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Abstract

We construct the surface measure on the space C([0, 1], M) of paths in a compact
Riemannian manifold M without boundary embedded into R™ which is induced
by the usual flat Wiener measure on C([0,1],R™) conditioned to the event that the
Brownian particle does not leave the tubular e-neighborhood of M up to time 1. We
prove that the limit as € — 0 exists, the limit measure is equivalent to the Wiener
measure on C([0,1], M), and we compute the corresponding density explicitly in
terms of scalar and mean curvature.
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1 Introduction

In the study of heat flow on a manifold M it is a natural idea to embed the
manifold into Euclidean space via Nash’s theorem and to compare some prop-
erties of the flat Brownian motion in the surrounding space with corresponding
properties of the motion on M. In particular, since the Wiener measures W
and W, on the path spaces C'(R") and C'(M) are the canonical measures and
C(M) is a submanifold of C(R"), one could expect in analogy to the finite
dimensional situation that W,; is just the surface measure induced by W.
However we show that this is generally false but that the surface measure is
equivalent to W), and that the density depends both on the (intrinsic) scalar
curvature and the mean curvature of the embedding. The same surface mea-
sure has previously been identified by a completely different method based on
discrete time approximation in [1].

It would be interesting to find a direct proof of the equivalence of the two
approaches. The formula of the density given below allows to interpret certain
geometric curvature characteristics as an additional ’effective’ potential in
the Schrodinger equation (in the spirit of [2]) on the manifold. The particular
geometric potential in our main result appears also in the context of the study
of holonomic constraints in quantum mechanics in [3], p. 500. The methods of
[3] could be used to give an alternative (but not simpler) proof of results similar
to ours except that our statement of weak convergence also implies uniform
tightness of the family (W.) introduced below. A more detailed exposition of
this background and an extension to more general surrounding manifolds will
be given in [4]. We also note that our result can be used to get alternative
proofs for Girsanov type theorems for a Brownian motion on M.

Let us now sketch the statement and the idea of the proof of our main theo-
rem. Let M C R™ be a smooth compact m-dimensional Riemannian manifold
without boundary. Denote by k = n — m the codimension of M and by M.
the tubular neighborhood of M, which consists of all points in R™ such that
their distance to the manifold is less or equal €. Let ag € M be the start-
ing point of all stochastic processes considered below. In the sequel, we will
always write C'(X) instead of Cy,([0, 1], X). Denote by W the Wiener mea-
sure on C(R™) and by W, the Wiener measure on C(M). Let W, be the
normalized restriction of the Wiener measure W to C'(M.)

Wicm.)
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i.e., the conditional law of a Brownian particle conditioned not to leave the
e-neighbourhood of the manifold.

The main result of the paper is the theorem in the last section, where we prove



that the conditional laws W, converge weakly to a probability measure W,
on C(M) which is absolutely continuous with respect to the Wiener measure
W, on the manifold, and the density is given by

Wy o {=3 10 Rlw)dt+ & [ [|o][P(wi)dt}
AWy v, exp {—1 Jif Rw)dt + & J3 l|o][2(we)dt}

where R(a) is the scalar curvature and o(a) is the tension field of M at a €
M. The measure W is called the surface measure on the path space of the
manifold M generated by the Wiener measure in R™. In particular, if M has
constant scalar and mean curvature then the surface measure Wy ( and hence
also the measure constructed in [1]) coincides with the Wiener measure W,
as was already announced in [5].

We remark that this result also yields another construction of the Wiener
measure Wy, which complement the classical ones (cf. e.g. [6]): Let ¢ denote
any continuous extension of the density given by formula (1) to the space
C(M.) which is also bounded away from 0. Then the measures ¢~ 'W, converge
to WM

We use the following notation. We assume that ¢ is small enough and the
orthogonal projection 7 : M., — M is well defined (and we consider € < ¢).
We denote by T, M the tangent space of M at a € M and by N,M the normal
space of M at mw(a), for a € M,,. In the sequel, we identify these spaces
with the corresponding subspaces in R™. We also use the Einstein summation
convention: an index occurring twice in a product is to be summed from one
up to the space dimension.

First, we construct a special vector field v on R™. To do that, we notice that
there are two natural measures Ag» and Ag on M, . The first one is induced
from R™ by the embedding M., C R". The second one is called the reference
measure, it reflects the natural product structure in the normal bundle NM
and is defined by

dold) = [ de(AcdAu(a),

where A, = 77 1(x) and A\ge and A\, are the Lebesgue measures on R* and
M, respectively. The reference measure \g is equivalent to Ag» and the vector
field v is then defined by

A

v(a) =pry, p [V log ] ,a € M.

Finally, we extend v to a smooth vector field with compact support in R"™.



Further, we consider the stochastic process (y;) in R, which is a weak solution
of the stochastic differential equation

1
dy, = db, + §v(yt)dt, Yo = ag.

