3 70 2,.2004, Pp. 286-290.
THEMATICAL NOTES, VOL. 76, NO. 2 . ; ; ;
g:'";nslated from Matematicheskie Zamelki, vol. 76, no. 2, 2004, pp. 307-311.
Original Russian Text Copyright ©2004 by N. A. Sidorova.

Limiting Behavior of Surface Measures
on Spaces of Trajectories

N. A. Sidorova

Received May 28, 2003

KEy WORDS: Smolyanov surface measure, Wiener process, Girsanov formula, Feynman-Kac
formula, stochastic equation.

INTRODUCTION

We consider surface measures on the space of trajectories C([0,T], M) on a compact Riemann
manifold M embedded in an enveloping space (Euclidean space R™ or a manifold). These measures
(also called the Smolyanov surface measures) were first introduced in (1]; later, they were studied
in the case 7" =1 (see [2]). In this paper, we consider these measures for arbitrary 7' and study
their convergence on a one-dimensional manifold M as 1" — co.

1. SURFACE MEASURES FOR ARBITRARY TIME INTERVALS

Suppose that M is a compact Riemann manifold embedded in B™ and ag € M is a fixed point.
Suppose that M. = {a € R" : dist(a, M) < £} is a tube s-neighborhood of the manifold M,
where dist(-, -) is the Euclidean metric in R™.

Suppose that A is one of the sets R™, M, or M.. Denote by C,,([0,7], A) the space of
continuous functions [0, 7] — A which equal ag at the origin.

Suppose that (b,) is the Brownian motion in R starting at the point ap. By the symbol
W, 7, let us denote the probability measure on the space C,, ([0, 7], R™) (supported by the set
Clay ([0, T, ML)), which is the conditional distribution of the random process (b,), given the set of
trajectories that do not exit the tube e-neighborhood of the manifold during time T, i.e.,

Wrle,, ((0,7),M.)
WT(CGQ([(J: T]) IWE)) ,

\VVE,T =

where Wy is the standard Wiener measure on C,, ([0, 7], R™).

Definition 1. The weak limit S; of the family of measures W, r as € — 0 is called a surface
measure on the space Cy, ([0, T, M).

By generalizing the result (2] for arbitrary T, we show that this measure exists, is absolutely

con?inuous with respect to the Wiener measure W2 on the space of trajectories on the manifold
during time 7', and its Radon-Nikodym density is given by

u m
ngAvd e exp{—1 [y R(ws)ds+ 3 [ [lol|*(ws)ds}
dW'r EW.’,‘! exp{_% fOT R(ws) ds i %IOT Ilgllg(ws) cls} )
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where R is the scalar curvature and o is the vector of average curvature of the manifold multiplied
by its dimension. If M is a compact one-dimensional manifold (i.e., a closed curve) in R™ | this
formula can be rewritten as follows:

o

| X ! § / e
dSL o= G\P[fn ”;w )e 5] ,  where w(a)= 1“"("')1
dWr Evwr exp[ [y v(ws)ds] :

where & is the curvature of M .
Consider the case dim M = 1. Let (y!), ¢t < T, be the stochastic process in M starting at ag
and corresponding to the measure Sy .

Theorem 1. For each T', the stochastic process (ytT) , t < T, satisfies the stochastic differential
equation :
dyl’ = dby + (Vlogu)(T — ¢, yT) de (1)

with initial condition yl = ag, where u is the solution of the equation
1
O = 5 Au + vu (2)

with initial condition u(0,z) =1 for all x.

