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Abstract

We construct the surface measure on the space C([0, 1],M) of paths in a compact
Riemannian manifold M without boundary embedded into R

n which is induced
by the usual flat Wiener measure on C([0, 1], Rn) conditioned to the event that the
Brownian particle does not leave the tubular ε-neighborhood of M up to time 1. We
prove that the limit as ε → 0 exists, the limit measure is equivalent to the Wiener
measure on C([0, 1],M), and we compute the corresponding density explicitly in
terms of scalar and mean curvature.
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1 Introduction

In the study of heat flow on a manifold M it is a natural idea to embed the
manifold into Euclidean space via Nash’s theorem and to compare some prop-
erties of the flat Brownian motion in the surrounding space with corresponding
properties of the motion on M . In particular, since the Wiener measures W

and WM on the path spaces C(Rn) and C(M) are the canonical measures and
C(M) is a submanifold of C(Rn), one could expect in analogy to the finite
dimensional situation that WM is just the surface measure induced by W.
However we show that this is generally false but that the surface measure is
equivalent to WM and that the density depends both on the (intrinsic) scalar
curvature and the mean curvature of the embedding. The same surface mea-
sure has previously been identified by a completely different method based on
discrete time approximation in [1].

It would be interesting to find a direct proof of the equivalence of the two
approaches. The formula of the density given below allows to interpret certain
geometric curvature characteristics as an additional ’effective’ potential in
the Schrödinger equation (in the spirit of [2]) on the manifold. The particular
geometric potential in our main result appears also in the context of the study
of holonomic constraints in quantum mechanics in [3], p. 500. The methods of
[3] could be used to give an alternative (but not simpler) proof of results similar
to ours except that our statement of weak convergence also implies uniform
tightness of the family (Wε) introduced below. A more detailed exposition of
this background and an extension to more general surrounding manifolds will
be given in [4]. We also note that our result can be used to get alternative
proofs for Girsanov type theorems for a Brownian motion on M .

Let us now sketch the statement and the idea of the proof of our main theo-
rem. Let M ⊂ R

n be a smooth compact m-dimensional Riemannian manifold
without boundary. Denote by k = n − m the codimension of M and by Mε

the tubular neighborhood of M , which consists of all points in R
n such that

their distance to the manifold is less or equal ε. Let a0 ∈ M be the start-
ing point of all stochastic processes considered below. In the sequel, we will
always write C(X) instead of Ca0([0, 1], X). Denote by W the Wiener mea-
sure on C(Rn) and by WM the Wiener measure on C(M). Let Wε be the
normalized restriction of the Wiener measure W to C(Mε)

Wε =
W|C(Mε)

W(C(Mε))
,

i.e., the conditional law of a Brownian particle conditioned not to leave the
ε-neighbourhood of the manifold.

The main result of the paper is the theorem in the last section, where we prove
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that the conditional laws Wε converge weakly to a probability measure W0

on C(M) which is absolutely continuous with respect to the Wiener measure
WM on the manifold, and the density is given by

dW0

dWM

(ω) =
exp

{

−1
4

∫ 1
0 R(ωt)dt+ 1

8

∫ 1
0 ||σ||2(ωt)dt

}

EWM
exp

{

−1
4

∫ 1
0 R(ωt)dt+ 1

8

∫ 1
0 ||σ||2(ωt)dt

} , (1)

where R(a) is the scalar curvature and σ(a) is the tension field of M at a ∈
M . The measure W0 is called the surface measure on the path space of the
manifold M generated by the Wiener measure in R

n. In particular, if M has
constant scalar and mean curvature then the surface measure W0 ( and hence
also the measure constructed in [1]) coincides with the Wiener measure WM ,
as was already announced in [5].

We remark that this result also yields another construction of the Wiener
measure WM which complement the classical ones (cf. e.g. [6]): Let ϕ denote
any continuous extension of the density given by formula (1) to the space
C(Mε) which is also bounded away from 0. Then the measures ϕ−1

Wε converge
to WM .

We use the following notation. We assume that ε0 is small enough and the
orthogonal projection π : Mε0 → M is well defined (and we consider ε < ε0).
We denote by TaM the tangent space of M at a ∈M and by NaM the normal
space of M at π(a), for a ∈ Mε0. In the sequel, we identify these spaces
with the corresponding subspaces in R

n. We also use the Einstein summation
convention: an index occurring twice in a product is to be summed from one
up to the space dimension.

First, we construct a special vector field v on R
n. To do that, we notice that

there are two natural measures λRn and λ⊕ on Mε0 . The first one is induced
from R

n by the embedding Mε0 ⊂ R
n. The second one is called the reference

measure, it reflects the natural product structure in the normal bundle NM
and is defined by

λ⊕(A) =
∫

π(A)
λRk(Ax)dλM(x),

where Ax = π−1(x) and λRk and λM are the Lebesgue measures on R
k and

M , respectively. The reference measure λ⊕ is equivalent to λRn and the vector
field v is then defined by

v(a) = prNyM

[

∇ log
dλ⊕
dλRn

]

, a ∈ Mε0.

Finally, we extend v to a smooth vector field with compact support in R
n.
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Further, we consider the stochastic process (yt) in R
n, which is a weak solution

of the stochastic differential equation

dyt = dbt +
1

2
v(yt)dt, y0 = a0.

We prove in Proposition 15 that the surface measure corresponding to the
process (yt) is just the Wiener measure on the manifold. The idea of the proof
is based on Fermi decomposition of the process (yt), which is constructed in
Section 4. Namely, we represent the process (yt) by a pair of processes (xt)
and (zt), where (xt) is a process in M and (zt) is a process in R

k. The first
one is just the projection (to the manifold) of (yt) stopped while leaving Mε0 .
To construct the second process, we fix an orthonormal basis in Na0M and
move it by stochastic parallel translation along the semimartingale (xt) to
the point xt. So we get an orthonormal basis in Nxt

M and we define zt by
the coordinates of yt − xt ∈ Nxt

M with respect to this basis up to the exit
time of Mε0 . Then we prove that (zt) is a k-dimensional Brownian motion
independent of the m-dimensional Brownian motion driving the process (xt).
Using this fact, we show that the distribution of (xt) under the condition that
||zt|| ≤ ε for all 0 ≤ t ≤ 1 converges to the Wiener measure on the manifold.

