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Abstract. We consider a periodic self-adjoint pseudo-differential operator H = (−∆)m+
B, m > 0, in Rd which satisfies the following conditions: (i) the symbol of B is smooth
in x, and (ii) the perturbation B has order less than 2m. Under these assumptions,
we prove that the spectrum of H contains a half-line. This, in particular implies the
Bethe-Sommerfeld Conjecture for the Schrödinger operator with a periodic magnetic
potential in all dimensions.

1. Introduction

Under very broad conditions, spectra of elliptic differential operators with periodic
coefficients in L2(Rd), d ≥ 1, have a band structure, i.e. they represent a union of closed
intervals (bands), possibly separated by spectrum-free intervals (gaps) (see

RS
[20] and

Kuch
[14]).

Since the 30’s it has been a general belief among the physicists that the number of gaps
in the spectrum of the Schrödinger operator HV = −∆ + V with a periodic electric
potential (i.e. a real-valued function) V in dimension three must be finite. After the
classical monograph

BS
[2] this belief is known as the Bethe-Sommerfeld conjecture. It is

relatively straightforward to see that this conjecture holds for potentials which admit
a partial separation of variables, as shown in

E
[6], p.121. For general potentials this

problem turned out to be quite difficult, and the first rigorous results appeared only in
the beginning of the 80’s. We do not intend to discuss these and more recent results in
details, but refer to

Sob1
[29] for a more comprehensive survey and further references. Here

we content ourselves with a very short description.
In the case of the Schrödinger operator HV it is known that the number of gaps is

generically infinite if d = 1 (see
RS
[20]). For d ≥ 2 there has been a large number of

publications proving the conjecture for HV under various conditions on the potential
and the periodicity lattice. First rigorous results for the Schrödinger operator relied on
number-theoretic ideas, and they appeared in

PopSkr
[19],

DahlTru
[5] (d = 2) and

Skr0
[22] -

Skr2
[24] (d ≥ 2). At

that time it was found out that the complexity of the problem increases together with
the dimension: the validity of the conjecture for dimensions d ≥ 4 was established only
for rational lattices, see

Skr1
[23]. Later the conjecture for arbitrary lattices was extended
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to d = 4 in
HelMoh
[9]. The definitive result was obtained in the recent paper

P
[16] where the

Bethe-Sommerfeld conjecture was proved for the Schrödinger operator for any periodicity
lattice in all dimensions d ≥ 2, with an arbitrary smooth potential V (see

Vel2
[31] and

Vel
[32]

for an alternative approach).
The study of the polyharmonic operator (−∆)m + V , m > 0 in

Skr1
[23],

Kar
[11] and

PS1
[17],

PS2
[18]

revealed that large values of m facilitate the overlap of the spectral bands. Precisely,
it was found that for 4m > d + 1 the Bethe-Sommerfeld conjecture holds for arbitrary
bounded self-adjoint perturbations V (see

PS1
[17]), and if 8m > d + 3, then it holds for

arbitrary smooth potentials V (see
PS2
[18]).

Returning to the case of the Schrödinger operator, we observe that the complex-
ity of the problem increases dramatically when instead of the bounded potential per-
turbation one introduces in the Schrödinger operator a periodic magnetic potential
a = (a1, a2, . . . , ad): (−i∇ − a)2 + V . Until recently the Bethe-Sommerfeld conjecture
for this operator was known to hold only for d = 2, see

Moh
[15],

Karp2
[12]. A new step towards

the study of higher order perturbations was made in
BarPar
[1], where the methods of

P
[16] were

extended to the operator

operator:eqoperator:eq (1.1) H = (−∆)m +B, m > 0,

with a symmetric pseudo-differential perturbation B of order a < 2m− 1 and arbitrary
d ≥ 2.

In the present paper we prove the Bethe-Sommerfeld conjecture for the operator (
operator:eq
1.1)

for arbitrary B of order a < 2m, see Theorems
main:thm
2.1 and

main1:thm
2.2. In particular, our result

covers the magnetic Schrödinger operator with a smooth periodic vector potential in any
dimension d ≥ 2.

