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Abstract

We study the asymptotic behaviour of the principal eigenvalue of a
Robin (or generalised Neumann) problem with a large parameter in the
boundary condition for the Laplacian in a piecewise smooth domain. We
show that the leading asymptotic term depends only on the singularities
of the boundary of the domain, and give either explicit expressions or
two-sided estimates for this term in a variety of situations.

1 Introduction

Let Ω be an open bounded set in Rm (m ≥ 1) with piecewise smooth, but not
necessarily connected, boundary Γ := ∂Ω. We investigate the spectral boundary
value problem

−∆u = λu in Ω, (1.1) eq1.1

∂u

∂n
− γGu = 0 on Γ. (1.2) eq1.2
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In (1.1), (1.2), ∂
∂n

denotes the outward unit normal derivative, λ is the spec-
tral parameter, γ is a positive parameter (which later on we will assume to be
large), and G : Γ → R is a given continuous function. We will always assume
that

sup
y∈Γ

G(y) > 0 . (1.3) eq1.3

We treat the problem (1.1), (1.2) in the variational sense, associating it with
the Rayleigh quotient

J (v; γ,G) :=

∫
Ω

|∇v|2dx− γ
∫
Γ

G|v|2ds∫
Ω

|v|2dx
, v ∈ H1(Ω) , v 6≡ 0 . (1.4) eq1.4

For every fixed γ, the problem (1.1), (1.2) has a discrete spectrum of eigen-
values accumulating to +∞. By

Λ(Ω; γ,G) := inf
v∈H1(Ω) , v 6≡0

J (v; γ,G) (1.5) eq:Lam

we denote the bottom of the spectrum of (1.1), (1.2).
Our aim is to study the asymptotic behaviour of Λ(Ω; γ,G) as γ → +∞ and

its dependence upon the singularities of the boundary Γ.
The problem (1.1)–(1.2) naturally arises in the study of reaction-diffusion

equation where a distributed absorption competes with a boundary source, see
[2, 3] for details.

Remark 1.1. Sometimes, we shall also consider (1.1)–(1.2) for an unbounded
domain Ω. In this case, we can no longer guarantee either the discreteness of
the spectrum of (1.1)–(1.2), or its semi-boundedness below. We shall still use,
however, the notation (1.5), allowing, in principle, for Λ(Ω; γ,G) = −∞.

2 Basic properties of the principal eigenvalue

We shall mostly concentrate our attention on the case of constant boundary
weight G ≡ 1; in this case, we shall denote for brevity

J (v; γ) := J (v; γ, 1) , Λ(Ω; γ) := Λ(Ω; γ, 1) .

See Remark 3.3 for the discussion of the case of an arbitrary smooth G 6≡ 1.
We start with citing the following simple result of [3]:
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Lemma 2.1. For any bounded and sufficiently smooth Ω ⊂ Rm, Λ(Ω; γ) is a
real analytic concave decreasing function of γ ≥ 0, Λ|γ=0 = 0, and

d

dγ
Λ(Ω; γ)

∣∣∣∣
γ=0

= −|Γ|m−1

|Ω|m
.

The problem (1.1)–(1.2) with G ≡ 1 admits a solution by separation of
variables in several simple cases.

ex:1 Example 2.2. For a ball Bm(0, 1) = {|x| < 1} ⊂ Rm, Λ = Λ(Bm(0, 1); γ) is
given implicitly by

√
−Λ tanh

√
−Λ = γ , m = 1 ,

√
−Λ

Im/2(
√
−Λ)

Im/2−1(
√
−Λ)

= γ , m ≥ 2 ,

where I denotes a modified Bessel function. This implies that for any ball
B(a,R) := {x : |x− a| < R} ⊂ Rm,

Λ(B(a,R); γ) = −γ2 +O(γ2) , γ → +∞

(independently of the dimension m and radius R); it may be shown that the
same asymptotics holds for an annulus Am(R1, R) = {|x| ∈ (R1, R)}.

ex:2 Example 2.3. For a parallelepiped P (l1, . . . , lm) := {|xj| < lj : j = 1, . . . ,m} ⊂
Rm we get

Λ(P (l1, . . . , lm); γ) = −
m∑
j=1

µ2
j

l2j
,

where µj > 0 solves a transcendental equation

µj tanhµj = γlj .