We prove in Proposition 15 that the surface measure corresponding to the
process (y;) is just the Wiener measure on the manifold. The idea of the proof
is based on Fermi decomposition of the process (y;), which is constructed in
Section 4. Namely, we represent the process (y;) by a pair of processes (z;)
and (z;), where () is a process in M and (z;) is a process in R¥. The first
one is just the projection (to the manifold) of (y;) stopped while leaving M., .
To construct the second process, we fix an orthonormal basis in N,,M and
move it by stochastic parallel translation along the semimartingale (z;) to
the point x;. So we get an orthonormal basis in N,, M and we define z; by
the coordinates of y; — x; € N,, M with respect to this basis up to the exit
time of M,,. Then we prove that (z;) is a k-dimensional Brownian motion
independent of the m-dimensional Brownian motion driving the process (z;).
Using this fact, we show that the distribution of (z;) under the condition that
||2¢]| < e forall 0 <t <1 converges to the Wiener measure on the manifold.

It follows from Girsanov’s Theorem (see Lemma 17), that the distribution u
of the process (y;) is absolutely continuous with respect to W, and the density
is given by

dW 1 st 1 /1 9
p="Tr =ew{—5 [+ ¢ [Cotat}.

If p were continuous and bounded we could find the density dWy/dWj, just
by the normalized restriction of p to C'(M). Since p is not necessarily of this
kind we approximate it by a continuous bounded function pg in such a way
that the approximation is quite good on the paths from C(M.,) (the precise
definition is given in Section 8). In Proposition 22 we compute po explicitly to

B 1 NI
00 —exp{—z/o R(a:t)dt+§/() llo|| (xt)dt},

where () is the first component of the Fermi decomposition of (b;). Finally,
we prove in the last two sections that the density dWy/dW,, coincides with
the normalized restriction of py to C'(M) and obtain the formula (1).

2 Derivatives of the projection 7

In this section, we compute the first derivative of the projection 7 at a point
in the gp-neighborhood of M.



Let us introduce the following notation. For a given point a € M., we con-
sider an orthogonal coordinate system (y',...,y") with respect to a basis (e;)
centered at 7(a) such that its first m basis vectors form an orthonormal basis
of the tangent space T, M. By the implicit function theorem, in this coor-
dinate system the manifold M can be represented locally in a neighborhood
of m(a) by a system of equations y*™™ = f,(y',...,y™) or, equivalently, by a
system of equations p,(y) = 0, where ¢s(y', ..., y") = y™ — f(y', ..., y™),
s€1,...,k Notice that V4(0) = e€,,45, for all s.

Definition 1 We call such a coordinate system (y') an orthogonal coordinate
system corresponding to the point a and the functions fs (or ys) the local
representation of M at the point a with respect to this coordinate system.

Further, denote by Fs; = Hessf,(0) the Hessian of fs at zero and denote the
last k coordinates of a in the coordinate system (y¢) by (z',...,2"%) (notice
that the first m coordinates of a are equal to zero).

Lemma 2 Let a € M,,. Then the first derivative operator Dr(a) of the pro-
jection is giwen by the matriz

Lixm — 2°F.]71 0,
Dr(a) = [ ] Xk

Ok xm Ok xk

in the coordinate system corresponding to a.

Proof. First notice that 0,,, s7(a) = 0, for all 1 < s < k, since the projection is
constant along these directions. Therefore the both right blocks of the matrix
are equal to zero.

Further, differentiating ¢, o m = 0 with respect to y; and taking into account
that 0;ps(0) = ;m+s we obtain ;7" *(a) =0 forall 1 <i<n;1<s<k.

This means that the left lower block is also equal to zero.

It remains to prove the formula for the remaining block, which we denote by
X. Since y — m(y) € NyM and NyM = ((Vgson)(y) : 1 <s < k), we have

y=n(y) +a’(y)(Vesom)(y),

where o® are some smooth functions with a®(0) = 2*°. Differentiating with
respect to y, we obtain

Inxn = Dm+ (Vs om)Da’® 4+ a’Hessp, Dr.



Taking value at the point a, we get

I0 X0 0 F,001X0
= + [Da®(0)] — 2°
01 00 I 00 00

and, finally, considering the left upper block, we obtain X = [I — 2F,]7!. O

3 Curvature in local coordinates

In this section we compute the second fundamental form, the scalar curvature,
and the norm of the tension field of the manifold M at a point a € M in terms
of the local representation of M at the point a defined in the previous section.

Lemma 3 [F|;; = —ly,,..(0;,0;)|x(a), where l,(-,-) denotes the second funda-
mental form of M with respect to R™ and (0;) is the orthonormal basis of R™
corresponding to the local coordinate system (y1,...,y,) at a € M, .

Proof. Let u = u”0,, w = w90,, and v = "0, be vector fields defined on a
neighborhood of 7(a) in M., such that

1) u(z),w(z) € T,M and v(x) € N,M for all x € M;
2) u(m(a)) = 0;, w(n(a)) = 0;, and v(m(a)) = Opmts-

Notice that we can take v = V. By the definition of the second fundamental
form we obtain

L(u, )|z (a) = (VE", W)|r(a) = (VRnapu’”&n, W0q) | n(a) = U OpV" WOy, Og) | n(a)

uP

= 01 |a(a) = Dijips(0) = —[Fili,
which completes the proof. O

Lemma 4 The scalar curvature R(a) of the manifold M at the point a is
given by

R(a) = 2_31 [(trF.)? — tr(F)?]

in the orthogonal coordinate system (y') corresponding to a.