It follows from Girsanov’s Theorem (see Lemma 17), that the distribution µ
of the process (yt) is absolutely continuous with respect to W, and the density
is given by

ρ =
dW

dµ
= exp

{

−
1

2

∫ 1

0
〈v(bt), dbt〉 +

1

8

∫ 1

0
|v(bt)|

2dt
}

.

If ρ were continuous and bounded we could find the density dW0/dWM just
by the normalized restriction of ρ to C(M). Since ρ is not necessarily of this
kind we approximate it by a continuous bounded function ρ0 in such a way
that the approximation is quite good on the paths from C(Mε0) (the precise
definition is given in Section 8). In Proposition 22 we compute ρ0 explicitly to

ρ0 = exp
{

−
1

4

∫ 1

0
R(xt)dt+

1

8

∫ 1

0
||σ||2(xt)dt

}

,

where (xt) is the first component of the Fermi decomposition of (bt). Finally,
we prove in the last two sections that the density dW0/dWM coincides with
the normalized restriction of ρ0 to C(M) and obtain the formula (1).

2 Derivatives of the projection π

In this section, we compute the first derivative of the projection π at a point
in the ε0-neighborhood of M .
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Let us introduce the following notation. For a given point a ∈ Mε0, we con-
sider an orthogonal coordinate system (y1, . . . , yn) with respect to a basis (ei)
centered at π(a) such that its first m basis vectors form an orthonormal basis
of the tangent space Tπ(y)M . By the implicit function theorem, in this coor-
dinate system the manifold M can be represented locally in a neighborhood
of π(a) by a system of equations ys+m = fs(y

1, . . . , ym) or, equivalently, by a
system of equations ϕs(y) = 0, where ϕs(y

1, . . . , yn) = ym+s − fs(y
1, . . . , ym),

s ∈ 1, . . . , k. Notice that ∇ϕs(0) = em+s, for all s.

Definition 1 We call such a coordinate system (yi) an orthogonal coordinate
system corresponding to the point a and the functions fs (or ϕs) the local
representation of M at the point a with respect to this coordinate system.

Further, denote by Fs = Hessfs(0) the Hessian of fs at zero and denote the
last k coordinates of a in the coordinate system (yi) by (z1, . . . , zk) (notice
that the first m coordinates of a are equal to zero).

Lemma 2 Let a ∈ Mε0. Then the first derivative operator Dπ(a) of the pro-
jection is given by the matrix

Dπ(a) =







[Im×m − zsFs]
−1 0m×k

0k×m 0k×k





 .

in the coordinate system corresponding to a.

Proof. First notice that ∂m+sπ(a) = 0, for all 1 ≤ s ≤ k, since the projection is
constant along these directions. Therefore the both right blocks of the matrix
are equal to zero.

Further, differentiating ϕs ◦ π = 0 with respect to yi and taking into account
that ∂jϕs(0) = δj,m+s we obtain ∂iπ

m+s(a) = 0 for all 1 ≤ i ≤ n; 1 ≤ s ≤ k.
This means that the left lower block is also equal to zero.

It remains to prove the formula for the remaining block, which we denote by
X. Since y − π(y) ∈ NyM and NyM = 〈(∇ϕs ◦ π)(y) : 1 ≤ s ≤ k〉, we have

y = π(y) + αs(y)(∇ϕs ◦ π)(y),

where αs are some smooth functions with αs(0) = zs. Differentiating with
respect to y, we obtain

In×n = Dπ + (∇ϕs ◦ π)Dαs + αsHessϕsDπ.
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Taking value at the point a, we get







I 0

0 I





 =







X 0

0 0





 +







0

I





 [Dαs(0)] − zs







Fs 0

0 0













X 0

0 0





 ,

and, finally, considering the left upper block, we obtain X = [I − zsFs]
−1. 2

3 Curvature in local coordinates

In this section we compute the second fundamental form, the scalar curvature,
and the norm of the tension field of the manifold M at a point a ∈M in terms
of the local representation of M at the point a defined in the previous section.

Lemma 3 [Fs]ij = −l∂m+s
(∂i, ∂j)|π(a), where lν(·, ·) denotes the second funda-

mental form of M with respect to R
n and (∂i) is the orthonormal basis of R

n

corresponding to the local coordinate system (y1, . . . , yn) at a ∈ Mε0.

Proof. Let u = up∂p, w = wq∂q, and ν = νr∂r be vector fields defined on a
neighborhood of π(a) in Mε0 such that

1) u(x), w(x) ∈ TxM and ν(x) ∈ NxM for all x ∈M ;

2) u(π(a)) = ∂i, w(π(a)) = ∂j, and ν(π(a)) = ∂m+s.

Notice that we can take ν = ∇ϕs. By the definition of the second fundamental
form we obtain

lν(u, w)|π(a) = 〈∇Rn

u ν, w〉|π(a) = 〈∇Rn

up∂p
νr∂r, w

q∂q〉|π(a) = up∂pν
rwq〈∂r, ∂q〉|π(a)

= ∂iν
j|π(a) = ∂ijϕs(0) = −[Fs]ij,

which completes the proof. 2

Lemma 4 The scalar curvature R(a) of the manifold M at the point a is
given by

R(a) =
k

∑

s=1

[

(trFs)
2 − tr(Fs)

2
]

in the orthogonal coordinate system (yi) corresponding to a.