Thus we obtain

Λ(P (l1, . . . , lm); γ) = −mγ2 +O(γ2) , γ → +∞ .

ex:3 Example 2.4. Let Ω = (0,+∞), and Γ = {0}. It is easy to see that the bot-
tom of the spectrum is an eigenvalue Λ((0,+∞); γ) = −γ2, the corresponding
eigenfunction being exp(−γx). Thus we arrive at a useful inequality

∞∫
0

|v′(x)|2 dx− γ(v(0))2 ≥ −γ2

∞∫
0

|v(x)|2 dx , (2.1) eq:use

valid for all v ∈ H1((0,+∞)).
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A slightly more complicated example is that of a planar angle Uα := {z =
x+ iy ∈ C : | arg z| < α} of size 2α.

ex:4 Example 2.5. Let Ω = Uα with α < π/2. Again the spectrum is not purely
discrete; moreover the separation of variable does not produce a complete set of
generalised eigenfunctions. However, one can find an eigenfunction u0(x, y) =
exp(−γx/ sinα) and compute an eigenvalue λ = −γ2 sin−2 α explicitly. Thus
Λ(Uα; γ) ≤ −γ2 sin−2 α. We shall now prove that this eigenvalue is in fact the
bottom of the spectrum.

lem:bot Lemma 2.6. If α < π/2,

Λ(Uα; γ) = −γ2 sin−2 α . (2.2) eq:lalp

Proof. It is sufficient to show that for all v ∈ H1(Uα), we have∫
Uα

|∇v|2dz − γ
∫
∂Uα

|v|2ds ≥ −γ2(sin−2 α)

∫
Uα

|v|2dz . (2.3) eq:est5

As ds = dy/ sinα, the left-hand side of (2.3) is bounded below by∫
dy

(∫ ∣∣∣∣∂v∂x
∣∣∣∣2 dx− γ

sinα
|v|2
)
.

For each y the integrand is not smaller than −γ2(sin−2 α)
∫
|v|2dx by (2.1).

Integrating over y gives (2.3).

ex:5 Example 2.7. Let us now consider the case of an angle Uα with α ∈ [π/2, π).

lem:bott Lemma 2.8. If α ≥ π/2,
Λ(Uα; γ) = −γ2 . (2.4) eq:lalp1

Proof. To prove an estimate above, we for simplicity consider a rotated angle
Ũα := {z = x + iy ∈ C : 0 < arg z < 2α}. In order to get an upper bound

Λ(Ũα; γ) ≤ −γ2, we construct a test function in the following manner. Let
ψ(s) be a smooth nonnegative function such that ψ(s) = 1 for |s| < 1/2, and
ψ(s) = 0 for |s| > 1 Set now

χτ (s) =


1 , if |s| < τ − 1 ,

ψ(|s| − (τ − 1)) , if τ − 1 ≤ |s| < τ ,

0 , otherwise
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(a parameter τ is assumed to be greater than 1). Consider the function

vτ (x, y) = e−γyχτ (xγ − τ) .

Then one can easily compute that

J (vτ ; γ) = γ2

(
−1 +

∫∞
−∞ |χ

′
τ (s)|2 ds∫∞

−∞ |χτ (s)|2 ds

)

= γ2

(
−1 +

∫ 1

−1
|ψ′(s)|2 ds∫ 1

−1
|ψ(s)|2 ds+ 2(τ − 1)

)
,

and therefore J (vτ ; γ)→ −γ2 as τ →∞. Thus, Λ(Uα; γ) = Λ(Ũα; γ) ≤ −γ2.
To finish the proof, we need only to show that for v ∈ H1(Uα),∫

Uα

|∇v|2dz − γ
∫
∂Uα

|v|2ds ≥ −γ2

∫
Uα

|v|2dz . (2.5) eq:est6

Denote Vα = {z : α − π/2 < | arg z| < α} ⊂ Uα. The estimate (2.5) will
obviously be proved if we establish∫

Vα

|∇v|2dz − γ
∫
∂Uα

|v|2ds ≥ −γ2

∫
Vα

|v|2dz .