Proof. We consider (y1,...,¥yn) as local coordinates in M in a neighborhood
of a. Then g;;(0) = §;; and by the definition of the scalar curvature R(a) =



R;;i;(0). Now by the Gauss equation (see [7]) and by Lemma 3 we obtain
R(a) = (R(0;,0;)9;,0;)la

k
= Z [lam+s (8]7 a])lam+5 (a“ al) - lam+s (a“ a]>lam+s (a“ aj)]a
s=1

k k
= > [(Fo)j5(Foii — (Fo)ij(Fo)i]) = D _[(trFy)? — tr(FL)?],
s=1 s=1
and the formula is proved. O

Lemma 5 The norm of the tension field o of M at the point a € M is given
by

k

lo(a)l]* = >_(trFy)*. (2)

s=1

Proof. By [8] ||o|| = m||k]||, where r denotes the mean curvature vector of M
at the point a. The first coordinates of x(a) are equal to zero since the mean
curvature vector belongs to the normal space. By definition of x (see [7]) and
using the previous lemma, we have

1 & 1
Kmts(a) = m E 19,1+ (01, 0;) = —EU"F&
i=1

which implies (2). O

4 Fermi decomposition of a stochastic process

Let (y:) be a stochastic process in M, starting at ao. In this section, we
construct a decomposition of (y;) into two processes (z;) and (z;), where the
first one is just the projection

Ty = W(yt)

and the second one is a process in R* starting at zero and describing the
orthogonal component (y; — x;) of the process (y;).

First, let us define stochastic parallel translation of a vector v € R™ along the
M-valued semimartingale (z;) due to [9]. First, we fix an orthonormal basis
(é1,...,e,) in R™ such that (ey, ..., e,) span T,, M. Further, for each x € M,
let P, denote the orthogonal projection of R™ onto T, M and Q, = Id — P,
denote the orthogonal projection of R™ onto N, M. Then P and () are smooth
functions from M to the vector space of linear maps from R” to R™ (see |9,



Lemma 1.24]). Since we have fixed an orthonormal basis in R™ we can also
say that P and @ are smooth functions from M to gl(n), where gl(n) is the
linear space of all n x n-matrices with real elements. In the sequel, we will
always identify matrices with corresponding linear operators if there is no risk
of confusion. For x € M and w € T, M, we define

Ty(w) = dQu (1) Py + dPy(w)Q, € gl(n).

Definition 6 Given v € R, let v, = wv, where (u;) solves the Stratonovich
stochastic differential equation

oug + Ty, (dz)uy =0 with ug =1 € gl(n). (3)
Then (1) is called stochastic parallel translation of v along (x¢).

Lemma 7 1) The system of vectors (useq, ..., uey,) s an orthonormal basis
in R™ such that the first m wvectors form an orthonormal basis in T,,M and
the last k vectors form an orthonormal basis in N, M ;

2) ul' solves the equation dul = ulT,,(6x;) with ul = I;

Proof. 1) By Theorem 3.18 from [9], the process (u;) is orthogonal for all ¢
and satisfies P,,u; = u.P,,. Hence P, uie; = ui Py e; = uge;, for all ¢ < m and
therefore ue; € T, M for all i < m and for all ¢.

2) It follows from (3) that du] = —[Ty, (0z)ue]” = wf (—T'Z (d2,)). Further, us-
ing Lemma 2.39 from [9], which says that T'7 = —T', we get du] = ul [, (dz;).
O

Thus, for each ¢, the coordinate system (u;e;) is an orthogonal coordinate
system corresponding to x; in the sense of the Definition 1. This allows us to
construct the processes (Fs(xy, u;)) which are defined by F; with respect to the
coordinate system (u.e;) at the point ;. In this case Fy are smooth function
from M x o(n), where o(n) C gl(n) is the set of the orthogonal matrices.

Further, let pr; : R™ — R™ (respectively, pr, : R® — R¥) be the linear operator
that maps u € R™ to its first m (respectively, to its last k) coordinates. Denote
by pr;' : R™ — R” (respectively, pry* : R¥ — R") the right inverse to pr,
(respectively, to pry) such that pry'pr; = P,, (respectively, pry'pry = Qq,).
We define linear operators I; : R* — R™ and J; : R® — R* by

I; = pryu} and J; = pryul .
Definition 8 Let (z;) be the orthogonal component of (y;) precisely defined by

Zt — Jt(yt — .fl'ft).



We call the pair of the processes (x;) and (z) (with values in M and RF,
respectively) Fermi decomposition of the process (y;).

5 Construction and properties of the vector field v

In order to define the vector field v mentioned in the introduction notice that
there are two natural measures Ag» and Ag on M, . The first one is inherited
from R" since M., C R". The second one is defined by

Ao (A) = /ﬂ oy M (A)dAu(2), A C M, Borel,

where A, = 7~!(z) and A\gx and \j; are the Lebesgue measures on R¥ and M,
respectively. We have used here the fact that A, C N, M and that there is a
linear isometry between N,M and RF. Moreover, the Lebesgue measure Agx
is independent of the choice of such an isometry and hence A4 is well-defined.