Our proof is based on a subtle analysis of the Floquet eigenvalues of the operator H. It
is known that the Floquet eigenvalues are divided in two groups: stable (or non-resonant)
and unstable (or resonant). From the perturbation-theoretic point of view, the stable
eigenvalues are generated by the isolated non-degenerate Floquet eigenvalues of the free
operator H0 = (−∆)m, and hence they can be described using familiar methods of the
theory. The unstable eigenvalues, on the contrary, are produced by the clusters of close
(or even degenerate) eigenvalues of H0, and their detailed description is not that simple.
Various asymptotic formulas for stable and/or unstable eigenvalues were obtained in

Vel0
[30],

Vel2
[31],

FKT0
[7],

FKT
[8],

Karnew
[10],

Karp2
[12],

Vel
[32], see also

Kar
[11] for more references.

As papers
Moh
[15],

Karp2
[12],

BarPar
[1] show, the increase of the order of the perturbation requires a

more careful analysis of the resonant eigenvalues. The same observation can be made
for higher dimensions, see

P
[16],

Vel
[32]. In the present paper we are forced to study the

unstable eigenvalues in detail for arbitrary dimensions d ≥ 2 and higher order pertur-
bations. Associated with the partition of the eigenvalues into two groups, is a partition
of the phase space into resonant and non-resonant zones (sets). In fact, the main fo-
cus of the present paper is the precise construction of these zones and understanding
of the eigenvalues associated with them. Technically, our approach is a combination of
methods of

P
[16] and

Sob
[28]. Our construction of the resonant zones is a simplified variant
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of that suggested in
P
[16]. However, in spite of the simplification, these are rather com-

plicated geometrical objects, and the study of their properties is not straightforward.
The reduction of the operator to the resonant and non-resonant parts is done using the
“near-similarity” approach of

Sob
[28]. It consists in finding a unitary operator U such that

A = U∗HU is “almost” an operator with constant coefficients. The operator U is sought
in the form eiΨ where Ψ is a self-adjoint periodic PDO, and hence we sometimes call
this similarity transformation a “gauge transformation”. For d = 1 such a reduction to
constant coefficients can be done (see

R
[21],

Sob0
[27]), but for d ≥ 2 only a partial reduction

is possible. Namely, we explicitly describe the procedure of finding a pseudo-differential
operator Ψ with symbol ψ(x, ξ) such that the operator A = e−iΨHeiΨ has constant co-
efficients in the non-resonant zone. Thus the Floquet eigenvalues in the non-resonant
subspace can be found explicitly, which leads to relatively straightforward estimates for
the band overlap. As far as the resonant zones are concerned, our construction ensures
that on each of them the new operator A admits a partial separation of variables (see
e.g.

FKT
[8],

Karnew
[10] and

Kar
[11], p. 143 for a similar observation for the Schrödinger operator in

dimensions d = 2, 3). This fact enables us to show that the volume (more precisely, the
angular measure) of the resonant sets is negligibly small compared to the non-resonant
one. Having established this fact, we apply the combinatorial-geometric argument of
P
[16], which allows us to deduce that the resonant zones do not destroy the band overlap
obtained for the non-resonant one.

It is clear that the unitary transformation U = eiΨ establishes a one-to-one corre-
spondence between the Bloch functions for the operators H and A defined above. In
particular, in the non-resonant zone the Bloch functions of A are just exponentials, and
hence, applying the operator U one immediately obtains an explicit simple formula, in-
volving the symbol ψ(x, ξ), for the Bloch functions of H. Thus it is not surprising that
a similar representation appears in

Karp2
[12], where the spectral properties of the magnetic

Schrödinger operator (−i∇ − a)2 + V are studied in the case d = 2. The core of the
approach of

Karp2
[12] is to construct a suitable high-energy approximation for the Bloch func-

tions. In the non-resonant zone such an approximation is sought in the form eix·ξ+iS(x,ξ)

with a suitable phase S(x, ξ). Comparing formulas (30) from
Karp2
[12] and (

psihat:eq
4.12) in the

present paper, we see that the leading terms of S(x, ξ) and ψ(x, ξ), as ξ → ∞, are
in fact the same, as should be expected. In spite of this connection with the Bloch
functions, in the present paper we prefer to use the operator language. We believe that
it is precisely this choice, in combination with the use of PDO calculus, that made it
possible to extend the previously known results on the Bethe-Sommerfeld Conjecture to
the degree of generality described in this paper.