But this is done as in the proof of Lemma 2.6, by integrating first along ∂Uα,
and then using one-dimensional inequalities (2.1) in the direction orthogonal to
∂Uα.

We now consider a generalization of two previous examples to the multi-
dimensional case.

ex:6 Example 2.9. Let K ⊂ Rm = {x : x/|x| ∈ M} be a cone with the cross-
section M ⊂ Sm−1. Any homothety f : x 7→ ax (x ∈ Rm, a > 0) maps K onto
itself. Then, as easily seen by a change of variables w = γ−1x,

Λ(K; γ) = γ2Λ(K; 1) . (2.6) eq:conescale

In particular, if K contains a half-space, then, repeating the argument of
Lemma 2.8 with minor adjustments, one can show that Λ(K, 1) = 1 and so

Λ(K; γ) = −γ2 . (2.7) eq:lamisone
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All the above examples suggest that in general one can expect

Λ(Ω; γ) = −CΩγ
2 +O(γ2) , γ → +∞ . (2.8) eq:gen

Some partial progress towards establishing (2.8) was already achieved in [3].
In particular, the following Theorems were proved.

thm:1 Theorem 2.10. Let Ω ⊂ Rm be a domain with piecewise smooth boundary Γ.
Then

lim sup
γ→+∞

Λ(Ω; γ, 1)

γ2
≤ −1.

thm:2 Theorem 2.11. Let Ω ⊂ Rm be a domain with smooth boundary ∂Ω. Then

Λ(Ω; γ) = −γ2(1 + o(1)) , γ → +∞ .

Remark 2.12. The actual statements in [3] are slightly weaker than the versions
above, but the proofs can be easily modified. Note that the proof of Theo-
rem 2.10 can be done by constructing a test function very similar to the one
used in the proof of Lemma 2.8.

The situation, however, becomes more intriguing even in dimension two, if Γ
is not smooth. Suppose that Ω ⊂ R2 is a planar domain with n corner points
y1, . . . , yn on its boundary Γ. The following conjecture was made in [3]:

c:conj Conjecture 2.13. Let Ω ⊂ R2 be a planar domain with n corner points y1, . . . , yn
on its boundary Γ and let αj, j = 1, . . . , n denote the inner half-angles of the
boundary at the points yj. Assume that 0 < αj <

π
2

. Then (2.8) holds with

CΩ = max
j=1,...,n

{
sin−2(αj)

}
.

This conjecture was proved in [3] only in the model case when Ω is a triangle.
As we shall see later on, formula (2.8) does not, in general, hold if we allow Γ

to have zero angles (that is, outward pointing cusps, see Example 3.4). We shall
thus restrict ourselves to the case when Ω is piecewise smooth in a suitable sense,
see below for the precise definition. Under this assumption, we first of all prove
that the asymptotic formula (2.8) holds. Moreover, we compute CΩ explicitly in
the planar case, thus proving Conjecture 2.13. In the case of dimension m ≥ 3,
we give some upper and lower bounds on CΩ, which, in some special cases,
amount to a complete answer.
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3 Main results

We shall only consider the case when Ω is piecewise smooth in the following
sense: for each point y ∈ Γ there exists an infinite “model” cone Ky such that
for a small enough ball B(y, r) of radius r centred at y there exists an infinitely
smooth diffeomorphism fy : Ky ∩ B(0, r) → Ω ∩ B(y, r) with fy(0) = y and
the derivative of fy at 0 being an element of SO(m) (we shall write in this case
that Ω ∼ Ky near a point y ∈ Γ). For example, if y is a regular point of Γ, then
Ky is a half-space.

We require additionally that Ω satisfies the uniform interior cone condition
[1], i.e. there exists a fixed cone K with non-empty interior such that each Ky

contains a cone congruent to K. (See Example 3.4 for a discussion of the case
of a domain with a cusp.)

defn:Cy Definition 3.1. Let Ω ∼ Ky near a point y ∈ Γ. We denote Cy := −Λ(Ky; 1).