Lemma 9 \g s equivalent to Agn, and the density is given by

d\a

_ 11— 5F -1
d)\Rn(a) det[l — 2°Fy| 7,

where z and (Fy) are from some local representation corresponding to a € M, .

Proof. Let a € M,,, (y') be an orthogonal coordinate system corresponding
to a, and f (and so (F) and z) be from the local representation of M at the
point a.

Let V' C M be a neighborhood of 7(a) and U C R™ be a neighborhood of
zero such that the mapping ¢ : U — V given by

tho() = (z, f(x))

is a bijection. Let v : U — R™ be smooth functions such that (v4(z)) is
an orthonormal basis of Ty, )M and v4(0) is the (m + s)-th basis vector of
the coordinate system corresponding to u. Consider now the mapping v :

Ux B(gg) — (V) given by
¢(JI, Z) = 7vDO(*r) + Zsys(x>‘

We have



where the star denotes some k£ x m matrix. In fact,

9:+9(0, 2) = v45(0)

and therefore two right blocks of D(0, z) are 0 and I, respectively. In order
to compute the left upper block notice that vy = afn,, where of : U — R are
some smooth functions such that o®(0) = §? and

mp(z) = (Vi) o tho.
Then, for i < m, we have using 7(0) = 0
Oaii(0, 2) = 815 + 2° 00l o + 2° AR Dim o

= 0ij + 2°0¢0i00(0) = 0ij — 2° (Fo)ij-

It remains to notice that by definition Ag is locally the image measure of
Ay ® Ak under the mapping 1. Therefore

d\
©_(a) = det[Dy(0, 2)] 7" = det[l — 2°F,] 7,
and the statement is proved. O

Let us now define the vector field v on M., by

d\a
Dgn |’

v(a) = Qn(a) [V log

Lemma 10 For a € M., v(a) is given by
v(a) = (0,...,0,tx(F[I = 2P F) ), .t (Fill = 2P F,) 7))
i an orthogonal coordinate system corresponding to a.

Proof. The first m coordinates of v(a) are equal to zero by the definition of
v. Further, by Lemma 9 we have

e

v(a) = Q) [V log ] = Qr(a) (V log det[] — z°(a, u)Fy(a, u)]_l)
= Qnr(a) (—trVlog[l — 2°(a,u)Fy(a,u)])
and therefore

0" (a) = —tr O,s log[l — 2P F,] = tr(F,[I — 2PF,]7),

foralll1 <s<k. O

10



Lemma 11 Fora € M, div v(a) = R(a), where R(a) is the scalar curvature
of M at the point a.

Proof. Since divu(a) is independent of the choice of orthogonal coordinates
let us compute it in the coordinates (y') corresponding to a. Using the fact
that v(y) € Nx,)M for all y, we have

v(y) = a’(y)ns(z(y)),

where o are smooth functions with a®(0) = trFy (since we have v™*5(0) =
trF by Lemma 10) and z'(y) = (¢ 1) (y), 1 < i < m. It follows from (4) that

10
* 1

(D)~1(0,0) =

and therefore 9,:27(0) = &/. Then using 9; f,(0) = 0 and the definition of 7;
we obtain

D 00(0) = = > a®0; [0 |o = = D _trF(Fy)y = — > _(trFy)?,
i=1 1,5,] %,8

> Oy sv™5(0) = 2—:1 O str(Fy[I — 2PF,]71)(0) = 2_:1 tr(F,)2

s=1

Finally, by Lemma 4 we get

m k k k

divo(a) =3 00 (0) + > Oyt (0) = = (trF,)* + ) tr(Fy)* = —R(a)
=1 s=1 s=1 s=1

which proves the assertion. O

6 Construction and properties of the shifted process (y;)

Let us extend the vector field v from M., to R™ in such a way that the
extension is smooth and has compact support (the choice of the extension is
not essential for further considerations). We denote such an extension also by
v. Then there exists a unique weak solution (y;) of the stochastic differential
equation

dy, = dby + 0(yy)dL, (5)

Yo = Qo

11



Let 7 be the exit time of (y;) from M,,. Consider the stopped process (y:n,) and
denote by ((x;), (z)) its Fermi decomposition. Further, consider the process

@:[ﬁm.

It is also an n-dimensional Brownian motion by the Lévy’s characterization
theorem since it is a continuous local martingale with déid@ = 0;;dt by the
orthogonality of ug for all s. Denote by 52 (respectively, by 5;’ ) the first m
(respectively, the last k) components of by.

Lemma 12 The [t6 differential of the process (x;) up to time T is given by

- 1
dary =y pr {1 = 2 Fy (e, u)) by + 5 Am(yy)de.

Proof. By Lemma 2 we can compute Dm(y,;) in the coordinate system corre-
sponding to the basis (use;). Hence the formula for Dm(y,) with respect to the
original coordinate system (e;) is given by

Dn(y,) = utprl_l[f — 2 Fy(zy, ut)]_lprlutT.

Now by It6’s formula and using v(y;) € N, M we obtain up to time 7

1
dx, = dn(y) = Dr(y)dy, + §DD7T(yt)dytdyt

1 1
= w;pry (I — 2 Fy(y, ue)] " prywy (dby + §U(yt)dt) + §A7T(yt)dt

~ 1
= wpry [ — 2 Fo(ay, )]~ db + §A7T(yt)dta

which completes the proof. O
Lemma 13 z = b up to time 7.