Proof. Note that, instead of measures, processes, and equations corresponding to the closed curve,
one can consider their periodic analogs corresponding to R. By the Feynman-Kac formula, we
have

("
u(t, z) = Ewz exp [/ v{wy) ds} ;
0

where W7 is the Wiener measure on C([0, T], R). Consider (yl') as a coordinate process (w;)
on the probability space (Co([0,T],R), Fi, St). Since (w;) is a Brownian motion with respect to
the Wiener measure W9, which is equivalent to the measure Sy, Girsanov’s theorem yields the
equation dw; = db; + dry dw; /Ty, where

Efexp(f v(ws)ds)|7]
u(T, 0)
exp(.fol v(ws) d"i‘)E[exP(.l‘tfr v(ws) ds) |fi} = exp[_[;: v(ws) ds]u(T s )
(T, 0) = u(T', 0) ;

Ty = E[dS']/dW%ﬂl]’]] =

Hence

drydw;  (exp [fé v(ws) ds]Vu(T —t,wy)dt) /u(T, 0) g
= i == V l F ST t, w dt;
Ty (exp Uo v(ws) ds]u(T — t, wy)) /u(T, 0) o :

which gives the desired drift coefficient in Eq. (1). O

2. CONVERGENCE AS T" — oo

Note that for different 7', the measures Sp are defined on different spaces Cu, ([0, 7], M); let
us extend them arbitrarily as o-additive measures to the joint space Cy, ([0, c0], M).

L_emma L. The linear operator %A +v has exactly one eigenvalue ¢ such that the corresponding
eigenfunction o is positive. In this case, p is unique up to a positive multiplier.
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Proof. Let us consider the periodic interpretation of the problem in R. In this case, the required
eisenfunction must be not only positive, but also periodic.
o
Set

T él-A+'u and Cp(R) = {u € C*(R) : Lu = 0'and u > 0}.

Following [3] (see also [4]), for each A € R, we denote

Iy ={veR:Jue Cp_x(R), of the form u(t) = e““4h,(t),
where #,, is a periodic function },
Ky ={veR:3Jue C*[R) such that (L — N\)u < 0 and u > 0,

of the form u(t) = e"“4, (t), where 1, is a periodic function }.

By Theorem Al from [3], there exists a real number A* such that
(1) if A= A", then I'y = K\ = {vp} with some vy € R;
(Z)SiEAN<EARSthen [P\ = K6 = &
(3) if A > A*, then K is strictly convex and compact, and [’y = 9K, ;
D C K forall A* < Ay < Ay

(6) K3 = —K,, where K* corresponds to the dual operator L*.

Now, according to Corollary A3 from [3], for each function u € Cf_(R) there exists a unique
finite measure p, on the set I'y such that

u(t) = ]r e¥tah, (£) (), 3)

where the corresponding function 1, is periodic for each v € I'y . Since in this case the operator L
is self-adjoint, we have K. = —K,.; hence vy =0, according to Property (5).

Suppose that ¢ = A* and v € Cp_.(R); formula (3) and properties (1) and (5) imply that
u(z) = Kv(z), where K > 0 is a constant. Hence the set of positive eigenfunctions of the
operator %A +wv with eigenvalue ¢ = \* consists of a unique function (up to multiplication by a
positive number) which, moreover, is periodic.

If ¢ < A", then I'. = @ according to property (2), and Cp_.(R) = @ because of (B) I cE=RASE
then Lemma 3 from (3] implies that T'y = {v € R : \(v) = A}, where Ag is a continuous function.
Hence 0 = 1 ¢ T'.. Using properties (3) and (4), we can write K, = [a., b.], where a. < 0 < b,
and I'; = {a., b.}. Suppose that u & CrL—c(R). Then

u(t) = e*“a, ()u({ac}) + etupy () u({be})

because of Eq. (3), and hence u cannot be periodic. Thus, the operator 7A + v does not have
positive periodic eigenfunctions with eigenvalues ¢ ey S |

Lemma 2. The following equality holds:
u(t, ©) = elo(@)u(t, ) ;
here w(t, z) is a solution of the equation

dyw = Lw with the operator [ = %A + (Vlog ) V. (4)

Proof. 'It sufches to substitute the function wu(, z) = e““o(a)w(t, z) into Eq. (2) and use the fact
that  is an eigenfunction of the operator %A + v with eigenvalue ¢. [OJ
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Lemma 3. Suppose that w is a solution of Eq. (4) with some continuous initial condition f.
Then

(1) w(t,x) — ¢ as t = oo uniformly in x; if f >0, then ¢ # 0;

(2) Vw(t,z)— 0 as t — oo uniformly in x;

3) of f >0, then Vlogw(t,2) — 0 as t — co uniformly in x.