Our main result indicates that the asymptotic behaviour of Λ(Ω; γ, 1) is in a
sense “localised” on the boundary.

th:lam Theorem 3.2. Let Ω be piecewise smooth in the above sense and satisfy the
uniform interior cone condition. Then

Λ(Ω; γ) = −γ2 sup
y∈Γ

Cy + o(γ2) , γ → +∞ . (3.1) eq:mainformula

rem:G Remark 3.3. This result can be easily generalised for the case of our original
setting of a non-constant boundary weight G(y) satisfying (1.3):

Λ(Ω; γ,G) = −γ2 sup
y∈Γ

G(y)>0

{G(y)2Cy}+ o(γ2) , γ → +∞ .

ex:cusp Example 3.4. Formula (2.8) does not, in general, hold if Γ is allowed to have
outward pointing cusps. In particular, for a planar domain

Υp = {(x, y) ∈ R2 : x > 0 , |y| < xp} , p > 1

one can show that

Λ(Υp; γ) ≥ − const

{
γ2/(2−p) for 1 < p < 2 ,

γN with any N > 0 for p ≥ 2 ,

by choosing the test function v = exp (−γxqp) with qp = 2 − p for 1 < p < 2
and qp = 2 for p ≥ 2.
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In order to provide the explicit asymptotic formula for Λ(Ω; γ) in the piecewise
smooth case it remains to obtain the information on the dependence of the
constants Cy upon the local geometry of Γ at y.

It is easy to do this, firstly, in the case of a regular boundary in any dimension,
and, secondly, in the two-dimensional case, where the necessary information is
already contained in Lemmas 2.6 and 2.8.

th:Cy1 Theorem 3.5. Let Γ be smooth at y. Then Cy = 1.
Moreover, Cy = 1 whenever there exists an (m− 1)-dimensional hyperplane

Hy passing through y such that for small r, B(y, r) ∩Hy ⊂ Ω.

th:Cy2 Theorem 3.6. Let Ω ⊂ R2 and let y ∈ Γ be such that Ω ∼ Uα near y. Then

Cy =

{
1 , if α ≥ π/2 ;

sin−2 α , if α ≤ π/2 .

Theorems 3.2, 3.5, and 3.6 prove the validity of Conjecture 2.13.
In more general cases, we are only able to provide the two-sided estimates

on Cy, and obtain the precise formulae only under rather restrictive additional
assumptions. These results are collected in the next section.

The remainder of this Section is devoted to the proof of Theorem 3.2.

Proof of Theorem 3.2. We proceed via a sequence of auxiliary Definitions and
Lemmas.

defn:kg Definition 3.7. Let K ⊂ Rm be a cone with cross-section M ⊂ Sm−1, and let
r > 0. By Kr = Kr(K) we denote the family of “truncated” cones Kr,R such
that

Kr,R = {x ∈ Rm : θ := x/|x| ∈M ⊂ Sm−1 , |x| < rR(θ)} ,

where R : M → [1,m] is a piecewise smooth function. Thus, for any Kr,R ∈ Kr

we have
K ∩B(0, r) ⊂ Kr,R ⊂ K ∩B(0,mr) .

Let Kr,R ∈ Kr, and let ] be an index assuming values D or N (which
in turn stand for Dirichlet or Neumann boundary conditions). By Λ](Kr,R; γ)
we denote the bottom of the spectrum of the boundary value problem (1.1)
considered in Kr,R with boundary conditions (1.2) on ∂Kr,R ∩ ∂K = {x ∈
∂Kr,R : x/|x| ∈ ∂M} and with the boundary condition defined by ] on the rest
of the boundary {x : x/|x| ∈ M , |x| = R(θ)} (this boundary value problem is
of course considered in the variational sense).

The first Lemma gives a relation between the bottoms of the spectra for an
infinite cone K and its finite “cut-offs”.
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lem:cutoff Lemma 3.8. Let r > 0 be fixed, and let Kr,R ∈ Kr(K). Then

Λ](Kr,R; γ) = γ2Λ(K; 1) + o(γ2) , γ → +∞ .