Proof. Let us show that the Stratonovich differentials of the processes (z;) and
(b) coincide. Recall that for two continuous semimartingales a and b holds
adb = adb + %6a5b. Then, using the equalities dQP = —QdP and dP(Q) =

12



—Pd(@), the definition of I', and Lemma 7 we obtain
ob = dbl! = pryu? db,
1
= thbt pr2(5ut §bt
1
= thbt przut th (5xt)5bt

1 1
= Jtébt — §Jtdet (5xt)Pzt5bt — §JthLEt (5:rt)th5bt
= thbt —+ %JtQIthIt (5xt)5bt —+ %Jtpxtszt (5xt)5bt

1
= Jtébt + ijtdprt (5[[})(5(%

Analogously, using vy, — 7(y;) € N, M and Lemma 2, which implies that
Im[Dr(y)] = TryM, we compute

dz = pryduy (ye — m(ys)) + prouy 6(ye — m(y:))
= prouf To, (620) (4 — m(ye)) + prouf 6y — prow D(ye)dy,
= Ji(dQy,(62¢) Py, + d Py, (624)Qu, ) (ye — m(ye)) + J10y,
= Jioy; — Jthtdet(éxt)(yt - W(yt))
= Jioy,
= J,0by + §Jtv(yt)dt.

It remains to show that JidP,,(dx;)0b; = Jyv(y,)dt or, equivalently, that the
last k& coordinates of of the vectors dP,,(dx;)db; and v(y;)dt with respect to
the coordinate system (use;) coincide. We compute them using Lemma 2,
Lemma 10, and Lemma 14 below.

(dP,, (02)8b,) ™ = (0; Py, )mrsi(pryul 6,) (ul 5b;)F
= O fo(1) (pryuf Dr(y,)oy,)" (uf oby)*
= O fo(ae) (pryuf wpry [ — 20 Fy (2, up)] " pryuf 6by) (uf 0by)*
= O () (I = 2 Fp(e, ue)) ' pry)ie (uf ) g (60)7 (uf )i ()"
= O fo(w) [T — 20 Fy(ay, )] dt
—tr( V(e u)[I — 20 Fy (g, up)) ) dt

vt (yt)

This implies 6z, = 60/ and z = b/’ since this stochastic differential equation is
exact. O

Lemma 14 dP, is given by formulae

0 o,Df"
o.Df 0

0P, —

13



i an orthogonal coordinate system at x € M.

Proof. Let z € M. Consider an orthogonal coordinate system (y°) at z and
the local representation (f;) of M at the point z. Notice that

I —DfT 10
P pu—
Df 1 Df 0

since the first m columns of the matrix on the left hand side generate the
tangent space Ty ¢(y))M and the last & columns generate the normal space
Ny, ) M. Differentiating with respect to y;, we obtain

I —DfT 0 —-8,DfT 0 0
o, P + P =
Df 1 o.Df 0 9,.Df 0

Evaluating at zero and using D f(0) = 0, we get

9.p 0 O 10 0 —-o;DfT 0 o;,DfT
o onfo| [oof|aDf 0 | |aDf 0
which proves the lemma. O

7 Surface measure corresponding to the process (y;)

Let p be the distribution of the process (y;). Denote by p. the normalized
restriction of p to C'(M.)

e = pleea)
T u(C(M.))

Proposition 15 The family p. converges weakly to Wy, i.e., the surface
measure corresponding to the process (y) is just the Wiener measure on C(M).

Proof. We need to prove that the conditional law of the process (y;), given
that the (y;) does not leave M. before time 1 converges to Wy, as ¢ tends to
Z€ero.

Consider the Fermi decomposition ((z), (2;)) of the stopped process (yiar)-
By Lemma 12 and Lemma 13 the process (z;) is just a k-dimensional Brow-
nian motion independent of the m-dimensional Brownian motion driving the
process ().

14



Consider now any probability space on which there is an n-dimensional Brown-
ian motion (b}) and, moreover, there is a family (z7) of processes such that each
(2f) has the same law as (z;) under p. and the whole family {(2§) : ¢ < o}
is independent of (b7). On this probability space we consider the filtration
(F:) generated by {b% : s < t} and all the processes (2;), 0 < t < 1. Then
(by) is an n-dimensional (F;)-Brownian motion, (pr;b;) is an m-dimensional
(F:)-Brownian motion and the coefficients in the system of the stochastic dif-
ferential equations

dug + [pe (65)uf = 0,

de§ = ufpry ' [I — (25)*Fy(af)] ' prydb; + 1Am (2§ 4+ ufpry ' 2f)dt,

are adapted. It follows from [|2f|| < e that the coefficients are also bounded
and hence there is a unique solution (uf,z5) of this system for each ¢ and
the law of (zF) is the same as the law of (z;) under p.. Moreover, on this
probability space the processes (2§) converge uniformly to zero. It follows now
from Lemma 16 below that (u$, z5) converges locally uniformly in probability
to the solution (@, Z;) of the system of the stochastic differential equation

dug + Iz, (6%¢)uy = 0,
di‘t = ﬂtPaodbf + %Aﬂ'([ft)dt,

It remains to show that the process (z;) is a Brownian motion on M. Since 4,
is orthogonal for all ¢ we have u,P, ,dbj = Py, u,db; = Py, db*, where (b}*) is
another n-dimensional Brownian motion starting in ag. Further, notice that
P, = Drn(x) for x € M by Lemma 2, and the It6 differential equation for the
process (Z;) now looks like

di‘t = Dﬂ'([f’t)db;k* + %Aﬂ'(jt)dt,

To = ayg.