To conclude the introduction, we give a brief outline of the paper. In the next section,
we introduce necessary notation, discuss the classes of pseudo-differential operators we
will be using throughout and formulate the main result of the paper. In Section 3, we
provide necessary information about the classes of pseudo-differential operators intro-
duced in Section 2. The “gauge transformation” is studied in Section 4. In Section 5, we
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describe the partition of the phase space into resonant and non-resonant zones. This sec-
tion has a purely combinatorial-geometric character, and can be read separately from the
rest of the paper. In Section 6, we construct the decomposition of A into an orthogonal
sum over the resonant and non-resonant subspaces. On the basis of this decomposition
we study the Floquet eigenvalues of A in Section 7. Sections 8, 9 are concerned with
estimates for the volumes of resonant and non-resonant sets. These estimates become
the central ingredient of the proof, completed in Section 10.

Acknowledgment. This work was supported by the EPSRC grants EP/F029721/1
and EP/D00022X/2. The first author was partially supported by the Leverhulme fel-
lowship. We would like to thank Roman Shterenberg, Sergey Morozov, and Gerassimos
Barbatis for reading the preliminary version of this manuscript and making useful com-
ments. We are very grateful to the referees for helpful comments and suggestions.

2. Periodic pseudo-differential operators. Main result
setting:sectclasses:subsect

2.1. Classes of PDO’s. Before we define the pseudo-differential operators (PDO’s),
we introduce the relevant classes of symbols. Let Γ ∈ Rd be a lattice. Denote by O

its fundamental domain. For example, for O one can choose a parallelepiped spanned
by a basis of Γ. The dual lattice and its fundamental domain are denoted by Γ† and
O† respectively. Sometimes we reflect the dependence on the lattice and write OΓ and
O
†
Γ. In particular, in the case Γ = (2πZ)d one has Γ† = Zd and it is natural to take

O = [0, 2π)d, O† = [0, 1)d. For any measurable set C ⊂ Rd we denote by |C| or vol(C) its
Lebesgue measure (volume). The volume of the fundamental domain does not depend
on its choice, it is called the determinant of the lattice Γ and denoted d(Γ) = |O|. By
e1, e2, . . . , ed we denote the standard orthonormal basis in Rd.

For any u ∈ L2(O) and f ∈ L2(Rd) define the Fourier coefficients and Fourier transform
respectively:

û(θ) =
1√
d(Γ)

∫
O

e−i〈θ,x〉u(x)dx, θ ∈ Γ†, (Ff)(ξ) =
1

(2π)
d
2

∫
Rd
e−i〈ξ,x〉f(x)dx, ξ ∈ Rd.

Let us now define the periodic symbols and PDO’s associated with them. Let b = b(x, ξ),
x, ξ ∈ Rd, be a Γ-periodic complex-valued function, i.e.

b(x + γ, ξ) = b(x, ξ), ∀γ ∈ Γ.

Let w : Rd → R be a locally bounded function such that w(ξ) ≥ 1 ∀ξ ∈ Rd and

weight:eqweight:eq (2.1) w(ξ + η) ≤ Cw(ξ)〈η〉κ, ∀ξ,η ∈ Rd,

for some κ ≥ 0. Here we have used the standard notation 〈t〉 =
√

1 + |t|2, ∀t ∈ Rd.
We say that the symbol b belongs to the class Sα = Sα(w) = Sα(w, Γ), α ∈ R, if for any
l ≥ 0 and any non-negative s ∈ Z the condition

1b1:eq1b1:eq (2.2) b
(α)
l,s := max

|s|≤s
sup
ξ,θ
〈θ〉l w(ξ)−α+|s||Ds

ξb̂(θ, ξ)| <∞, |s| = s1 + s2 + · · ·+ sd,
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is fulfilled. Here b̂(θ, ξ) is the Fourier coefficient of the symbol b(·, ξ) with respect to the
first variable. The quantities (