Proof of Lemma 3.8. By a simple change of variables as in Example 2.9, we
obtain

Λ](Kr,R; γ) = γ2Λ](Krγ,R; 1) .

Thus, we need to prove that

lim
γ→∞

Λ](Krγ,R; 1) = Λ(K; 1) .

This can be done by considering a function v ∈ H1(K) and comparing the
Rayleigh quotients J(v; 1) with “truncated” quotients J(vψ(·/(γr)); 1), where ψ
is the same as in the proof of Lemma 2.8. As γ → +∞, we have J(vψ(·/(γr)); 1)→
J(v; 1), which finishes the proof.

Let y ∈ Γ, and let Ky be a cone with cross-section M such that Ω ∼ Ky

near y. Let r > 0 and Kr,R ∈ Kr(Ky). We define Ωy,r,R := fy(Kr,R), and
introduce the numbers Λ](Ωy,r,R; γ) similarly to Λ](Kr,R; γ).

lem:omeoff Lemma 3.9. Uniformly over γ > 1 and y ∈ Γ,

lim
r→+0

Λ](Kr,R; γ)

Λ](Ωy,r,R; γ)
= 1 . (3.2) eq:ratio

Proof of Lemma 3.9. The proof consists in comparing the Rayleigh quotients
J(v; γ) and J(v ◦ (fy)

−1; γ) for v ∈ H1(Kr,R). Let us look at J(v ◦ (fy)
−1; γ).

The properties of fy postulated at the beginning of this Section imply that the
Jacobian of fy at a point x ∈ Kr,R tends to one as x→ 0. Therefore the volume
element of Ωy,r,R tends to the volume element of K as r → 0. The same is
true for the area elements of ∂Ωy,r,R ∪ ∂Ω and ∂K. Finally, we note that the
properties of fy also imply that ∇(v ◦ (fy)

−1)(x) → ((fy)
−1∇v)(x), as x → 0,

thus proving (3.2).

We can now conclude the proof of Theorem 3.2 itself. The formula (3.1)
splits into two asymptotic inequalities. The inequality

Λ(Ω; γ) ≤ −γ2 sup
y∈Γ

Cy + o(γ2) , γ → +∞ .

follows immediately from Lemmas 3.8, 3.9 (with ] = D) and the obvious in-
equality

Λ(Ω; γ) ≤ ΛD(Ωy,r,R; γ) .
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In order to prove the opposite inequality

Λ(Ω; γ) ≥ −γ2 sup
y∈Γ

Cy + o(γ2) , γ → +∞ , (3.3) eq:estbelow

we consider a partition Ω =
⊔N
`=0 Q` by disjoint sets Q` satisfying the following

properties: Q0 b Ω (i.e. Q0 ∩ Γ = ∅), and for each ` ≥ 1, Q` = Ωy,r,R =
fy(Kr,R) with some r > 0, y ∈ Γ, and Kr,R ∈ Kr(Ky), such that Ω ∼ Ky

near y. Such a partition can be constructed for each sufficiently small r > 0 by
considering, for example, a partition of Rm into cubes of size r, and including

into Q0 all the cubes which lie strictly inside Ω. Note that Γ =
⋃N
`=1(Γ ∩Q`).

Now we use the following inequality: assuming that J(v; γ) is negative for
some v ∈ H1(Ω) \ {0}, we have

J(v; γ) =

∫
Ω

|∇v|2dx− γ
∫
Γ

|v|2ds∫
Ω

|v|2dx
≥

∫
Ω\Q0

|∇v|2dx− γ
∫
Γ

|v|2ds

∫
Ω\Q0

|v|2dx

=

N∑
`=1

∫
Q`

|∇v|2dx− γ
N∑
`=1

∫
Γ∩Q`

|v|2ds

∑N
`=1

∫
Q`

|v|2dx

≥ min
`=1...N

∫
Q`

|∇v|2dx− γ
∫

Γ∩Q`

|v|2ds

∫
Q`

|v|2dx
.

(3.4) eq:estQ0

Note that the last expression in (3.4) is bounded below by inf ΛN(Ωy,r,R; γ),
where the infimum is taken over all y ∈ Γ and all functions R admissible in the
sense of Definition 3.7.