Proof. We consider (y1, . . . , ym) as local coordinates in M in a neighborhood
of a. Then gij(0) = δij and by the definition of the scalar curvature R(a) =
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Rijij(0). Now by the Gauss equation (see [7]) and by Lemma 3 we obtain

R(a) = 〈R(∂i, ∂j)∂j, ∂i〉|a

=
k

∑

s=1

[l∂m+s
(∂j, ∂j)l∂m+s

(∂i, ∂i) − l∂m+s
(∂i, ∂j)l∂m+s

(∂i, ∂j)]a

=
k

∑

s=1

[(Fs)jj(Fs)ii − (Fs)ij(Fs)ij] =
k

∑

s=1

[(trFs)
2 − tr(Fs)

2],

and the formula is proved. 2

Lemma 5 The norm of the tension field σ of M at the point a ∈M is given
by

||σ(a)||2 =
k

∑

s=1

(trFs)
2. (2)

Proof. By [8] ||σ|| = m||κ||, where κ denotes the mean curvature vector of M
at the point a. The first coordinates of κ(a) are equal to zero since the mean
curvature vector belongs to the normal space. By definition of κ (see [7]) and
using the previous lemma, we have

κm+s(a) =
1

m

m
∑

i=1

l∂m+s
(∂i, ∂i) = −

1

m
trFs,

which implies (2). 2

4 Fermi decomposition of a stochastic process

Let (yt) be a stochastic process in Mε0 starting at a0. In this section, we
construct a decomposition of (yt) into two processes (xt) and (zt), where the
first one is just the projection

xt = π(yt)

and the second one is a process in R
k starting at zero and describing the

orthogonal component (yt − xt) of the process (yt).

First, let us define stochastic parallel translation of a vector ν ∈ R
n along the

M -valued semimartingale (xt) due to [9]. First, we fix an orthonormal basis
(e1, . . . , en) in R

n such that (e1, . . . , em) span Ta0M . Further, for each x ∈M ,
let Px denote the orthogonal projection of R

n onto TxM and Qx = Id − Px
denote the orthogonal projection of R

n onto NxM . Then P and Q are smooth
functions from M to the vector space of linear maps from R

n to R
n (see [9,
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Lemma 1.24]). Since we have fixed an orthonormal basis in R
n we can also

say that P and Q are smooth functions from M to gl(n), where gl(n) is the
linear space of all n × n-matrices with real elements. In the sequel, we will
always identify matrices with corresponding linear operators if there is no risk
of confusion. For x ∈ M and w ∈ TxM , we define

Γx(w) = dQx(w)Px + dPx(w)Qx ∈ gl(n).

Definition 6 Given ν ∈ R
n, let νt = utν, where (ut) solves the Stratonovich

stochastic differential equation

δut + Γxt
(δxt)ut = 0 with u0 = I ∈ gl(n). (3)

Then (νt) is called stochastic parallel translation of ν along (xt).

Lemma 7 1) The system of vectors (ute1, . . . , uten) is an orthonormal basis
in R

n such that the first m vectors form an orthonormal basis in Txt
M and

the last k vectors form an orthonormal basis in Nxt
M ;

2) uT solves the equation δuTt = uTt Γxt
(δxt) with uT0 = I;

Proof. 1) By Theorem 3.18 from [9], the process (ut) is orthogonal for all t
and satisfies Pxt

ut = utPx0
. Hence Pxt

utei = utPx0
ei = utei, for all i ≤ m and

therefore utei ∈ Txt
M for all i ≤ m and for all t.

2) It follows from (3) that δuTt = −[Γxt
(δxt)ut]

T = uTt (−ΓTxt
(δxt)). Further, us-

ing Lemma 2.39 from [9], which says that ΓT = −Γ, we get δuTt = uTt Γxt
(δxt).

2

Thus, for each t, the coordinate system (utei) is an orthogonal coordinate
system corresponding to xt in the sense of the Definition 1. This allows us to
construct the processes (Fs(xt, ut)) which are defined by Fs with respect to the
coordinate system (utei) at the point xt. In this case Fs are smooth function
from M × o(n), where o(n) ⊂ gl(n) is the set of the orthogonal matrices.

Further, let pr1 : R
n → R

m (respectively, pr2 : R
n → R

k) be the linear operator
that maps u ∈ R

n to its first m (respectively, to its last k) coordinates. Denote
by pr−1

1 : R
m → R

n (respectively, pr−1
2 : R

k → R
n) the right inverse to pr1

(respectively, to pr2) such that pr−1
1 pr1 = Pa0 (respectively, pr−1

2 pr2 = Qa0).
We define linear operators It : R

n → R
m and Jt : R

n → R
k by

It = pr1u
T
t and Jt = pr2u

T
t .

Definition 8 Let (zt) be the orthogonal component of (yt) precisely defined by

zt = Jt(yt − xt).
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We call the pair of the processes (xt) and (zt) (with values in M and R
k,

respectively) Fermi decomposition of the process (yt).

5 Construction and properties of the vector field v

In order to define the vector field v mentioned in the introduction notice that
there are two natural measures λRn and λ⊕ on Mε0. The first one is inherited
from R

n since Mε0 ⊂ R
n. The second one is defined by

λ⊕(A) =
∫

π(A)
λRk(Ax)dλM(x), A ⊂ Mε0 Borel,

where Ax = π−1(x) and λRk and λM are the Lebesgue measures on R
k and M ,

respectively. We have used here the fact that Ax ⊂ NxM and that there is a
linear isometry between NxM and R

k. Moreover, the Lebesgue measure λRk

is independent of the choice of such an isometry and hence λ⊕ is well-defined.

Lemma 9 λ⊕ is equivalent to λRn, and the density is given by

dλ⊕
dλRn

(a) = det[I − zsFs]
−1,

where z and (Fs) are from some local representation corresponding to a ∈ Mε0 .

Proof. Let a ∈ Mε0, (yi) be an orthogonal coordinate system corresponding
to a, and f (and so (Fs) and z) be from the local representation of M at the
point a.

Let V ⊂ M be a neighborhood of π(a) and U ⊂ R
m be a neighborhood of

zero such that the mapping ψ0 : U → V given by

ψ0(x) = (x, f(x))

is a bijection. Let νs : U → R
n be smooth functions such that (νs(x)) is

an orthonormal basis of Tψ0(x)M and νs(0) is the (m + s)-th basis vector of
the coordinate system corresponding to u. Consider now the mapping ψ :
U× B(ε0) → π−1(V ) given by

ψ(x, z) = ψ0(x) + zsνs(x).

We have

Dψ(0, z) =







I − zsFs 0

∗ I





 , (4)
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where the star denotes some k ×m matrix. In fact,

∂zsψ(0, z) = νs(0)

and therefore two right blocks of Dψ(0, z) are 0 and I, respectively. In order
to compute the left upper block notice that νs = αpsηp, where αps : U → R are
some smooth functions such that αps(0) = δps and

ηp(x) = (∇ϕp) ◦ ψ0.

