
Periodic, almost periodic, and not periodic at
all problems

Leonid Parnovski

Department of Mathematics
UCL



Periodic problems



Periodic problems



Periodic problems



Periodic problems



Periodic problems



Periodic differential operators

Periodic Schrödinger operator

H = −∆ + V

with smooth periodic potential V = V (x), x ∈ Rd . This means
V (x + γ) = V (x) for all γ ∈ Γ.

The spectrum of H is absolutely continuous and has a
band-gap structure; in particular, it has no Cantor-like
component.

If d = 1, then the number of gaps is almost always infinite.
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Proved:
d = 2: V.Popov, M.Skriganov (1981)

d = 3; arbitrary d with rational Γ: M.Skriganov (1985)
d = 4: B. Helffer, A. Mohamed (1998)
Also, papers by Yu.Karpeshina (d = 3, singular potential),
E.Trubowitz, J. Feldman, H. Knörrer, B. Dahlberg, O.Veliev.
We can also consider the magnetic Schrödinger operator
H = (i∇+ A)2 + V , where A = A(x) is a periodic vector-function
with the same lattice of periods Γ. Then the Bethe-Sommerfeld
conjecture was proved only for d = 2 (A. Mohamed, 1997).
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Important tool when working with periodic problems:
Floquet-Bloch decomposition.

H =

∫
⊕

H(k)dk ,

where H(k) := (i∇+ k)2 + V acts in L2(Rd/Γ), k ∈ Rd/Γ′, and
Γ′ is the (analytical) dual to Γ. This means that

σ(H) = ∪k∈Rd/Γ′σ(H(k)).
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The spectrum of H(k) consists of eigenvalues:

σ(H(k)) = {λ1(k) ≤ λ2(k) ≤ . . . }.

Now we can define

`j := ∪k∈Rd/Γ′λj(k)

as the n-th spectral band, so that σ(H) = ∪j`j . Then for each λ
we can define two functions:

m(λ) = #{j : λ ∈ `j}

(the multiplicity of overlapping) and

ζ(λ) = max
j

max{t : [λ− t , λ+ t ] ⊂ `j}.

(the overlapping function)



Theorem. (A.Sobolev,LP, 2001)
Let d = 2,3,4. Then for sufficiently large λ we have:

Dimension m(λ)� ζ(λ)�

2 λ
1
4 λ

1
4

3 λ
1
2 1

4 λ
3
4 λ−

1
4

Unfortunately, the method does not work for d ≥ 5!
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If we want to prove the conjecture, we need to study the
eigenvalues of H(k). There are two types of eigenvalues of
these operators: stable (corresponding to perturbations of
simple eigenvalues, lying not too close to other eigenvalues)
and unstable (corresponding to perturbations of a cluster of
eigenvalues lying close together). It is relatively straightforward
to compute stable eigenvalues with high precision. Unstable
eigenvalues cause the main problem.

Luckily, there are not too
many of them!
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Theorem. (LP, 2008)
Bethe-Sommerfeld conjecture holds for operators H = −∆ + V
with smooth periodic V for all dimensions d ≥ 2 and all lattices
of periods Γ.

Moreover, for large λ we have m(λ) ≥ 1 and ζ(λ) ≥ λ
1−d

2 .

Theorem. (G.Barbatis,LP, 2009)
Let d ≥ 2. Then the Bethe-Sommerfeld conjecture holds for
operators H = (−∆)m + q with periodic pseudo-differential
operators q of order smaller than 2m − 1.

Theorem. (A.Sobolev,LP, 2010)
Let d ≥ 2. Then the Bethe-Sommerfeld conjecture holds for
operators H = (−∆)m + q with periodic pseudo-differential
operators q of order smaller than 2m. In particular, this
conjecture holds for periodic magnetic Schrödinger operators.
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Another line of research: the asymptotic behaviour of the
(integrated) density of states. The density of states of
H = −∆ + V can be defined by the formula

N(λ) = N(λ; H) := lim
L→∞

N(λ; H(L)
D )

(2L)d .