Due to [10, Th.30.14] the drift ¢ of the Stratonovich stochastic differential
equation at the point x € M can be computed in local coordinates corre-
sponding to x, and using 9,77 (a) = 67 for j,¢ < m and ;77 (a) = 0 otherwise,
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we obtain

2¢' = Ar'(,0) Z&ﬂra (z) = Ar'(x,0) ZBNW z,0)

7j=1

= Z 0" =0

J=m+1
as m is constant in the normal directions. Now the Stratonovich stochastic
differential equation for the process (Z;) looks like
0z, = Py, 007,
T = ag.
Hence Z; is a Brownian motion on M. O
Lemma 16 (z°,u®) — (z,a) locally uniformly in probability.

Proof. Denote the processes (x£, u$) and (7, 4;) by (a5) and (a;), respectively.
Then the processes (a$) and (a;) satisfy the stochastic differential equations

dai = fi(ai, z;)db; + fa(ag, z;)dt  and  da, = fi(a, 0)db; + fo(ay, 0)dt

respectively, with the same initial conditions, where f; are short notations
for the coefficients. It can be easily seen that f;(a,z) — fi(a,0) as z — 0
uniformly in a and the functions f;(z,0) are Lipschitz. Now, let
¢e(t) = Esup |[a5 — @5||2.
s<t

It is sufficient to show that ¢.(1) — 0 as € — 0. Let 6 > 0. According to the
uniform convergence of f;, choose €’ such that for all x € M and for all z with
l|z|| < ¢’ hold || fi(a, z) — fi(a,0)|] < o (it does not matter what norm we use
since they are equivalent). Then we have for ||z|| < &’ and for all ay, ay

1fi(a1, 2) = filaz, 0)]1* < 2] fila, 2) — fi(a1,0)||* + 2|| fi(ar,0) — fi(az, 0)|[?
< 26% + 2¢||ay — a2H2,

where ¢/? is a Lipschitz constant for all fi(z,0) simultaneously. Then, by
Corollary 11.2.2 from [11], we obtain

7.t = Esup | [ T1(a5, 25) = fil@n, 0)db; + [ [folai25) = fa(an, 0)ldul

s<t

< CiE |15 25) — filaw,O)|Pdu +eiE [ [1fafa 25) — fo(@s 0P
< 0% + c;:,IE/ ||as, — @y||*du
0

t
< 0% + 03/ fe(u)du, for all t and e < &',
0
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where ¢y, ¢9, and c3 are positive constants independent of . Now by Gronwall’s
lemma f.(t) < 6% and in particular f.(1) < %% for all € < /. Hence
f«(1) — 0 and the processes (z5,u$) converge to (Zy, u;) locally uniformly in
probability. O

8 Absolute continuity of W with respect to i, formula for the cor-
responding density, and its approximation

Now we study the relation between the families W, and .. It can be derived
from the relation between the measures W and p. We prove in the following
lemma that these two measures are equivalent and compute the corresponding
density in terms of the vector field v.

Lemma 17 W is equivalent to p and the density p is given by

pz%z@{p{—%/{)( ), dby) + / w(by)| dt} (6)

Proof. Recall that pu is the distribution of the process (y;), which solves the
stochastic differential equation (5). Hence the process (y;) satisfies also

1
dbt = dyt — év(yt)dt

It follows now from Girsanov’s theorem that the distribution W of (b;) is
equivalent to the distribution p of (y;) and the corresponding density is given

by (6). 0

It is easy to see that the density p is not necessarily continuous and bounded.
In order to prove weak convergence of the family W, we will approximate p
by a continuous and bounded function in such a way that the approximation
is quite good on the paths staying in M, for the whole time. In the definition
below we describe the type of the approximation we need, in Lemma 21 we
investigate the approximation of stochastic differentials with respect to dt and
dxy, where ((z¢), (2;)) is the Fermi decomposition of the process (b;) stopped
while leaving M. This enables us to find the approximation for the density
p (Proposition 22) since the stochastic integrals in (6) partly can be reduced
to integrals with respect to dt and dx and partly are approximated directly.

Definition 18 Let £ : C(R™) — R be a measurable function. We say that £ is
O(e) if there exists ¢ > 0 such that E,_[¢|P < (pce)? for allp € N. We say that
a stochastic differential is O(e) if the corresponding stochastic integral from
zero to one is O(g).
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It follows from Minkowski’s inequality that the sum of two O(e) is again O(e).
Lemma 19 Let £ = O(e), then E,_|¢* — 1] — 0 as € — 0.