Then, for i ≤ m, we have using ηip(0) = 0

∂xjψi(0, z) = δij + zs∂xjαpsη
i
p|0 + zsαps∂xjηip|0

= δij + zsδps∂ijϕp(0) = δij − zs(Fs)ij.

It remains to notice that by definition λ⊕ is locally the image measure of
λM ⊗ λRk under the mapping ψ. Therefore

dλ⊕
dλRn

(a) = det[Dψ(0, z)]−1 = det[I − zsFs]
−1,

and the statement is proved. 2

Let us now define the vector field v on Mε0 by

v(a) = Qπ(a)

[

∇ log
dλ⊕
dλRn

]

,

Lemma 10 For a ∈ Mε0, v(a) is given by

v(a) =
(

0, . . . , 0, tr(F1[I − zpFp]
−1), . . . , tr(Fk[I − zpFp]

−1)
)

,

in an orthogonal coordinate system corresponding to a.

Proof. The first m coordinates of v(a) are equal to zero by the definition of
v. Further, by Lemma 9 we have

v(a) = Qπ(a)

[

∇ log
dλ⊕
dλRn

]

= Qπ(a)

(

∇ log det[I − zs(a, u)Fs(a, u)]
−1

)

= Qπ(a) (−tr∇ log[I − zs(a, u)Fs(a, u)])

and therefore

vm+s(a) = −tr ∂zs log[I − zpFp] = tr(Fs[I − zpFp]
−1),

for all 1 ≤ s ≤ k. 2
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Lemma 11 For a ∈ M , div v(a) = R(a), where R(a) is the scalar curvature
of M at the point a.

Proof. Since divv(a) is independent of the choice of orthogonal coordinates
let us compute it in the coordinates (yi) corresponding to a. Using the fact
that v(y) ∈ Nπ(y)M for all y, we have

v(y) = αs(y)ηs(x(y)),

where αs are smooth functions with αs(0) = trFs (since we have vm+s(0) =
trFs by Lemma 10) and xi(y) = (ψ−1)i(y), 1 ≤ i ≤ m. It follows from (4) that

(Dψ)−1(0, 0) =







I 0

∗ I







and therefore ∂yixj(0) = δji . Then using ∂ifs(0) = 0 and the definition of ηi
we obtain

m
∑

i=1

∂iv
i(0) = −

∑

i,s,j

αs∂ijfs∂yixj|0 = −
∑

i,s

trFs(Fs)ii = −
k

∑

s=1

(trFs)
2,

k
∑

s=1

∂m+sv
m+s(0) =

k
∑

s=1

∂zstr(Fs[I − zpFp]
−1)(0) =

k
∑

s=1

tr(Fs)
2.

Finally, by Lemma 4 we get

div v(a) =
m

∑

i=1

∂iv
i(0) +

k
∑

s=1

∂m+sv
m+s(0) = −

k
∑

s=1

(trFs)
2 +

k
∑

s=1

tr(Fs)
2 = −R(a)

which proves the assertion. 2

6 Construction and properties of the shifted process (yt)

Let us extend the vector field v from Mε0 to R
n in such a way that the

extension is smooth and has compact support (the choice of the extension is
not essential for further considerations). We denote such an extension also by
v. Then there exists a unique weak solution (yt) of the stochastic differential
equation











dyt = dbt +
1
2
v(yt)dt,

y0 = a0.
(5)
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Let τ be the exit time of (yt) from Mε0. Consider the stopped process (yt∧τ ) and
denote by ((xt), (zt)) its Fermi decomposition. Further, consider the process

b̃t =
∫ t

0
uTs dbs.

It is also an n-dimensional Brownian motion by the Lévy’s characterization
theorem since it is a continuous local martingale with db̃itdb̃

j
t = δijdt by the

orthogonality of us for all s. Denote by b̃′t (respectively, by b̃′′t ) the first m
(respectively, the last k) components of b̃t.

Lemma 12 The Itô differential of the process (xt) up to time τ is given by

dxt = ut pr−1
1 [I − zstFs(xt, ut)]

−1db̃′t +
1

2
∆π(yt)dt.

Proof. By Lemma 2 we can compute Dπ(yt) in the coordinate system corre-
sponding to the basis (utei). Hence the formula for Dπ(yt) with respect to the
original coordinate system (ei) is given by

Dπ(yt) = utpr−1
1 [I − zstFs(xt, ut)]

−1pr1u
T
t .

Now by Itô’s formula and using v(yt) ∈ Nxt
M we obtain up to time τ

dxt = dπ(yt) = Dπ(yt)dyt +
1

2
DDπ(yt)dytdyt

= utpr−1
1 [I − zstFs(xt, ut)]

−1pr1u
T
t (dbt +

1

2
v(yt)dt) +

1

2
∆π(yt)dt

= utpr−1
1 [I − zstFs(xt, ut)]

−1db̃′t +
1

2
∆π(yt)dt,

which completes the proof. 2

Lemma 13 zt = b̃′′t up to time τ .

Proof. Let us show that the Stratonovich differentials of the processes (zt) and
(b̃′′t ) coincide. Recall that for two continuous semimartingales a and b holds
aδb = adb + 1

2
δaδb. Then, using the equalities dQP = −QdP and dPQ =

12



−PdQ, the definition of Γ, and Lemma 7 we obtain

δb̃′′t = db̃′′t = pr2u
T
t dbt

= Jtδbt −
1

2
pr2δu

T
t δbt

= Jtδbt −
1

2
pr2u

T
t Γxt

(δxt)δbt

= Jtδbt −
1

2
JtdQxt

(δxt)Pxt
δbt −

1

2
JtdPxt

(δxt)Qxt
δbt

= Jtδbt +
1

2
JtQxt

dPxt
(δxt)δbt +

1

2
JtPxt

dQxt
(δxt)δbt

= Jtδbt +
1

2
JtdPxt

(δxt)δbt.