Finally, taking the sise of the partition r → +0, and using Lemmas 3.9
and 3.8 and Definition 3.1, we obtain (3.3).

4 Estimates in the general case

Let us now discuss the general case. As we have already shown, the problem
of computing the constant CΩ = sup

y∈Γ
Cy in (2.8) is reduced to calculating the
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bottoms of the spectra Λ(Ky; 1) = −Cy for infinite model cones Ky. We have
also shown that Cy = 1 when Γ is smooth at y. We now consider a case when
Γ is singular at y.

Let j be a co-dimension of a singularity of Γ at y. By this we mean that
Ky = Rm−j × K̃, with K̃ = {z ∈ Rj : z/|z| ∈ M̃}, with the singular cross-

section M̃ ⊂ Sj−1. If j ≥ 3, we restrict our analysis to the case when the closure
of M̃ is contained in open hemisphere {θ ∈ Sj−1 : θ1 > 0}. For simplicity, we

assume that M̃ is convex — this is a stronger requirement and may be dropped
(see Remark 4.2).

The case j = 1 corresponds to a regular point y ∈ Γ. The case j = 2 is
treated in exactly the same way as the planar case, as in this situation K̃ = Uα
and the constant Cy is the same as in Theorem 3.6.

Consider now the case j ≥ 3. It might seem natural to introduce the spherical
coordinates on K̃ at this stage. Unfortunately, such an approach is not likely
to succeed — although the variables separate, the resulting lower-dimensional
problems are coupled in a complicated way. Indeed, Example 2.5 shows that the
principal eigenfunction is not easily expressed in spherical coordinates. Therefore,
we will try to choose a coordinate frame more suitable for this problem. Once
more, Example 2.5 gives us a helpful insight into what this coordinate frame
should be.

We need more notation. Let w ∈ K̃ with θ = w/|w| ∈ M̃ . We define Πθ as
a (j − 1)-dimensional hyperplane passing through θ and orthogonal to w. Let

Pθ = Πθ ∩ ∂K̃. We need to consider only the points θ such that Pθ is bounded
and θ ∈ Pθ. Such directions θ always exist due to the conditions imposed on M̃ .

We now introduce the coordinates (ξ, η) ∈ R×Rj−1 of a point z ∈ Rj, such
that ξ = z · θ is a coordinate along θ and η = z− ξθ represent coordinates along
the plane Πθ.

We also need the spherical coordinates (ρ, ϕ) with the origin at θ on Πθ, such
that ρ = |η| and ϕ = η/|η| ∈ Sj−2. We define a function b(ϕ) = bθ(ϕ) in such
a way that Pθ = {(ρ, ϕ) : ρ = b(ϕ)}.

In these coordinates,

K̃ = {(ξ, ρ, ϕ) : ξ > 0 , ρ < ξbθ(ϕ)} (4.1) eq:Kcoords

and
∂K̃ = {(ξ, ρ, ϕ) : ξ > 0 , ρ = ξbθ(ϕ)} . (4.2) eq:bKcoords

Denote

σθ(ϕ) :=
√

1 + b−2
θ (ϕ) + (b′θ(ϕ))2b−4

θ (ϕ) . (4.3) eq:sig3

We are ready now to formulate a general statement in the case j = 3.
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th:Cy3 Theorem 4.1. Let y ∈ Γ be a singular point of co-dimension three in the above
sense. Then the constant Cy satisfies the following two-sided estimates:

sup
θ


∫
S1

b2
θ(ϕ)σθ(ϕ) dϕ

∫
S1

b2
θ(ϕ) dϕ


2

≤ Cy ≤ inf
θ

sup
ϕ
σ2
θ(ϕ) (4.4) eq:est

rem:nonconv Remark 4.2. Theorem 4.1 can be extended to the case of non-convex M̃ . Then,
the function bθ(ϕ) (which defines the boundary) may become multivalued. In
that case we need to treat the integrals in the left-hand side of (4.4) separately
along each branch of bθ, and count them with a plus or minus sign.