Proof. (1) Suppose that (y;) is a stochastic process on M generated by L and starting at the
point @ € M. By the symbol P, we denote its probability distribution. Since (i) is a diffusion

process on the circle, it possesses an invariant measure g such that p(M) =1 (see, for example,
[3]). Then, by Theorem 3.4 from [5], we have

w(tyx) = [ fa)n(da) = .

and ¢ > 0 for positive f, because the measure p is positive.

In order to prove that this convergence is uniform, let us fix a point zq € M. Suppose that 7
is the Markov time of the first passage through the point zo for the stochastic process (y;).

Set g(t,x) = P.(7 > t) and note that the function g is continuous and g(t2, ) < g(t;, z) if
to > t;. By Lemma 5.2 from [5], the stochastic process (y;) is recurrent, because the equation
Lu = 0 has a unique bounded solution on any interval [a, b] € R with given boundary conditions.
Hence g(t,z) — 0 as ¢ — oo, and the fact that the function g is monotone implies that this
convergence is uniform in z.

Next, we have w(t, z) = E, f(y;). Suppose that € > 0; the pointwise convergence implies that
there exists a number 7 > 0 such that, for any ¢ > 77, we have

lw(t, zo) — c| < %

=

The uniform convergence g(t, z) — P.{7 > t} — 0 implies that there exists a number 75 > 0 such
that

o)

Pelr > 108} < sy
for any t > T» and for any x. Finally, there exists a number 73 > 0 such that ¢ —logt > T; for
any t > Ty. Suppose that Ty = max{T;, 75, T3}. Denote by p, the probability density of the
random variable 7. Then, for all ¢ > Ty and all @, we have
log t

lw(t, z) — ¢| = Bzl {rsiogey f(ye) + j Pz (0)Ez, f(2t—0) dO — ¢

0
log ¢
< (IIfIl + ¢) Pe{r > logt} + f p=(6)|w(t — 0, zo) — c|df < e.
0

This estimate establishes the uniform convergence w(t, z) — ¢ as t — o0.
(2) Using the previous assertion, we can write
dw(t, z) = (Letl f)(z) = (e“Lf)(z) — ¢
uniformly in z. Since, moreover, we have w(t,z) — ¢, it follows that ¢’ = 0. By multiplying
Eq. (4) by 2¢?, we can rewrite it in the form V(wQVw) = 2p?9,w . Hence

V(t,2) = o ~(0) +27@) [ ot vy,
where c(t) is a function. By adding the periodicity condition

Vw(t, z)dz =0
J M

for each ¢, the boundedness of the function ¢ and its strict positivity, and the uniform convergence
yw(t,y) — 0 as well, we obtain ¢(t) — 0 and Vw(t,z) — 0 as t — oo uniformly in .
(3) This assertion follows from the two previous ones. [
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Theorem 2. The fanuly of surfoce measures Sp converges weakly as T°— oo to the probabulity
distribution of the Brownian motion with drift (y,), the drift being a solution of the stochastic
differential equation

dy, = dby + V log p(y,) dt (5)
with initial condition yo = ap -

Proof. Theorem 1 implies that for each 7" > 0, the stochastic process (y[') corresponding to the
measure Sg is a solution of Eq. (1). Let us prove that the coefficients of Eq. (1) converge to the
coefficients of Eq. (5) in the sense indicated in Theorem 11.1.4 from [6]. According to Lemmas 9

and 3, we obtain
Ve p(z)w(t, x)]
ecto(r)w(t, x)

V log u(t, =) = = Vlog p(z) + Viegw(t, z) — Vlog ()

as t — oo uniformly in x. Hence the function Vlogu(t, ) is uniformly bounded for all ¢ and .
Next, for each 7 > 0, we have

To T
f sup|Vlogu(T—t,:1:)——Vlogc,a(:l:)|dt=/ suprlogw(t,x)'dt—»O.
0 zeM T—-Ty €M

Thus, both conditions of Theorem 11.1.4 from [6] are fulfilled; hence S; — L(y) in the weak
sense. [
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