Analogously, using yt − π(yt) ∈ Nxt
M and Lemma 2, which implies that

Im[Dπ(y)] = Tπ(y)M , we compute

dzt = pr2δu
T
t (yt − π(yt)) + pr2u

T
t δ(yt − π(yt))

= pr2u
T
t Γxt

(δxt)(yt − π(yt)) + pr2u
T
t δyt − pr2u

T
t Dπ(yt)δyt

= Jt(dQxt
(δxt)Pxt

+ dPxt
(δxt)Qxt

)(yt − π(yt)) + Jtδyt
= Jtδyt − JtPxt

dQxt
(δxt)(yt − π(yt))

= Jtδyt
= Jtδbt +

1

2
Jtv(yt)dt.

It remains to show that JtdPxt
(δxt)δbt = Jtv(yt)dt or, equivalently, that the

last k coordinates of of the vectors dPxt
(δxt)δbt and v(yt)dt with respect to

the coordinate system (utei) coincide. We compute them using Lemma 2,
Lemma 10, and Lemma 14 below.

(dPxt
(δxt)δbt)

m+s = (∂iPxt
)m+s,k(pr1u

T
t δxt)

i(uTt δbt)
k

= ∂ikfs(xt)(pr1u
T
t Dπ(yt)δyt)

i(uTt δbt)
k

= ∂ikfs(xt)(pr1u
T
t utpr−1

1 [I − zpt Fp(xt, ut)]
−1pr1u

T
t δbt)

i(uTt δbt)
k

= ∂ikfs(xt)([I − zpt Fp(xt, ut)]
−1pr1)ir(u

T
t )rq(δb)

q(uTt )kl(δb)
l

= ∂ikfs(xt)[I − zpt Fp(xt, ut)]
−1
ik dt

= tr(Fs(xt, ut)[I − zpt Fp(xt, ut)]
−1)dt

= vm+s(yt)dt.

This implies δzt = δb̃′′t and zt = b̃′′t since this stochastic differential equation is
exact. 2

Lemma 14 dPx is given by formulae

∂iPx =







0 ∂iDf
T

∂iDf 0







0

13



in an orthogonal coordinate system at x ∈M .

Proof. Let x ∈ M . Consider an orthogonal coordinate system (yi) at x and
the local representation (fs) of M at the point x. Notice that

P







I −DfT

Df I





 =







I 0

Df 0





 .

since the first m columns of the matrix on the left hand side generate the
tangent space T(y,f(y))M and the last k columns generate the normal space
N(y,f(y))M . Differentiating with respect to yi, we obtain

∂iP







I −DfT

Df I





 + P







0 −∂iDf
T

∂iDf 0





 =







0 0

∂iDf 0





 .

Evaluating at zero and using Df(0) = 0, we get

∂iPx =







0 0

∂iDf 0







0

−







I 0

0 0













0 −∂iDf
T

∂iDf 0







0

=







0 ∂iDf
T

∂iDf 0







0

which proves the lemma. 2

7 Surface measure corresponding to the process (yt)

Let µ be the distribution of the process (yt). Denote by µε the normalized
restriction of µ to C(Mε)

µε =
µ|C(Mε)

µ(C(Mε))
.

Proposition 15 The family µε converges weakly to WM , i.e., the surface
measure corresponding to the process (yt) is just the Wiener measure on C(M).

Proof. We need to prove that the conditional law of the process (yt), given
that the (yt) does not leave Mε before time 1 converges to WM as ε tends to
zero.

Consider the Fermi decomposition ((xt), (zt)) of the stopped process (yt∧τ ).
By Lemma 12 and Lemma 13 the process (zt) is just a k-dimensional Brow-
nian motion independent of the m-dimensional Brownian motion driving the
process (xt).

14



Consider now any probability space on which there is an n-dimensional Brown-
ian motion (b∗t ) and, moreover, there is a family (zεt ) of processes such that each
(zεt ) has the same law as (zt) under µε and the whole family {(zεt ) : ε < ε0}
is independent of (b∗t ). On this probability space we consider the filtration
(Ft) generated by {b∗s : s ≤ t} and all the processes (zεt ), 0 ≤ t ≤ 1. Then
(b∗t ) is an n-dimensional (Ft)-Brownian motion, (pr1b

∗
t ) is an m-dimensional

(Ft)-Brownian motion and the coefficients in the system of the stochastic dif-
ferential equations







































δuεt + Γxε
t
(δxεt )u

ε
t = 0,

dxεt = uεtpr−1
1 [I − (zεt )

sFs(x
ε
t )]

−1pr1db
∗
t + 1

2
∆π(xεt + uεtpr−1

2 zεt )dt,

uε0 = I,

xε0 = a0

are adapted. It follows from ||zεt || ≤ ε that the coefficients are also bounded
and hence there is a unique solution (uεt , x

ε
t ) of this system for each ε and

the law of (xεt ) is the same as the law of (xt) under µε. Moreover, on this
probability space the processes (zεt ) converge uniformly to zero. It follows now
from Lemma 16 below that (uεt , x

ε
t ) converges locally uniformly in probability

to the solution (ūt, x̄t) of the system of the stochastic differential equation







































δūt + Γx̄t
(δx̄t)ūt = 0,

dx̄t = ūtPa0db
∗
t + 1

2
∆π(x̄t)dt,

ū0 = I,

x̄0 = a0.

It remains to show that the process (x̄t) is a Brownian motion on M . Since ūt
is orthogonal for all t we have ūtPa0db

∗
t = Px̄t

ūtdb
∗
t = Px̄t

db∗∗t , where (b∗∗t ) is
another n-dimensional Brownian motion starting in a0. Further, notice that
Px = Dπ(x) for x ∈ M by Lemma 2, and the Itô differential equation for the
process (x̄t) now looks like











dx̄t = Dπ(x̄t)db
∗∗
t + 1

2
∆π(x̄t)dt,

x̄0 = a0.

