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Consider the Schrödinger operator

H = −∆ + b

acting in Rd . The potential b = b(x) is assumed to be
real, smooth, and either periodic, or almost-periodic.

The density of states of H can be defined by the formula

N(λ) = N(λ; H) := lim
L→∞

N(λ; H(L)
D )

(2L)d .

Here, H(L)
D is the restriction of H to the cube [−L,L]d with

the Dirichlet boundary conditions, and
N(λ; A) = #{λj(A) ≤ λ} is the counting function of the
discrete spectrum of A.
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To begin with, let us assume that the potential b is
periodic with lattice of periods Γ. Let Γ† be the dual lattice
to Γ. Then we can perform Floquet-Bloch decomposition
and express the operator H as a direct integral

H =

∫
⊕

H(k)dk,

quasi-momentum k running over Rd/Γ†. Here,
H(k) = (i∇+ k)2 + b acting in L2(Rd/Γ). Then we can
express the density of states as

N(λ) =
1

(2π)d

∫
Rd/Γ†

N(λ,H(k))dk.



If we put H0 = −∆, for positive λ we have

N(λ; H0) = Cdλ
d/2,

where
Cd =

wd

(2π)d

and

wd =
πd/2

Γ(1 + d/2)

is a volume of the unit ball in Rd .



There is a long-standing conjecture that the density of
states of H enjoys the following asymptotic behaviour as
λ→∞:

N(λ) ∼ λd/2
(

Cd +
∞∑

j=1

ejλ
−j
)
, (1)

meaning that for each K ∈ N one has

N(λ) = λd/2
(

Cd +
K∑

j=1

ejλ
−j
)

+ RK (λ) (2)

with RK (λ) = o(λ
d
2−K ).



The coefficients ej are real numbers which depend on the
potential b. They can be calculated using the heat kernel
invariants, computed by Polterovich, Hitrik-Polterovich,
and Korotyaev-Pushnitski; they are equal to a certain
integrals of the potential b and its derivatives. For
example,

e1 = − dwd

2(2π)d |Rd/Γ|

∫
Rd/Γ

b(x)dx

and
e2 =

d(d − 2)wd

8(2π)d |Rd/Γ|

∫
Rd/Γ

(b(x)2)dx.



Formula (1) was proved in the case d = 1 by Shenk-Shubin
(1987) and d = 2 by L.P.-Roman Shterenberg (2009)

If d ≥ 3, only partial results are known, works by Skriganov,
Karpeshina, Helffer, Mohamed, Veliev, Sobolev, Knörrer,
Trubowitz, L.P.

In particular, Yu.Karpeshina showed that when d = 3, formula
(2) is valid with K = 1 and R(λ) = O(λ−δ) with some small
positive δ and R(λ) = O(λ

d−3
2 lnλ) when d > 3.

If b is almost-periodic and d = 1, formula (1) was proved by
Savin (1988). For d ≥ 2, (2) is known only with K = 0 and
R(λ) = O(λ

d−2
2 ) (Shubin, 1987).
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Theorem.
Formula (1) is valid for smooth periodic b and arbitrary d.



Let b be either quasi-periodic:

b(x) =
∑
θ∈Θ

aθeiθx

(Θ being a finite set), or almost-periodic (a uniform limit of
quasi-periodic functions).

For each almost-periodic function the
following limit

M(b) := lim
L→∞

∫
[−L,L]d b(x)dx

(2L)d

exists and is called the mean of b. For each θ ∈ Rd we define
the Fourier coefficient

aθ = aθ(b) := Mx(b(x)e−iθx)

and the spectrum Θ(b) := {θ ∈ Rd , aθ 6= 0}.
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Each almost-periodic function has a (formal) Fourier
series

b(x) ∼
∑
θ∈Θ

aθeiθx.

For a set S ⊂ Rd by Z (S) we denote the set of all finite
linear combinations of elements in S with integer
coefficients.

Condition A. Suppose that θ1, . . . ,θd ∈ Z (Θ). Then
Z (θ1, . . . ,θd ) is discrete.

This condition can be reformulated like this: suppose,
θ1, . . . ,θd ∈ Z (Θ).Then either {θj} are linearly
independent, or

∑d
j=1 njθj = 0, where nj ∈ Z and not all nj

are zeros.
Theorem.
Formula (1) is valid for quasi-periodic b satisfying
Condition A.
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Suppose, b is almost-periodic. Let k ∈ N be arbitrary. We
require that for each sufficiently small ε there exists a
quasi-periodic potential

b̃(x) =
∑
θ∈Θ̃

ãθeiθx

so that
||b − b̃||∞ < ε.

Let Θ̃k := Θ̃ + Θ̃ + · · ·+ Θ̃ (algebraic sum taken k times). We
require supθ∈Θ̃k

|θ| � ε−1/k , infθ∈Θ̃k ,θ 6=0 |θ| � ε1/k . We also
require that the angles between all subspaces spanned by
elements of Θ̃k are bounded below by Cε1/k .
Let θ1, . . . , θm ∈ Θ̃k , m < d . Denote by V the linear span of
these vectors and put ΓV := Z (Θ̃k ∩V). Condition A implies
that ΓV is discrete. Our final requirement is: |V/ΓV| � ε1/k .