Proof of Theorem 4.1. The separation of variables shows that Cy = −Λ(K̃; 1).

We start by estimating Cy below (and thus Λ(K̃; 1) above). Let us fix θ ∈ M̃
satisfying the above conditions; for brevity we shall omit the subscript θ in all
the intermediate calculations.

Consider the following test function

v(z) = exp(−aξ) , z = (ξ, ρ, ϕ) ∈ K̃ , (4.5) eq:psiest

where a is a positive parameter to be chosen later.
Then we explicitly calculate

∫
K̃

v2(z) dz =

∞∫
0

exp(−2aξ) dξ

∫
S1

dϕ

ξb(ϕ)∫
0

ρdρ =
1

8a3

∫
S1

b2(ϕ) dϕ (4.6) eq:int3

and ∫
K̃

|∇v(z)|2 dz = a2

∫
K̃

v2(z) dz =
1

8a

∫
S1

b2(ϕ) dϕ . (4.7) eq:int1

Let us now calculate the integral along the boundary ∂K̃. For each η̃ =
(ρ̃, ϕ̃) ∈ R2 there exists a unique point z = (ξ̃, η̃) = (ξ̃(η̃), η̃) ∈ ∂K̃, where one

can easily calculate ξ̃(η̃) =
ρ̃

b(ϕ̃)
. Thus the area element of the boundary ds can

be expressed as
1

cos β
dη̃, where β is an angle between two planes. One of these

planes is Πθ and the other one is the plane containing the origin and the straight
line L which lies in Πθ and is tangent to Pθ at the point ξ = 1, ρ = b(ϕ̃),
ϕ = ϕ̃. Without loss of generality we assume now that ϕ̃ = 0, otherwise we just
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rotate the picture. Then the equation of L in cartesian coordinates η = (η1, η2)
on Pθ becomes L = {η1 = b(0) + tb′(0) , η2 = b(0)t : t ∈ R}. It is a simple
geometrical exercise to show that the base of the perpendicular dropped from the

origin onto L corresponds to the parameter value t∗ = − b(0)b′(0)

b(0)2 + (b′(0))2
and

therefore this base point is given by (η∗1, η
∗
2) =

b(0)2

b(0)2 + (b′(0))2
(b(0),−b′(0)).

Another geometric exersise shows that cot β is equal to the length of the vector
(η∗1, η

∗
2), and therefore

1

cos β
=
√

1 + cot−2 β =
√

1 + b−2(0) + (b′(0))2b−4(0) .

Thus, the area element, with account of (4.3), is

ds =
1

cos β
dη̃ =

√
1 + b−2(ϕ̃) + (b′(ϕ̃))2b−4(ϕ̃) dη̃ = σ(ϕ̃) dη̃ . (4.8) eq:ds

and we can evaluate the boundary contribution as∫
∂K̃

v2(z) ds =

∫
R2

exp(−2aξ̃)σ(ϕ̃) dη̃

=

∫
S1

dϕ̃ σ(ϕ̃)

∞∫
0

ρ̃ exp(−2aρ̃/b(ϕ̃)) dρ̃

=
1

4a2

∫
S1

b2(ϕ)σ(ϕ) dϕ .

(4.9) eq:int2

Combining now (4.6), (4.7), and (4.9), we obtain

J(v; 1) = a2 −

2a

∫
S1

b2(ϕ)σ(ϕ) dϕ

∫
S1

b2(ϕ) dϕ
.

Optimising with respect to a gives

a =

∫
S1

b2
θ(ϕ)σ(ϕ) dϕ

∫
S1

b2
θ(ϕ) dϕ

, (4.10) eq:a3
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and further optimization with respect to θ produces the desired lower bound in
(4.4).

Let us now prove the upper bound on Cy in (4.4), which corresponds to the

lower bound on Λ(K̃; 1). We need to show that for any v ∈ H1(K̃) and any

θ ∈ M̃ the following inequality holds:∫
K̃

|∇v(z)|2 dz −
∫
∂K̃

|v(z)|2 ds ≥ −
(

sup
ϕ
σ(ϕ)

)2 ∫
K̃

|v(z)|2 dz . (4.11) eq:a4

Using the obvious estimate∫
K̃

|∇v|2 dz ≥
∫
K̃

|∂ξv|2 dz ,

formula (4.8) for the area element, and inequality (2.1) in the variable ξ for each
value of η, we arrive at (4.11). This completes the proof.