1b1:eq
2.2) define norms on the class Sα. In the situations when

it is not important for us to know the exact values of l, s, we denote the above norm by
b (α). In this case the inequality A ≤ C b (α) means that there exist values of l and

s, and a constant C > 0, possibly depending on l, s, such that A ≤ C b
(α)
l,s . Similarly,

when we write b (γ) ≤ C g (α) for some symbols b ∈ Sγ, g ∈ Sα, we mean that for any

l and s the norm b
(γ)
l,s is bounded by g

(α)
p,n with some p and n depending on l, s, and

some constant C = Cl,s. In general, by C, c(with or without indices) we denote various
positive constants, whose precise value is unimportant. Throughout the entire paper we
adopt the following convention. An estimate (or an assertion) is said to be uniform in a
symbol b ∈ Sα if the constants in the estimate (or assertion) at hand depend only on the

constants Cl,s in the bounds b
(α)
l,s ≤ Cl,s. This is sometimes expressed by saying that

an estimate (or assertion) is uniform in the symbol b satisfying b (α) ≤ C.
We use the classes Sα mainly with the weight w(ξ) = 〈ξ〉β, β ∈ (0, 1], which satisfies

(
weight:eq
2.1) for κ = β. Note that Sα is an increasing function of α, i.e. Sα ⊂ Sγ for α < γ. For

later reference we write here the following convenient bounds that follow from definition
(
1b1:eq
2.2) and property (

weight:eq
2.1):

|Ds
ξ b̂(θ, ξ)| ≤ b

(α)
l,s 〈θ〉

−lw(ξ)α−s,decay:eqdecay:eq (2.3)

|Ds
ξb̂(θ, ξ + η)−Ds

ξb̂(θ, ξ)| ≤ C b
(α)
l,s+1〈θ〉

−lw(ξ)α−s−1〈η〉κ|α−s−1||η|, s = |s|,differ:eqdiffer:eq (2.4)

with a constant C depending only on α, s. For a vector η ∈ Rd introduce the symbol

bboldeta:eqbboldeta:eq (2.5) bη(x, ξ) = b(x, ξ + η),η ∈ Rd,

so that b̂η(θ, ξ) = b̂(θ, ξ + η) . The bound (
differ:eq
2.4) implies that for all |η| ≤ C we have

differ1:eqdiffer1:eq (2.6) b− bη (α−1)
l,s ≤ Cs b

(α)
l,s+1|η|,

uniformly in η: |η| ≤ C.
Now we define the PDO Op(b) in the usual way:

Op(b)u(x) =
1

(2π)
d
2

∫
b(x, ξ)ei〈ξ,x〉(Fu)(ξ)dξ,

the integrals being over Rd. Under the condition b ∈ Sα the integral in the r.h.s. is
clearly finite for any u from the Schwarz class S(Rd). Moreover, the condition b ∈ S0

guarantees the boundedness of Op(b) in L2(Rd), see Proposition
bound:prop
3.1. Unless otherwise

stated, from now on S(Rd) is taken as a natural domain for all PDO’s at hand. Observe
that the operator Op(b) is symmetric if its symbol satisfies the condition

selfadj:eqselfadj:eq (2.7) b̂(θ, ξ) = b̂(−θ, ξ + θ).

We shall call such symbols symmetric.
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Our aim is to study the spectrum of the operator

h:eqh:eq (2.8)


H = Op(h), h(x, ξ) = h0(ξ) + b(x, ξ),

h0(ξ) = |ξ|2m, m > 0,

b ∈ Sα(〈ξ〉β), αβ < 2m,

with a symmetric symbol b. The operator Op(b) is infinitesimally H0-bounded, see
Lemma

formbound:lem
3.2, so that H is self-adjoint on the domain D(H) = D(H0) = H2m(Rd). Due

to the Γ-periodicity of the symbol b, the operator H commutes with the shifts along the
lattice vectors, i.e.

HTγ = TγH, γ ∈ Γ.

with (Tγu)(x) = u(x + γ). This allows us to use the Floquet decomposition.

floquet:subsect
2.2. Floquet decomposition. We identify the underlying Hilbert space H = L2(Rd)
with the direct integral

G =

∫
O†

Hdk, H = L2(O).

This identification is implemented by the Gelfand transform

gelfand:eqgelfand:eq (2.9) (Uu)(x,k) =
1√

d(Γ†)
e−i〈k,x〉

∑
γ∈Γ

e−i〈k,γ〉u(x + γ), k ∈ Rd,

which is initially defined on u ∈ S(Rd) and extends by continuity to a unitary mapping
from H onto G. In terms of the Fourier transform the Gelfand transform is defined as
follows: (̂Uu)(θ,k) = (Fu)(θ + k), θ ∈ Γ†. The unitary operator U reduces Tγ to the
diagonal form:

(UTγU
−1f)( · ,k) = eik·γf( · ,k), ∀γ ∈ Γ.