Proof. We have by the definition of O(¢)

“|e —1|<E%Z‘ Z ue|f|p i

pl‘ p=1

@Iﬁﬁ

since the radius of convergence of the power series 37 ° p, B2 oP is positive. O

Lemma 20 Let ((x¢),(2¢)) be the Fermi decomposition of (b;) stopped while
leaving M., There are continuous bounded functions g,., gus from the product
space o(n) x M x By(eg) to gl(n) and to R", respectively, such that

1) (624)(0x)T = guw(ug, T4, 2¢)dt;
2) oudw, = gux(ubxta Zt)dt{
3) (5$t)(5zt)T = Onxkdt

Proof. Using Lemma 2 and the computations for the process (b;) analogous to
the computations in Lemma 12 and Lemma 13 for the process (y;), we obtain

(5xt)(5xt)T :D’]T(bt)(Sbt((Sbt)TDﬂ'(bt)T = gm(ut, Ty, Zt)dt7
(624) (02)T =wypry [ — 25 Fy(y, ug)] 700, (60))T = 0purdt;

dudry = — Uy, (02 u0y = Guo(uy, T4, 2¢)dt
which proves the statement. O

Lemma 21 Let f: o(n) x R" x R¥ — R be a smooth bounded function. Then

flug, zg, z)dt = f(ug, x,0)dt + O(e),
fug, 24, z0)dat = f(ug, 24, 0)dzl + O(e),
fug, 24, 20)02t = f(ug, 24,0)0z + O(e),

for all 1.

Proof. The first assertion is obvious. It suffices to prove the last two formulas
for the case when f(u,x,z) =0 for all z € M and u € o(n).

Let (w¢) be the coordinate process on (C(R™),F;) and 7 be its exit time
from M,,. Since (w;) is a semimartingale with respect to w its projection
x; = m(winr) is also a semimartingale with respect to p and therefore the
Fermi decomposition ((z), (z;)) of the stopped process (win,) is well-defined.
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Denote

6(&)) = Al f(ubxb Zt)dl’i

Notice that p. is absolutely continuous with respect to p and the corresponding
density is given by du./du(w) = ¢-(||2||), where || - || is the supremum norm
on C([0, 1], R¥) with respect to the euklidean norm |- | in R* and ¢, : R — R
is given by . = p(C(Mg,))1(04-

For each €, let us approximate . by measures p” that are not only absolute
continuous but also equivalent to p. Let (¢”) be a sequence of functions from
R to R such that ¢ > 0 and ¢ | ¢.. Denote

eIzl
E.p2(]]=11)

and define p! by the measure that is absolutely continuous with respect to
p with density d?. Then p is a probability measure equivalent to p since d”
is positive and E,d” = 1. Therefore p and p have the same semimartingales
and, in particular, the process (z;) is a semimartingale with respect to u”.

dl(w) = >0

Let © = m 4 a and x = m! + a? be the decompositions of (z;) into a local
martingale part and a part of bounded variation with respect to p and pu”,
respectively. Let us show that these decompositions coincide, for all n and e.
Consider (d?); = E,[d?|F;] and notice that (d?); = E,[d?|F]], where F] is the
natural filtration of (z;). This follows from the fact that

(d)r = By [dZ|F]

1
=———FE,[¢"(max{ sup |z, sup |z + (2, — = F
E oy e ma{ sup [z, sup a1 + (o = 20|17

1
= = ? maxy su Zs|, su z +<:JT dw (Z)
E“SO?(HZH) /90( {0<sI§)t‘ ‘OSTSI{l)—t‘ K ‘}) ( )

Co([0,1—1],R)

is measurable with respect to F; (the last equality is fulfilled since z, — z is
a Brownian motion independent of F;). Hence (see [12]) the process d” is a
stochastic integral with respect to the process z, i.e. (d?); = [5 hydzs for some
k-dimensional process (h;). Then by Girsanov’s theorem and by Lemma 20

(3)

(mf)e =my — /Ot @d[mt, (dZ2)e] = my — /Ot «%?)t(dxt)(dzt)ThtT = my.

This means that the process (z;) has the same semimartingale decomposition
with respect to the measure p and all measures p”.
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Further we have (dmi)? = (dxi)? < ¢idt and |dai| = |Ax'(b;)dt|/2 < codt, by
the definition of (x;) and by Lemma 20, with some constants ¢; and ¢;. Now
we can use Corollary 11.2.2 from [11] (notice that the constant ¢, there can
be chosen equal to (2p)P)

Bl < (oVE, | ([ (a00?)

[t s iaa) ([l | < Qo+ &) < ey

[0 0,2

P
2

where c¢3 is the Lipschitz constant for the function f with respect to z and
Cc = 403(01 + CQ).