Theorem.
Formula (1) is valid for almost-periodic b satisfying Condition A
and all the above conditions.



The coefficients are computed by similar formulas, e.g.

e1 = − dwd

2(2π)d M(b)

and
e2 =

d(d − 2)wd

8(2π)d M(b2)

Actually, we prove the following formula:

N(ρ2) = Cdρ
d +

d−1∑
p=0

K∑
j=−d+1

ej,pρ
−j(ln ρ)p + o(ρ−K ),

but most of the coefficients turn out to be zero due to
Hitrik-Polterovich.
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What is the analogue of the formula

N(λ) =
1

(2π)d

∫
Rd/Γ†

N(λ,H(k))dk

for almost-periodic b? There are two definitions, and we need
them both!

Definition 1:
In all points of continuity of N, we have:

N(λ) = Mx(e(λ; x,x)),

where e(λ; x,y) is the integral kernel of the spectral projection
of H.
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Definition 2 (cheating)

N(λ) = T(Eλ(H̃)) = D(Eλ(H̃)L2(Rd )).

Here, T is the regularized (von Neumann) trace, and D is
the relative dimension.

In particular, N(λ; H) = N(λ; U−1HU), where U is a
unitary operator with almost-periodic coefficients.
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Another useful trick: often, we work with operators acting
not in L2(Rd ), but in B2(Rd ) (Besicovitch space). This is a
collection of all formal sums∑

j

ajeiθj x

with ∑
j

|aj |2 < +∞.

This is a non-separable Hilbert space. Results of Shubin
show that the norms and spectra of almost-periodic
operators acting in L2(Rd ) and B2(Rd ) are often the same.



Assume now for simplicity that b is periodic. There are two
methods of obtaining information of the eigenvalues of H(k).
The first method is called the method of spectral projections.
Let {Pj} be spectral projections of H0 (i.e. they are projections
commuting with H0) so that

∑
Pj = I. We look at the operator

H̃ =
∑

j

PjHPj .

If we choose the projections Pj very carefully, then the spectra
of H and H̃ are close to each other.

The second method is called the method of gauge transform.
We look at the operator

H1 = e−iΨHeiΨ.

After carefully choosing bounded pseudo-differential
almost-periodic operator Ψ, we can achieve that H1 is
norm-close to the operator H2 which is ‘almost’ diagonal and so
has many invariant subspaces.
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Both methods produce two types of invariant subspaces
(of H̃ or H2): stable (corresponding to perturbations of
simple eigenvalues, lying not too close to other
eigenvalues) and unstable (corresponding to
perturbations of a cluster of eigenvalues lying close
together). It is straightforward to compute the contribution
to the density of states from the stable subspaces.
Unstable eigenvalues cause the main problem.

Both methods reduce operator acting in unstable
subspaces to the form

r 2I + S(r),

where r ∼ λ1/2 and S(r) is a self-adjoint finite-dimensional
operator with (almost explicitly written) analytic symbol.
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If we use the method of spectral projections, we can
achieve that S(r) = Ar + B = r(A + εB), where A and B
are fixed and ε = r−1 is small.

We can use the expansion

λ(A + εB) ∼
∑

λjε
j ,

but we cannot integrate it against dk, since the
coefficients λj can be unbounded functions of k.

In our previous paper, we have shown that if d = 2, we
have

λ(A + εB) ∼
∑

εjλj ±
√∑

εj λ̃j ,

where the coefficients λj and λ̃j are bounded functions of
the quasi-momentum and so can be integrated against
dk.
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Now we use the method of gauge transform. Then S(r)
does not have a nice form, but we need to compute the
contribution from all eigenvalues of r 2I + S(r), whereas
before we had to separate the eigenvalues contributing to
the density of states from the rest of eigenvalues. Since
||S′(r)|| < r/2, each eigenvalue λj(r 2I + S(r)) is an
increasing function of r . Thus, the equation

r 2 + λj(S(r)) = λ =: ρ2

has a unique solution, denoted by τj . The contribution to
the density of states equals∑

j

τm
j ,

where m ∈ N.



Let γ be a contour in the complex plane containing all
points τj . The points τj are singularities of
det[S(z) + z2I − ρ2I]. Using

tr[F ′(z)F−1(z)] = (det[F (z)])′(det[F (z)])−1

and the residue theorem, we obtain:



∑
j

τm
j

=
1

2πi

∮
γ

zm+1(det[S(z) + z2I − ρ2I])′(det[S(z) + z2I − ρ2I])−1dz

=
1

2πi

∮
γ

tr[zm+1(2zI + S′(z))(S(z) + z2I − ρ2I)−1]dz

=
1

2πi

∮
γ

tr[(2zm+2I + zm+1S′(z))(z2 − ρ2)−1
∞∑
l=0

(−1)lSl (z)(z2 − ρ2)−l ]dz

=
1

2πi

∞∑
l=0

(−1)l
∮

γ

tr[(2zm+2I + zm+1S′(z))Sl (z)(z − ρ)−(l+1)(z + ρ)−(l+1)]dz

=
∞∑
l=0

(−1)l

l!
tr

d l

dr l [(2rm+2I + rm+1S′(r))Sl (r)(r + ρ)−(l+1)]
∣∣
r=ρ

.