Let us consider a self-adjoint operator A in H which commutes with Tγ for all γ ∈ Γ,
i.e. ATγ = TγA. We call such operators (Γ-)periodic. Then A is partially diagonalised
by U (see

RS
[20]), that is, there exists a measurable family of self-adjoint operators (fibres)

A(k),k ∈ O† acting in H, such that

direct:eqdirect:eq (2.10) UAU∗ =

∫
O†
A(k)dk.

It is easy to show that any periodic operator T , which is A-bounded with relative bound
ε < 1, can be also decomposed into a measurable set of fibers T (k) in the sense that

(UTf)( · ,k) = T (k)(Uf)( · ,k), a.e. k ∈ O†,

for all f ∈ D(A). Moreover, the fibers T (k) are A(k)-bounded with the bound ε, and if
T is symmetric, then the operator A(k) + T (k) is self-adjoint on D(A(k)).
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Suppose that the operator A (and hence A(k)) is bounded from below and that the
spectrum of each A(k) is discrete. Denote by λj

(
A(k)

)
, j = 1, 2, . . . , the eigenvalues of

A(k) labeled in the ascending order. Define the counting function in the usual way:

N
(
λ,A(k)

)
= #{j : λj

(
A(k)

)
≤ λ}, λ ∈ R.

If A = Op(a) with a real-valued symbol a ∈ L∞loc(Rd) depending only on ξ, then A(k) is
a self-adjoint PDO in H defined as follows:

A(k)u(x) =
1√
d(Γ)

∑
m∈Γ†

eim·xa(m + k)û(m).

If a(ξ)→∞ as |ξ| → ∞, then the spectrum of each A(k) is purely discrete with eigen-
values given by λ(m)(k) = a(m + k),m ∈ Γ†. Consequently, the number of eigenvalues
below each λ ∈ R is essentially bounded from above uniformly in k ∈ O†. If T is a peri-
odic symmetric operator which is A-bounded with a bound ε < 1, then the spectrum of
A(k) + T (k) is also purely discrete and the counting function is also bounded uniformly
in k. In particular, the above applies to the elliptic operator H defined in (

h:eq
2.8). In fact,

applying the Gelfand transform (
gelfand:eq
2.9) to Op(b), one finds that, similarly to A considered

above, the operator H(k) is a PDO in H of the form

floquet:eqfloquet:eq (2.11) H(k)u(x) =
1√
d(Γ)

∑
m∈Γ†

eim·xh(x,m + k)û(m), k ∈ Rd.

The values H(k) for k ∈ O† determine H(k) for all k ∈ Rd due to the following unitary
equivalence:

H(k + m) = e−imxH(k)eimx, m ∈ Γ†.

This implies, in particular, that

periodicity:eqperiodicity:eq (2.12) λj(H(k + m)) = λj(H(k)), j = 1, 2, . . . ,

for all m ∈ Γ†. The images

σj =
⋃

k∈O†

λj(H(k)),

are called spectral bands of H. The spectrum of H is the union

σ(H) =
⋃
j

σj.

Due to the mentioned boundedness of the counting function N(λ,H(k)), each interval
(−∞, λ] has non-empty intersection with finitely many spectral bands. When proving
the Bethe-Sommerfeld conjecture we study the band overlap, which is characterized by
the the overlap function ζ(λ), λ ∈ R, defined as the maximal number t such that the
symmetric interval [λ− t, λ+ t] is entirely contained in one band, i.e.

zeta:eqzeta:eq (2.13) ζ(λ;H) =

{
maxj max{t : [λ− t, λ+ t] ⊂ σj}, λ ∈ σ(H);

0, λ /∈ σ(H).
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It is easy to see that ζ is continuous in λ. An equivalent definition of ζ(λ) is

zeta1:eqzeta1:eq (2.14) ζ(λ;H) = sup{t : min
k
N(λ+ t,H(k)) < max

k
N(λ− t,H(k)}.

The function ζ(λ;H) was first introduced by M. Skriganov, see e.g.
Skr1
[23].

The main result of the paper is the following Theorem:

main:thm Theorem 2.1. Let H = H0 + Op(b) where H0 = (−∆)m with some m > 0, and b is a
symmetric symbol from Sα(w), w = 〈ξ〉β, with some α ∈ R and β ∈ (0, 1) satisfying the
condition

alm1:eqalm1:eq (2.15) 2m− 2 > β(α− 2).

