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We consider periodic pseudo-differential operators

H = h(x ,D),

where x ∈ Rd and h is periodic in x , i.e. h(x + γ, ξ) = h(x , ξ) for
all γ ∈ Γ, and Γ ⊂ Rd is a lattice of the full rank.
We assume H to be elliptic; the standard examples are:
periodic Schrödinger operator

H = −∆ + V

with smooth periodic potential V = V (x), x ∈ Rd and periodic
magnetic Schrödinger operator

H = (i∇+ a)2 + V

with smooth periodic scalar potential V = V (x) and smooth
vector potential a = a(x).



The spectrum of H is absolutely continuous and has a
band-gap structure; in particular, it has no Cantor-like
component.

If d = 1, then the number of gaps is almost always infinite.
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Proved:
d = 2: V.Popov, M.Skriganov (1981)

d = 3; arbitrary d with rational Γ: M.Skriganov (1985)
The lattice Γ is rational, if ∀γ1, γ2, γ3 ∈ Γ we have (γ1,γ2)

|γ3|2
∈ Q.

d = 4: B. Helffer, A. Mohamed (1998)
Also, papers by Yu.Karpeshina (d = 3, singular potential),
E.Trubowitz, J. Feldman, H. Knörrer, B. Dahlberg, O.Veliev.
For the magnetic Schrödinger operator H = (i∇+ a)2 + V the
Bethe-Sommerfeld conjecture was proved only for d = 2 (A.
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Important tool when working with periodic problems:
Floquet-Bloch decomposition.

H =

∫
⊕

H(k)dk ,

where H(k) = h(x , ξ + k) (H(k) := (i∇+ k)2 + V in the
Schrödinger case) acts in L2(Rd/Γ), k ∈ Rd/Γ′, and Γ′ is the
(analytical) dual to Γ. This means that

σ(H) = ∪k∈Rd/Γ′σ(H(k)).
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The spectrum of H(k) consists of eigenvalues:

σ(H(k)) = {λ1(k) ≤ λ2(k) ≤ . . . }.

Now we can define

`j := ∪k∈Rd/Γ′λj(k)

as the n-th spectral band, so that σ(H) = ∪j`j . Then for each λ
we can define two functions:

m(λ) = #{j : λ ∈ `j}

(the multiplicity of overlapping) and

ζ(λ) = ζ(λ; H) = max
j

max{t : [λ− t , λ+ t ] ⊂ `j}.

(the overlapping function)



Important property:

ζ(λ; A + B) ≥ ζ(λ; A)− ||B||.

Therefore, if we define

ζ̃(λ; H) := inf{||A||, λ 6∈ σ(H + A)},

then ζ̃(λ; H) ≥ ζ(λ; H).

The equality here holds if H has constant coefficients, but not in
general.
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Theorem. (A.Sobolev,LP, 2001)
Let d = 2,3,4. Then for sufficiently large λ we have:

Dimension m(λ)� ζ(λ)�

2 λ
1
4 λ

1
4

3 λ
1
2 1
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3
4 λ−

1
4

Unfortunately, the method does not work for d ≥ 5!
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Suppose, we want to prove just the conjecture (not the bounds
on m or ζ). Then we can use the following strategy (the
approach of Skriganov). Denote N = Nλ(k) = #{λj(k) < λ}.
Then the following statements are equivalent:

(i) λ 6∈ σ(H)
(ii) Nλ is constant

(iii) Nλ = 〈Nλ〉, where 〈f 〉 =

∫
Rd/Γ′ f (k)dk

|Rd/Γ′|
(iv) ||Nλ − 〈Nλ〉|| = 0.
Thus, our aim is to obtain a non-trivial lower bound for
||Nλ − 〈Nλ〉||.
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Denote by N0 = N0
λ the unperturbed counting function. It is

equal to the number of points Γ′ inside a ball with center k and
radius ρ :=

√
λ. We have:

||Nλ − 〈Nλ〉|| ≥ ||N0
λ − 〈N0

λ〉|| − ||Nλ − N0
λ|| − ||〈Nλ〉 − 〈N0

λ〉||

Therefore, if want to obtain a lower bound for ||Nλ − 〈Nλ〉||, we
need to obtain a lower bound for ||N0

λ − 〈N0
λ〉|| and an upper

bound for ||Nλ − N0
λ|| and ||〈Nλ〉 − 〈N0

λ〉||.
If Γ is rational, we can choose L∞ norm in our estimates to
prove the conjecture.
If Γ is irrational, the best known lower bounds for ||N0

λ − 〈N0
λ〉||∞

and ||N0
λ − 〈N0

λ〉||1 are essentially the same!
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Theorem. (D.Kendall;M.Skriganov;A.Sobolev,LP)

For sufficiently large λ the following estimates hold:
(i) ||N0

λ − 〈N0
λ〉||1 � λ

d−1
4 ;

(ii) For each positive ε we have: ||N0
λ − 〈N0

λ〉||1 � λ
d−1+ε

4 ;
(iii) The estimate ||N0

λ − 〈N0
λ〉||1 � λ

d−1
4 holds if and only if

d 6= 1(mod 4)

Assume that
∫

Rd/Γ V (x)dx = 0. Then we have:

Theorem. (Yu.Karpeshina)

||〈Nλ〉 − 〈N0
λ〉||1 ≤ ||Nλ − N0

λ||1 ≤ λ
d−3

2 lnλ.

Therefore, for the method to work, we need d−1
4 > d−3

2 , i.e.
d < 5!
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If we want to prove the conjecture for all d and all lattices, we
need to study the eigenvalues of H(k). There are two types of
eigenvalues of these operators: stable (corresponding to
perturbations of simple eigenvalues, lying not too close to other
eigenvalues) and unstable (corresponding to perturbations of a
cluster of eigenvalues lying close together). It is relatively
straightforward to compute stable eigenvalues with high
precision. Unstable eigenvalues cause the main problem.

Luckily, there are not too many of them!
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Theorem. (LP, 2008)
Bethe-Sommerfeld conjecture holds for operators H = −∆ + V
with smooth periodic V for all dimensions d ≥ 2 and all lattices
of periods Γ.

Moreover, for large λ we have m(λ) ≥ 1 and ζ(λ) ≥ λ
1−d

2 .

Theorem. (G.Barbatis,LP, 2009)
Let d ≥ 2. Then the Bethe-Sommerfeld conjecture holds for
operators H = (−∆)m + q with periodic pseudo-differential
operators q of order smaller than 2m − 1.

Theorem. (A.Sobolev,LP, 2010)
Let d ≥ 2. Then the Bethe-Sommerfeld conjecture holds for
operators H = (−∆)m + q with periodic pseudo-differential
operators q of order smaller than 2m. In particular, this
conjecture holds for periodic magnetic Schrödinger operators.
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