Due to [10, Th.30.14] the drift c of the Stratonovich stochastic differential
equation at the point x ∈ M can be computed in local coordinates corre-
sponding to x, and using ∂qπ

j(a) = δjq for j, q ≤ m and ∂qπ
j(a) = 0 otherwise,

15



we obtain

2ci = ∆πi(x, 0) −
n

∑

q=1

∂qπ
j∂j(∂qπ

i)(x) = ∆πi(x, 0) −
m

∑

j=1

∂jjπ
i(x, 0)

=
n

∑

j=m+1

∂jjπ
i = 0

as π is constant in the normal directions. Now the Stratonovich stochastic
differential equation for the process (x̄t) looks like











δx̄t = Px̄t
δb∗∗t ,

x̄0 = a0.

Hence x̄t is a Brownian motion on M . 2

Lemma 16 (xε, uε) → (x̄, ū) locally uniformly in probability.

Proof. Denote the processes (xεt , u
ε
t) and (x̄t, ūt) by (aεt ) and (āt), respectively.

Then the processes (aεt ) and (āt) satisfy the stochastic differential equations

daεt = f1(a
ε
t , z

ε
t )db

∗
t + f2(a

ε
t , z

ε
t )dt and dāt = f1(āt, 0)db∗t + f2(āt, 0)dt

respectively, with the same initial conditions, where fi are short notations
for the coefficients. It can be easily seen that fi(a, z) → fi(a, 0) as z → 0
uniformly in a and the functions fi(x, 0) are Lipschitz. Now, let

ϕε(t) = E sup
s≤t

||aεs − ās||
2.

It is sufficient to show that ϕε(1) → 0 as ε → 0. Let δ > 0. According to the
uniform convergence of fi, choose ε′ such that for all x ∈ M and for all z with
||z|| ≤ ε′ hold ||fi(a, z) − fi(a, 0)|| < δ (it does not matter what norm we use
since they are equivalent). Then we have for ||z|| < ε′ and for all a1, a2

||fi(a1, z) − fi(a2, 0)||2 ≤ 2||fi(a1, z) − fi(a1, 0)||2 + 2||fi(a1, 0) − fi(a2, 0)||2

≤ 2δ2 + 2c||a1 − a2||
2,

where c1/2 is a Lipschitz constant for all fi(x, 0) simultaneously. Then, by
Corollary 11.2.2 from [11], we obtain

fε(t) = E sup
s≤t

||
∫ s

0
[f1(a

ε
u, z

ε
u) − f1(āu, 0)]db∗u +

∫ s

0
[f2(a

ε
u, z

ε
u) − f2(āu, 0)]du||2

≤ c1E
∫ t

0
||f1(a

ε
u, z

ε
u) − f1(āu, 0)||2du+ c1E

∫ t

0
||f2(a

ε
u, z

ε
u) − f2(āu, 0)||2du

≤ c2δ
2 + c3E

∫ t

0
||aεu − āu||

2du

≤ c2δ
2 + c3

∫ t

0
fε(u)du, for all t and ε < ε′,
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where c1, c2, and c3 are positive constants independent of δ. Now by Gronwall’s
lemma fε(t) ≤ c2δ

2εc3t and in particular fε(1) ≤ c2δ
2εc3 for all ε < ε′. Hence

fε(1) → 0 and the processes (xεt , u
ε
t) converge to (x̄t, ūt) locally uniformly in

probability. 2

8 Absolute continuity of W with respect to µ, formula for the cor-

responding density, and its approximation

Now we study the relation between the families Wε and µε. It can be derived
from the relation between the measures W and µ. We prove in the following
lemma that these two measures are equivalent and compute the corresponding
density in terms of the vector field v.

Lemma 17 W is equivalent to µ and the density ρ is given by

ρ =
dW

dµ
= exp

{

−
1

2

∫ 1

0
〈v(bt), dbt〉 +

1

8

∫ 1

0
|v(bt)|

2dt
}

(6)

Proof. Recall that µ is the distribution of the process (yt), which solves the
stochastic differential equation (5). Hence the process (yt) satisfies also

dbt = dyt −
1

2
v(yt)dt.

It follows now from Girsanov’s theorem that the distribution W of (bt) is
equivalent to the distribution µ of (yt) and the corresponding density is given
by (6). 2

It is easy to see that the density ρ is not necessarily continuous and bounded.
In order to prove weak convergence of the family Wε we will approximate ρ
by a continuous and bounded function in such a way that the approximation
is quite good on the paths staying in Mε for the whole time. In the definition
below we describe the type of the approximation we need, in Lemma 21 we
investigate the approximation of stochastic differentials with respect to dt and
dxt, where ((xt), (zt)) is the Fermi decomposition of the process (bt) stopped
while leaving Mε0. This enables us to find the approximation for the density
ρ (Proposition 22) since the stochastic integrals in (6) partly can be reduced
to integrals with respect to dt and dx and partly are approximated directly.

Definition 18 Let ξ : C(Rn) → R be a measurable function. We say that ξ is
O(ε) if there exists c > 0 such that Eµε

|ξ|p ≤ (pcε)p for all p ∈ N. We say that
a stochastic differential is O(ε) if the corresponding stochastic integral from
zero to one is O(ε).
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It follows from Minkowski’s inequality that the sum of two O(ε) is again O(ε).

Lemma 19 Let ξ = O(ε), then Eµε
|eξ − 1| → 0 as ε→ 0.

Proof. We have by the definition of O(ε)

Eµε
|eξ − 1| ≤ Eµε

∞
∑

p=1

|ξ|p

p!
=

∞
∑

p=1

Eµε
|ξ|p

p!
≤

∞
∑

p=1

pp

p!
(cε)p → 0,

since the radius of convergence of the power series
∑∞
p=1

pp

p!
zp is positive. 2

Lemma 20 Let ((xt), (zt)) be the Fermi decomposition of (bt) stopped while
leaving Mε0 There are continuous bounded functions gxx, gux from the product
space o(n) ×M ×Bk(ε0) to gl(n) and to R

n, respectively, such that

1) (δxt)(δxt)
T = gxx(ut, xt, zt)dt;

2) δutδxt = gux(ut, xt, zt)dt;

3) (δxt)(δzt)
T = 0n×kdt.