Then the spectrum of the operator H contains a half-line, i.e. there exists a number
λ0 ∈ R such that [λ0,∞) ⊂ σ(H). Moreover, there is a number S ∈ R and a constant
c > 0 such that for each λ ≥ λ0 we have ζ(λ;H) ≥ cλS. The constant c and parameter
λ0 are uniform in b satisfying b (α) ≤ C.

If one prefers stating the conditions on b in terms of the “standard” classes Sa(〈ξ〉),
one can re-write Theorem

main:thm
2.1 as follows:

main1:thm Theorem 2.2. Let H = H0 + Op(b) where H0 = (−∆)m with some m > 0, and b
is a symmetric symbol from Sa(w), w = 〈ξ〉, with some a < 2m. Then the spectrum
of the operator H contains a half-line, i.e. there exists a number λ0 ∈ R such that
[λ0,∞) ⊂ σ(H). Moreover there is a number S ∈ R and a constant c > 0 such that for
each λ ≥ λ0 we have ζ(λ;H) ≥ cλS. The constant c and parameter λ0 are uniform in b
satisfying b (α) ≤ C.

To deduce Theorem
main1:thm
2.2 from

main:thm
2.1 it suffices to note that Sa(〈ξ〉) ⊂ Sα(〈ξ〉β) for any

β ∈ (0, 1) and α = aβ−1, and that for this α the condition (
alm1:eq
2.15) is equivalent to

alm2:eqalm2:eq (2.16) β >
a

2
−m+ 1.

Remark 2.3. The magnetic Schrödinger operator H = (−i∇−a)2 +V with a smooth Γ-
periodic vector-potential a : Rd → Rd and electric potential V : Rd → R, is a special case
of the operator (

h:eq
2.8) with h0(ξ) = |ξ|2 and b(x, ξ) = −2a(x)·ξ+i∇·a(x)+|a(x)|2+V (x).

Thus defined symbols satisfy the conditions of Theorem
main1:thm
2.2 with m = 1 and a = 1. In

this case any β > 1/2 satisfies (
alm2:eq
2.16).

Remark 2.4. In
BarPar
[1] the Bethe-Sommerfeld conjecture was proved for symmetric symbols

b satisfying the conditions b
(a)
l,1 < ∞ (here w(ξ) = 〈ξ〉) for some a < 2m − 1, and all

l ≥ 1. Although the restriction on the order of b is stronger than in Theorem
main1:thm
2.2, the

paper
BarPar
[1] does not impose any conditions on derivatives w.r.t. ξ of order higher than one.

In general, an interesting question is to find out how the smoothness of the perturbation
in ξ affects the band overlap. We hope to address this issue in a further publication.

We conclude this Section by fixing some notations which will be used throughout the
paper.
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fibre:subsect
2.3. Some notational conventions. For any measurable set C ⊂ Rd we denote by
P(C) the operator Op(χ( · ; C)), where χ( · ; C) is the characteristic function of the set
C. We denote H(C) = P(C)H, H = L2(Rd). Accordingly, the fibres P(k,C),k ∈ O†, of
P(C), which act in H, are PDO’s with symbols

∑
m∈Γ† χ(m + k; C). In other words, each

P(k; C) is a projection in H on the linear span of the exponentials

exp:eqexp:eq (2.17) Em(x) :=
1√
d(Γ)

eim·x, m ∈ Γ† : m + k ∈ C.

The subspace P(k; C)H of H is denoted by H(k; C).
Suppose that H(C) is an invariant subspace of the operator H defined in (

h:eq
2.8), that

is (H − iI)−1H(C) ⊂ H(C). Then the subspace H(k; C), k ∈ O†, is invariant for H(k).
We denote by H(k; C) the part of H(k) in H(k; C), so that

H(k) = H(k; C)⊕H(k; Rd \ C), k ∈ O†,

where ⊕ denotes the orthogonal sum. If H(C) is invariant for H, then we denote by
N(λ,H(k); C) the counting function of H(k; C) on the subspace H(k; C).

Each ξ ∈ Rd can be uniquely represented as the sum ξ = m + k, where m ∈ Γ† and
k ∈ O†. We say that m =: [ξ] is the integer part of ξ and k =: {ξ} is the fractional part
of ξ.