By the monotone convergence theorem we have E,¢2(||2]]) — E,¢:(]|2]]) =
as n — oo and

_ o Bl
B o = By (eIDIe@)l = Jim =208

= lim E,dZ[¢] = lim B, [¢[” < (pce)”

by the previous estimate for E,» |{[P. This implies f(u, 2, z)dz; = O(e). The
last statement follows now from the previous ones and from Lemma 20. In
fact,

fug, e, 20)07y = fug, 24, 2¢)dry + §5f(ut7 Ty, %) 0
1 o] .
= §Duf(ut, T, zt)(;ut(sxi + éDxf(Ut, T, Zt)(S:rt(Sxi
1

+ isz(ub T, Zt)é‘zté‘xi + O(E) = O<€)7

as Dy f(ug, x4,0) = 0, Dyf(us,x4,0) = 0, and dus0z! and dx;0xt are propor-
tional do dt. O

Proposition 22 The asymptotic of the density is given by p = poexp(O(e)),
where

o) =exp { =5 [ RGede+ 5 [ llolPear}

R(a) is the scalar curvature, and o(a) is the tension field of M at the point
a € M.
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Proof. The asymptotic of the second term in the exponents is given by
Lemma 5, Lemma 10, and Lemma 21 (1)

[o(b)[*dt = [v(z)*dt + O(e)

k
Z (trFy(y, up))2dt + O(g) = ||o||*(z)dt + O(e).

Consider now the first term. By the definition of the Fermi decomposition we
have by = ¢ + zjuemys and z; = w(by) up to the exit time 7. Using It6’s
formula, the transformation rule from the It6 to the Stratonovich calculus,
and Lemma 11, we get

1
<U(bt), dbt> = <’U(bt), (Sbt> — §<d'U(bt), dbt>
1
= <’U(bt), (5(7T(bt) + qutem—i-s)) - §<Dv(bt)dbt, dbt>
1
= (v(by), D7(by)dby + 62°urernis + 2°0Urepys) — §divv(bt)dt
1
= 02°(v(by), wemas) — 2°(V(by), T, (020 ) usermrs) + QR(xt)dt + O(e).
We have used here the fact that ImD7(y) L N, M which implies
<’U(bt), Dﬂ(bt)ébt> =0.
Now let us show that the first term is O(e). In order to do this consider the
process
¢y = trlog[l — 2] Fs(xy, uy)].
By the equation of the parallel transport (3) we have 0 Fs(x¢, uy) = @(4, ug)dzy,
where ¢ is some smooth function. By [t0’s formula, Lemma 10, and Lemma 21
dc; can be computed as
— tr(Fy (e, ) [I — 2P Fy(we, ug)] 1) 028 — 25tr[l — 20 Fy (e, we)] O F, (24, )
= — 62°(0(wyp), Wpemys) — 2541 — 2V F (24, up)] o(2, wg) o
= — 02°(v(wy), wemys) + O(e),

On the other hand d¢; = O(e) since trlog I = 0. Together we get

02°(v(wy), wemys) = O(e).
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Further, notice that the second term is equal to zero. In fact, by the definition
of I and the relation dP() = —Pd() we have

(v(be), Lo, 6zt )uremys) = (v(be), (dQu, (62¢) Py, + d Py, (074) Qu, )ttCrnss)
= —(v(br), P, dQq, (0x1)urems) = 0

since €,,+5s and v(b;) belong to N,, M. Finally,

b= exp {—% /01<v(bt), dby) + é /01 (b))
= exp {—i /01 R(z)dt + é /01 lo| () dt + O(e)} ,

which completes the proof. O

9 Convergence of W, and formula for the density

In the last section we prove the main theorem. Consider the function py intro-
duced in Proposition 22. It is defined on C'(M) and is continuous and bounded.
Moreover, it can be extended to a continuous bounded function on C(R™). In
the sequel we understand under p, this extension. It turns out that py ap-
proximates the Girsanov density p = dW/du near the manifold also in the
following sense.

Lemma 23 E, |p — po| = 0 as ¢ — 0.

Proof. Since py is bounded there exists a constant ¢ such that |po(w)| < ¢ for
all w. Further, denote by £ the O(e)-part in the asymptotic representation of
p. Then

B |p— pol = By lpo(ef — 1] < cB, € = 1] =0
by Lemma 19. O

Theorem 24 Let W, be the normalized restriction of the flat Wiener measure
W in R™ to the set of the paths that do not leave the tubular e-neighborhood
of the manifold M up to time 1. Then W. converges weakly to a measure
Wo, which is equivalent to the Wiener measure Wy, on the manifold, and the
density is given by

dW, () = exp{—i fol R(wy)dt + %fol HU||2(wt)dt}
AWar™ " B, exp { =1 3 R@)dt + 1 i [|o][2(w)dt}

where R(a) is the scalar curvature and o(a) is the tension field of M at the
point a € M.

22



Proof. First, let us prove that pu. — poWy, weakly. Let h : C(R™) — R be
continuous and bounded. Then

|Epush - EpoWMh‘ < ||h||ooEue|p - PO‘ + ‘Eﬂehpo - EWMhPO‘ — 0,

where the first term tends to 0 by Lemma 23 and the second term tends to 0
due to the weak convergence of pu. to W, and since hpy is continuous. Now
we can compute

Ewlopoh _ . Edoewyph . Euloeyhe Bl

lim Ew_h =lim ———— = lim

E, ph E,.h E h E h
= lim Lo PIV — lim 22" — lim poWar's lim W PO
e=0 Eﬂsp e—0 ]EPHE 1 e—0 EPOWM 1 e—0 ]EWM Po
Po
— Ew,, h ,
T lEWMpO‘|

where the last line follows from the first step of the proof. This means that W,
converges weakly to a measure Wy that is absolutely continuous with respect
to the Wiener measure W, with the density p given above, and the theorem
is proved. O
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