Proof. Using Lemma 2 and the computations for the process (bt) analogous to
the computations in Lemma 12 and Lemma 13 for the process (yt), we obtain

(δxt)(δxt)
T =Dπ(bt)δbt(δbt)

TDπ(bt)
T = gxx(ut, xt, zt)dt;

(δxt)(δzt)
T =utpr−1

1 [I − zstFs(xt, ut)]
−1δb̃′t(δb̃

′′
t )
T = 0n×kdt;

δutδxt = − Γxt
(δxt)utδxt = gux(ut, xt, zt)dt

which proves the statement. 2

Lemma 21 Let f : o(n)×R
n×R

k → R be a smooth bounded function. Then

f(ut, xt, zt)dt = f(ut, xt, 0)dt +O(ε),

f(ut, xt, zt)dx
i
t = f(ut, xt, 0)dxit +O(ε),

f(ut, xt, zt)δx
i
t = f(ut, xt, 0)δxit +O(ε),

for all i.

Proof. The first assertion is obvious. It suffices to prove the last two formulas
for the case when f(u, x, z) = 0 for all x ∈M and u ∈ o(n).

Let (ωt) be the coordinate process on (C(Rn),Ft) and τ be its exit time
from Mε0. Since (ωt) is a semimartingale with respect to µ its projection
xt = π(ωt∧τ ) is also a semimartingale with respect to µ and therefore the
Fermi decomposition ((xt), (zt)) of the stopped process (ωt∧τ ) is well-defined.

18



Denote

ξ(ω) =
∫ 1

0
f(ut, xt, zt)dx

i
t.

Notice that µε is absolutely continuous with respect to µ and the corresponding
density is given by dµε/dµ(ω) = ϕε(||z||), where || · || is the supremum norm
on C([0, 1],Rk) with respect to the euklidean norm | · | in R

k and ϕε : R → R

is given by ϕε = µ(C(Mε0))1[0,ε].

For each ε, let us approximate µε by measures µnε that are not only absolute
continuous but also equivalent to µ. Let (ϕnε ) be a sequence of functions from
R to R such that ϕnε > 0 and ϕnε ↓ ϕε. Denote

dnε (ω) =
ϕnε (||z||)

Eµϕnε (||z||)
> 0

and define µnε by the measure that is absolutely continuous with respect to
µ with density dnε . Then µnε is a probability measure equivalent to µ since dnε
is positive and Eµd

n
ε = 1. Therefore µ and µnε have the same semimartingales

and, in particular, the process (xt) is a semimartingale with respect to µnε .

Let x = m + a and x = mn
ε + anε be the decompositions of (xt) into a local

martingale part and a part of bounded variation with respect to µ and µnε ,
respectively. Let us show that these decompositions coincide, for all n and ε.
Consider (dnε )t = Eµ[d

n
ε |Ft] and notice that (dnε )t = Eµ[d

n
ε |F

′
t], where F ′

t is the
natural filtration of (zt). This follows from the fact that

(dnε )t = Eµ[d
n
ε |Ft]

=
1

Eµϕnε (||z||)
Eµ[ϕ

n
ε (max{ sup

0≤s≤t
|zs|, sup

t≤r≤1
|zt + (zr − zt)|})|Ft]

=
1

Eµϕnε (||z||)

∫

C0([0,1−t],R)

ϕnε (max{ sup
0≤s≤t

|zs|, sup
0≤r≤1−t

|zt + ω̃r|})dW(ω̃)

is measurable with respect to F ′
t (the last equality is fulfilled since zr − zt is

a Brownian motion independent of Ft). Hence (see [12]) the process dnε is a
stochastic integral with respect to the process z, i.e. (dnε )t =

∫ t
0 hsdzs for some

k-dimensional process (ht). Then by Girsanov’s theorem and by Lemma 20
(3)

(mn
ε )t =mt −

∫ t

0

1

(dnε )t
d[mt, (d

n
ε )t] = mt −

∫ t

0

1

(dnε )t
(dxt)(dzt)

ThTt = mt.

This means that the process (xt) has the same semimartingale decomposition
with respect to the measure µ and all measures µnε .
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Further we have (dmi
t)

2 = (dxit)
2 < c21dt and |dait| = |∆πi(bt)dt|/2 < c2dt, by

the definition of (xt) and by Lemma 20, with some constants c1 and c2. Now
we can use Corollary 11.2.2 from [11] (notice that the constant cp there can
be chosen equal to (2p)p)

Eµn
ε
|ξ|p ≤ (2p)pEµn

ε

[

(∫ 1

0
(dxit)

2
)

p

2
−1∫ 1

0
|f(ut, xt, zt)|

p(dxit)
2

+
∫ 1

0
|f(ut, xt, zt)|

p|dait|
(∫ 1

0
|dait|

)p−1
]

≤ (2p)pcp3ε
p(cp1 + cp2) ≤ (pcε)p,

where c3 is the Lipschitz constant for the function f with respect to z and
c = 4c3(c1 + c2).

By the monotone convergence theorem we have Eµϕ
n
ε (||z||) → Eµϕε(||z||) = 1

as n→ ∞ and

Eµε
|ξ|p = Eµϕε(||z||)|ξ(ω)|p = lim

n→∞

Eµϕ
n
ε (||z||)|ξ(ω)|p

Eµϕnε (||z||)

= lim
n→∞

Eµd
n
ε |ξ|

p = lim
n→∞

Eµn
ε
|ξ|p ≤ (pcε)p

by the previous estimate for Eµn
ε
|ξ|p. This implies f(ut, xt, zt)dx

i
t = O(ε). The

last statement follows now from the previous ones and from Lemma 20. In
fact,

f(ut, xt, zt)δx
i
t = f(ut, xt, zt)dx

i
t +

1

2
δf(ut, xt, zt)δx

i
t

=
1

2
Duf(ut, xt, zt)δutδx

i
t +

1

2
Dxf(ut, xt, zt)δxtδx

i
t

+
1

2
Dzf(ut, xt, zt)δztδx

i
t +O(ε) = O(ε),

as Duf(ut, xt, 0) = 0, Dxf(ut, xt, 0) = 0, and δutδx
i
t and δxtδx

i
t are propor-

tional do dt. 2

Proposition 22 The asymptotic of the density is given by ρ = ρ0 exp(O(ε)),
where

ρ0(ω) = exp
{

−
1

4

∫ 1

0
R(xt)dt+

1

8

∫ 1

0
||σ||2(xt)dt

}

,

R(a) is the scalar curvature, and σ(a) is the tension field of M at the point
a ∈M .