The notation B(x0, R) is used for the open ball in Rd of radius R > 0, centered at
x0 ∈ Rd. We also write B(R) for the open ball of radius R centered at 0.

For the reference convenience we copy here the conventions about symbol classes made
earlier in this section. In the situations when it is not important for us to know the

exact values of l, s in the norm b
(α)
l,s , we denote the above norm by b (α). In this case

the inequality A ≤ C b (α) means that there exist values of l and s, and a constant

C > 0, possibly depending on l, s, such that A ≤ C b
(α)
l,s . Similarly, when we write

b (γ) ≤ C g (α) for some symbols b ∈ Sγ, g ∈ Sα, we mean that for any l and s

the norm b
(γ)
l,s is bounded by g

(α)
p,n with some p and n depending on l, s, and some

constant C = Cl,s. In general, by C, c(with or without indices) we denote various positive
constants, whose precise value is unimportant. Throughout the entire paper we adopt
the following convention. An estimate (or an assertion) is said to be uniform in a symbol
b ∈ Sα if the constants in the estimate (or assertion) at hand depend only on the constants

Cl,s in the bounds b
(α)
l,s ≤ Cl,s. This is sometimes expressed by saying that an estimate

(or assertion) is uniform in the symbol b satisfying b (α) ≤ C.
We sometimes use notation f � g or g � f for two positive functions f, g, if there is

a constant C > 0 independent of f, g such that f ≤ Cg. If f � g and g � f , then we
write f � g.
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3. Properties of periodic PDO’s
calc:sect

In this section we collect various properties of periodic PDO’s to be used in what
follows.

3.1. Some basic results on the calculus of periodic PDO’s. We begin by listing
some elementary results for periodic PDO’s, some of which can be found in

Sob0
[27].

Recall that S(Rd) is taken as a natural domain of Op(b). Unless otherwise stated, all
the symbols are supposed to belong to the class Sα = Sα(w; Γ), α ∈ R, with an arbitrary
function w satisfying (

weight:eq
2.1) and a lattice Γ. The functions w and the lattice Γ are usually

omitted from the notation.

bound:prop Proposition 3.1. (See e.g.
Sob0
[27]) Suppose that b

(0)
l,0 < ∞ with some l > d. Then

B = Op(b) is bounded in H and ‖B‖ ≤ C b
(0)
l,0 , with a constant C independent of b.

Since Op(b)u ∈ S(Rd) for any b ∈ Sα and u ∈ S(Rd), the product Op(b) Op(g),
b ∈ Sα, g ∈ Sγ, is well defined on S(Rd). A straightforward calculation gives the following
formula for the symbol b ◦ g of the product Op(b) Op(g):

(b ◦ g)(x, ξ) =
1

d(Γ)

∑
θ,φ

b̂(θ, ξ + φ)ĝ(φ, ξ)ei(θ+φ)x,

and hence

prodsymb:eqprodsymb:eq (3.1) (̂b ◦ g)(χ, ξ) =
1√
d(Γ)

∑
θ+φ=χ

b̂(θ, ξ + φ)ĝ(φ, ξ), χ ∈ Γ†, ξ ∈ Rd.

Here and below θ,φ ∈ Γ†. In particular, one sees that Op(b) Op(wδ) = Op(bwδ) for any
δ ∈ R. This observation leads to the following Lemma. We remind that the symbol bη
is defined in (

bboldeta:eq
2.5).

formbound:lem Lemma 3.2. Let b ∈ Sα(w) with w(ξ) = 〈ξ〉β, β ∈ (0, 1]. Then for any u ∈ S(Rd) and
any l > d, we have

formbound1:eqformbound1:eq (3.2) ‖Op(b)u‖ ≤ C b
(α)
l,0 ‖(H0 + I)γ̃u‖, γ̃ =

αβ

2m
,

with a constant C independent of b, u. In particular, if αβ < 2m, then Op(b) is H0-
bounded with an arbitrarily small relative bound.

Moreover, for any η ∈ Rd and any l > d,

formdiffer:eqformdiffer:eq (3.3) ‖(Op(b)−Op(bη))u‖ ≤ C|η| b (α)
l,1 ‖(H0 + I)γu‖, γ =

β(α− 1)

2m
,

where the constant C does not depend on b, u, and is uniform in η: |η| ≤ C̃.