Here, H(L)
D is the restriction of H to the cube [−L,L]d with the

Dirichlet boundary conditions, and
N(λ; H(L)

D ) = #{λj(H
(L)
D ) ≤ λ} is the counting function of the

discrete spectrum of H(L)
D . More convenient definition:

N(λ) =
1

(2π)d

∫
Rd/Γ′

N(λ,H(k))dk



If we put H0 = −∆, for positive λ we have

N(λ; H0) = Cdλ
d/2,

where
Cd =

wd

(2π)d

and

wd =
πd/2

Γ(1 + d/2)

is a volume of the unit ball in Rd .



There is a long-standing conjecture that the density of states of
H enjoys the following asymptotic behaviour as λ→∞:

N(λ) ∼ λd/2
(

Cd +
∞∑

j=1

ejλ
−j
)
, (1)

meaning that for each K ∈ N one has

N(λ) = λd/2
(

Cd +
K∑

j=1

ejλ
−j
)

+ RK (λ) (2)

with RK (λ) = o(λ
d
2−K ).



Formula (1) was proved in the case d = 1 by Shenk-Shubin
(1987).

If d = 2, formula (2) was proved by A.Sobolev (2005) with
K = 2 (three terms) and R(λ) = O(λ−6/5).
Yu.Karpeshina (2000) has shown that formula (2) is valid with
K = 1 (two terms) and R(λ) = O(λ−

1
105 ) when d = 3 and

R(λ) = O(λ
d−3

2 lnλ) when d > 3.

Theorem. (R.Shterenberg,LP, 2008–2010)

Formula (1) holds in all dimensions.
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Almost-periodic problems



Let the potential V be quasi-periodic, i.e.

V (x) =
∑
θ∈Θ

aθeiθx ,

where Θ is a finite set.

Almost nothing is known about the spectrum if d ≥ 2!

We want to study the density of states of quasi-periodic
operators. First, we need to impose additional condition: let
Z (Θ) be the collection of all linear combination of elements
from Θ with integer coefficients. Let θ1, . . . , θd ∈ Z (Θ). Then
either {θj} are linearly independent, or

∑d
j=1 njθj = 0, where

nj ∈ Z and not all nj are zeros.



Let the potential V be quasi-periodic, i.e.

V (x) =
∑
θ∈Θ

aθeiθx ,

where Θ is a finite set.

Almost nothing is known about the spectrum if d ≥ 2!

We want to study the density of states of quasi-periodic
operators. First, we need to impose additional condition: let
Z (Θ) be the collection of all linear combination of elements
from Θ with integer coefficients. Let θ1, . . . , θd ∈ Z (Θ). Then
either {θj} are linearly independent, or

∑d
j=1 njθj = 0, where

nj ∈ Z and not all nj are zeros.



Let the potential V be quasi-periodic, i.e.

V (x) =
∑
θ∈Θ

aθeiθx ,

where Θ is a finite set.

Almost nothing is known about the spectrum if d ≥ 2!

We want to study the density of states of quasi-periodic
operators. First, we need to impose additional condition: let
Z (Θ) be the collection of all linear combination of elements
from Θ with integer coefficients. Let θ1, . . . , θd ∈ Z (Θ). Then
either {θj} are linearly independent, or

∑d
j=1 njθj = 0, where

nj ∈ Z and not all nj are zeros.



Theorem. (R.Shterenberg,LP, 2010)

Let H = −∆ + V, where V is quasi-periodic satisfying the
above condition. Then formula (1) holds.

Suppose now that V is almost-periodic, i.e. is a uniform limit of
quasi-periodic functions. Then formula (1) still holds, if we
impose additional diophantine-type conditions on V . These
conditions are too complicated to write them here!
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Periodic problems on manifolds

The group of periods is no longer abelian.
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