20



Proof. The asymptotic of the second term in the exponents is given by
Lemma 5, Lemma 10, and Lemma 21 (1)

|v(bt)|
2dt = |v(xt)|

2dt+O(ε)

=
k

∑

l=1

(trFs(xt, ut))
2dt+O(ε) = ||σ||2(xt)dt+O(ε).

Consider now the first term. By the definition of the Fermi decomposition we
have bt = xt + zstutem+s and xt = π(bt) up to the exit time τ . Using Itô’s
formula, the transformation rule from the Itô to the Stratonovich calculus,
and Lemma 11, we get

〈v(bt), dbt〉 = 〈v(bt), δbt〉 −
1

2
〈dv(bt), dbt〉

= 〈v(bt), δ(π(bt) + zst utem+s)〉 −
1

2
〈Dv(bt)dbt, dbt〉

= 〈v(bt), Dπ(bt)δbt + δzsutem+s + zsδutem+s〉 −
1

2
divv(bt)dt

= δzs〈v(bt), utem+s〉 − zs〈v(bt),Γxt
(δxt)utem+s〉 +

1

2
R(xt)dt+O(ε).

We have used here the fact that ImDπ(y) ⊥ NyM which implies

〈v(bt), Dπ(bt)δbt〉 = 0.

Now let us show that the first term is O(ε). In order to do this consider the
process

ct = tr log[I − zstFs(xt, ut)].

By the equation of the parallel transport (3) we have δFs(xt, ut) = ϕ(xt, ut)δxt,
where ϕ is some smooth function. By Itô’s formula, Lemma 10, and Lemma 21
δct can be computed as

− tr(Fs(xt, ut)[I − zpt Fp(xt, ut)]
−1)δzst − zst tr[I − zpt Fp(xt, ut)]

−1δFs(xt, ut)

= − δzs〈v(ωt), utem+s〉 − zst tr[I − zpt Fp(xt, ut)]
−1ϕ(xt, ut)δxt

= − δzs〈v(ωt), utem+s〉 +O(ε),

On the other hand δct = O(ε) since tr log I = 0. Together we get

δzs〈v(ωt), utem+s〉 = O(ε).
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Further, notice that the second term is equal to zero. In fact, by the definition
of Γ and the relation dPQ = −PdQ we have

〈v(bt),Γxt
(δxt)utem+s〉 = 〈v(bt), (dQxt

(δxt)Pxt
+ dPxt

(δxt)Qxt
)utem+s〉

= −〈v(bt), Pxt
dQxt

(δxt)utem+s〉 = 0

since em+s and v(bt) belong to Nxt
M . Finally,

ρ = exp
{

−
1

2

∫ 1

0
〈v(bt), dbt〉 +

1

8

∫ 1

0
|v(bt)|

2dt
}

= exp
{

−
1

4

∫ 1

0
R(xt)dt+

1

8

∫ 1

0
||σ||2(xt)dt+O(ε)

}

,

which completes the proof. 2

9 Convergence of Wε and formula for the density

In the last section we prove the main theorem. Consider the function ρ0 intro-
duced in Proposition 22. It is defined on C(M) and is continuous and bounded.
Moreover, it can be extended to a continuous bounded function on C(Rn). In
the sequel we understand under ρ0 this extension. It turns out that ρ0 ap-
proximates the Girsanov density ρ = dW/dµ near the manifold also in the
following sense.

Lemma 23 Eµε
|ρ− ρ0| → 0 as ε→ 0.

Proof. Since ρ0 is bounded there exists a constant c such that |ρ0(ω)| ≤ c for
all ω. Further, denote by ξ the O(ε)-part in the asymptotic representation of
ρ. Then

Eµε
|ρ− ρ0| = Eµε

|ρ0(e
ξ − 1)| ≤ cEµε

|eξ − 1| → 0

by Lemma 19. 2

Theorem 24 Let Wε be the normalized restriction of the flat Wiener measure
W in R

n to the set of the paths that do not leave the tubular ε-neighborhood
of the manifold M up to time 1. Then Wε converges weakly to a measure
W0, which is equivalent to the Wiener measure WM on the manifold, and the
density is given by

dW0

dWM
(ω) =

exp
{

−1
4

∫ 1
0 R(ωt)dt+ 1

8

∫ 1
0 ||σ||2(ωt)dt

}

EWM
exp

{

−1
4

∫ 1
0 R(ωt)dt+ 1

8

∫ 1
0 ||σ||2(ωt)dt

} ,

where R(a) is the scalar curvature and σ(a) is the tension field of M at the
point a ∈M .
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Proof. First, let us prove that ρµε → ρ0WM weakly. Let h : C(Rn) → R be
continuous and bounded. Then

|Eρµε
h− Eρ0WM

h| ≤ ||h||∞Eµε
|ρ− ρ0| + |Eµε

hρ0 − EWM
hρ0| → 0,

where the first term tends to 0 by Lemma 23 and the second term tends to 0
due to the weak convergence of µε to WM and since hρ0 is continuous. Now
we can compute

lim
ε→0

EWε
h = lim

ε→0

EW1C(Mε)h

EW1C(Mε)

= lim
ε→0

Eµ1C(Mε)ρh

Eµ1C(Mε)ρ
= lim

ε→0

Eµ1C(Mε)hρ

Eµ1C(Mε)

·
Eµ1C(Mε)

Eµ1C(Mε)ρ

= lim
ε→0

Eµε
ρh

Eµε
ρ

= lim
ε→0

Eρµε
h

Eρµε
1

= lim
ε→0

Eρ0WM
h

Eρ0WM
1

= lim
ε→0

EWM
ρ0h

EWM
ρ0

= EWM
h

[

ρ0

EWM
ρ0

]

,

where the last line follows from the first step of the proof. This means that Wε

converges weakly to a measure W0 that is absolutely continuous with respect
to the Wiener measure WM with the density ρ given above, and the theorem
is proved. 2
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