Remark 4.3. In the case of a three-edged corner (i.e. when M̃ is a two-
dimensional spherical triangle) the left- and right-hand sides of (4.4) in fact
coincide, so Theorem 4.1 gives the exact expression for Cy. The same is true

if M̃ is a spherical polygon which has an inscribed circle (i.e., a circle touching

all the sides of M̃). Indeed, in this case the supremum in the left-hand side and
the infimum in the right-hand side of (4.4) are equal and are attained when θ is
the centre of the inscribed circle. This immediately follows from the fact that in
this case and for this choice of θ, σ ≡ const. Moreover, it is easy to see that
the test function (4.5) with the parameter a given by (4.10) is an eigenfunction

with the eigenvalue at the bottom of the spectrum Λ(K̃; 1).
Thus, Theorems 3.5, 3.6, and 4.1 provide an exact asymptotics of Λ(Ω; γ)

whenever m = 3 and each vertex of Ω has three edges coming from it.

Assume now that j > 3. This case is pretty much similar to the previous one
(in particular, the test function used in obtaining the estimate below on Cy is still
given by (4.5)), the only difference being that the area element of the boundary
now becomes a volume element and is much more cumbersome to calculate. We
will skip the detailed calculations.

In order to state the result, we need more notation. Define a (j − 2)-
dimensional vector ζθ(ϕ) := bθ(ϕ)∇ϕbθ(ϕ) and (j−2)×(j−2) matrix Zθ(ϕ) :=
b2
θ(ϕ)I + (∇ϕ ⊗∇ϕ)bθ(ϕ). Now put Ψθ(ϕ) := (Z−1

θ (ϕ)ζθ(ϕ)) and

Σθ(ϕ) :=

√
1 + ((bθ(ϕ)−Ψθ(ϕ) · ∇ϕbθ(ϕ))2 + b2

θ(ϕ)|Ψθ(ϕ)|2)
−1
. (4.12) eq:Sig
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th:Cy4 Theorem 4.4. Let y ∈ Γ be a singular point of co-dimension j ≥ 4 in the above
sense. Then the constant Cy satisfies the following two-sided estimates::

sup
θ


∫

Sj−2

bj−1
θ (ϕ)σθ(ϕ) dϕ

∫
Sj−2

bj−1
θ (ϕ) dϕ


2

≤ Cy ≤ inf
θ

sup
ϕ
σ2
θ(ϕ) . (4.13) eq:est4

Remark 4.5. It is easily seen that Theorem 4.1 is in fact a partial case of Theo-
rem 4.4 if we formally set j = 3 in the latter. Indeed, for j = 3 all the quantities
depend upon a scalar parameter ϕ, and we obtain

ζθ(ϕ) = bθ(ϕ)b′θ(ϕ) , Zθ(ϕ) = b2
θ(ϕ)+(b′θ(ϕ))2 , Ψθ(ϕ) =

bθ(ϕ)b′θ(ϕ)

b2
θ(ϕ) + (b′θ(ϕ))2

,

giving

Σθ(ϕ) =

√√√√1 +

((
bθ(ϕ)− bθ(ϕ)(b′θ(ϕ))2

b2
θ(ϕ) + (b′θ(ϕ))2

)2

+ b2
θ(ϕ)

(b′θ(ϕ))2

(b2
θ(ϕ) + (b′θ(ϕ))2)2

)−1

=

√
1 +

b2
θ(ϕ) + (b′θ(ϕ))2

b4
θ(ϕ)

= σθ(ϕ) ,

so that formula (4.13) becomes (4.4).

Remark 4.6. As before, the estimates (4.13) give the precise value of Cy whenever
M is a (j − 1)-dimensional spherical polyhedron which admits an inscribed ball
(for example when M has exactly j faces). Moreover, the bottom of the spectrum
is again an eigenvalue corresponding to the eigenfunction (4.5).
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