(x) \mu(dx) = c,$$

and c > 0 for positive f, because the measure μ is positive.

In order to prove that this convergence is uniform, let us fix a point $x_0 \in M$. Suppose that τ is the Markov time of the first passage through the point x_0 for the stochastic process (y_t) .

Set $g(t,x) = P_x(\tau > t)$ and note that the function g is continuous and $g(t_2,x) \leq g(t_1,x)$ if $t_2 > t_1$. By Lemma 5.2 from [5], the stochastic process (y_t) is recurrent, because the equation Lu = 0 has a unique bounded solution on any interval $[a,b] \subset \mathbb{R}$ with given boundary conditions. Hence $g(t,x) \to 0$ as $t \to \infty$, and the fact that the function g is monotone implies that this convergence is uniform in x.

Next, we have $w(t, x) = \mathbb{E}_x f(y_t)$. Suppose that $\varepsilon > 0$; the pointwise convergence implies that there exists a number $T_1 > 0$ such that, for any $t > T_1$, we have

$$|w(t,x_0)-c|<\frac{\varepsilon}{2}.$$

The uniform convergence $g(t,x) - P_x\{\tau > t\} \to 0$ implies that there exists a number $T_2 > 0$ such that

 $P_x\{\tau > \log t\} < \frac{\varepsilon}{2(c + ||f||)}$

for any $t > T_2$ and for any x. Finally, there exists a number $T_3 > 0$ such that $t - \log t > T_1$ for any $t > T_3$. Suppose that $T_0 = \max\{T_1, T_2, T_3\}$. Denote by p_x the probability density of the random variable τ . Then, for all $t > T_0$ and all x, we have

$$|w(t, x) - c| = \left| \mathbb{E}_x \mathbf{1}_{\{\tau > \log t\}} f(y_t) + \int_0^{\log t} p_x(\theta) \mathbb{E}_{x_0} f(x_{t-\theta}) d\theta - c \right|$$

$$\leq (||f|| + c) P_x \{\tau > \log t\} + \int_0^{\log t} p_x(\theta) |w(t - \theta, x_0) - c| d\theta < \varepsilon.$$

This estimate establishes the uniform convergence $w(t, x) \to c$ as $t \to \infty$.

(2) Using the previous assertion, we can write

$$\partial_t w(t,x) = (Le^{tL}f)(x) = (e^{tL}Lf)(x) \to c'$$

uniformly in x. Since, moreover, we have $w(t,x) \to c$, it follows that c' = 0. By multiplying Eq. (4) by $2\varphi^2$, we can rewrite it in the form $\nabla(\varphi^2\nabla w) = 2\varphi^2\partial_t w$. Hence

$$\nabla w(t, x) = c(t)\varphi^{-2}(x) + 2\varphi^{-2}(x) \int_{x_0}^x \varphi^2(y) \partial_t w(t, y) \, dy,$$

where c(t) is a function. By adding the periodicity condition

$$\int_{M} \nabla w(t, x) \, dx = 0$$

for each t, the boundedness of the function φ and its strict positivity, and the uniform convergence $\partial_t w(t,y) \to 0$ as well, we obtain $c(t) \to 0$ and $\nabla w(t,x) \to 0$ as $t \to \infty$ uniformly in x.

(3) This assertion follows from the two previous ones.

Theorem 2. The family of surface measures S_T converges weakly as $T \to \infty$ to the probability distribution of the Brownian motion with drift (y_t) , the drift being a solution of the stochastic differential equation

 $dy_t = db_t + \nabla \log \varphi(y_t) dt \tag{5}$

with initial condition $y_0 = a_0$.

Proof. Theorem 1 implies that for each T > 0, the stochastic process (y_t^T) corresponding to the measure \mathbb{S}_T is a solution of Eq. (1). Let us prove that the coefficients of Eq. (1) converge to the coefficients of Eq. (5) in the sense indicated in Theorem 11.1.4 from [6]. According to Lemmas 2 and 3, we obtain

$$\nabla \log u(t,x) = \frac{\nabla [e^{ct}\varphi(x)w(t,x)]}{e^{ct}\varphi(x)w(t,x)} = \nabla \log \varphi(x) + \nabla \log w(t,x) \to \nabla \log \varphi(x)$$

as $t \to \infty$ uniformly in x. Hence the function $\nabla \log u(t,x)$ is uniformly bounded for all t and x. Next, for each $T_0 > 0$, we have

$$\int_0^{T_0} \sup_{x \in M} \left| \nabla \log u(T - t, x) - \nabla \log \varphi(x) \right| dt = \int_{T - T_0}^{T} \sup_{x \in M} \left| \nabla \log w(t, x) \right| dt \to 0.$$

Thus, both conditions of Theorem 11.1.4 from [6] are fulfilled; hence $\mathbb{S}_T \to \mathcal{L}(y)$ in the weak sense. \square

ACKNOWLEDGMENTS

The author wishes to express his thanks to Professor O. G. Smolyanov for setting the problem and useful discussions.

REFERENCES

- O. G. Smolyanov, Dokl. Ross. Akad. Nauk [Russian Acad. Sci. Dokl. Math.], 345 (1995), no. 4, 455–458.
- N. A. Sidorova, O. G. Smolyanov, H. von Weizsäcker, and O. Wittich, J. Funct. Anal., 206 (2004), no. 2, 391–413.
- R. G. Pinsky, "Second-order elliptic operators with periodic coefficients: criticality theory, perturbations, and positive harmonic functions," J. Funct. Anal., 129 (1995), 80–107.
- 4. S. Agmon, "On positive solutions of elliptic equations with periodic coefficients in \mathbb{R}^n , spectral results and extensions to elliptic operators on Riemannian manifolds," in: *Differential Equations*, Birmingham, 1983.
- R. Z. Khas'minskii, "Ergodic properties of recurrent diffusion processes and stabilization of solutions of parabolic equations," Teor. Veroyatnost. i Primenen. [Theory Probab. Appl.], 5 (1960), no. 2, 179–196.
- D. W. Stroock and R. S. R. Varadhan, Multidimensional Diffusion Processes, Grundlehren der mathematischen Wissenschaften, Springer-Verlag, Berlin-Heidelberg-New York, 1979.

M. V. Lomonosov Moscow State University