Proof. Define G = BOp(w−α). As we have observed earlier, G = Op(g) with g = bw−α,

so that g ∈ S0(w) and g
(0)
l,0 = b

(α)
l,0 . Hence, by Lemma

bound:prop
3.1, ‖G‖ ≤ C b

(α)
l,0 and

form:eqform:eq (3.4) ‖Op(b)u‖ = ‖GOp(wα)u‖ ≤ C b
(α)
l,0 ‖Op(wα)u‖.
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As Op(wα) ≤ C(H0 + I)γ̃, γ̃ = αβ(2m)−1, we get (
formbound1:eq
3.2).

The bound (
formdiffer:eq
3.3) follows from (

formbound1:eq
3.2) when applied to the symbol b − bη, and from the

estimate (
differ1:eq
2.6). �

The bound (
formbound1:eq
3.2) allows one to give a proper meaning to the operator (

h:eq
2.8), since b is

infinitesimally H0-bounded. The bound (
formdiffer:eq
3.3) will be useful in the study of the Floquet

eigenvalues as functions of the quasi-momentum k.
For general symbols b, g we have the following proposition (see e.g.

Sob0
[27]).

product:prop Proposition 3.3. Let b ∈ Sα, g ∈ Sγ. Then b ◦ g ∈ Sα+γ and

b ◦ g (α+γ) ≤ C b (α) g (γ),

with a constant C independent of b, g.

We are also interested in the estimates for symbols of commutators. For PDO’s
A,Ψl, l = 1, 2, . . . , N , denote

ad(A; Ψ1,Ψ2, . . . ,ΨN) = i
[
ad(A; Ψ1,Ψ2, . . . ,ΨN−1),ΨN

]
,

ad(A; Ψ) = i[A,Ψ], adN(A; Ψ) = ad(A; Ψ,Ψ, . . . ,Ψ), ad0(A; Ψ) = A.

For the sake of convenience we use the notation ad(a;ψ1, ψ2, . . . , ψN) and adN(a, ψ) for
the symbols of multiple commutators. It follows from (

prodsymb:eq
3.1) that the Fourier coefficients

of the symbol ad(b, g) are given by

comm:eqcomm:eq (3.5) âd(b, g)(χ, ξ) =
i√
d(Γ)

∑
θ+φ=χ

[
b̂(θ, ξ + φ)ĝ(φ, ξ)− b̂(θ, ξ)ĝ(φ, ξ + θ)

]
,

χ ∈ Γ†, ξ ∈ Rd.

commut0:prop Proposition 3.4. (See e.g.
Sob0
[27]) Let b ∈ Sα and gj ∈ Sγj , j = 1, 2, . . . , N . Then

ad(b; g1, . . . , gN) ∈ Sγ with

γ = α +
N∑
j=1

(γj − 1),

and

commutator:eqcommutator:eq (3.6) ad(b; g1, . . . , gN) (γ) ≤ C b (α)

N∏
j=1

gj
(γj),

with a constant C independent of b, gj.

3.2. Partition of the perturbation. ¿From now on the weights in the definition of
classes Sα = Sα(w) are assumed to be w(ξ) = 〈ξ〉β with some β ∈ (0, 1]. Here we
partition every symbol b ∈ Sα into the sum of several symbols, restricted to different
parts of the phase space. These symbols depend on the parameter ρ ≥ 1, but this
dependence is usually omitted from the notation. Later on, we will put ρ = λ

1
2m .
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Let ι ∈ C∞(R) be a non-negative function such that

eta:eqeta:eq (3.7) 0 ≤ ι ≤ 1, ι(z) =

{
1, z ≤ 1/4;

0, z ≥ 1/2.

For L ≥ 1 and θ ∈ Γ†,θ 6= 0, define the following C∞-cut-off functions:

el:eqel:eq (3.8)



eθ(ξ) = ι

(∣∣∣∣ |ξ + θ/2|
ρ

− 1

∣∣∣∣),
`>θ (ξ) = 1− ι

(
|ξ + θ/2|

ρ
− 1

)
,

`<θ (ξ) = 1− ι
(

1− |ξ + θ/2|
ρ

)
,

and

phizeta:eqphizeta:eq (3.9)


ζθ(ξ;L) = ι

(
|θ(ξ + θ/2)|

L|θ|

)
,

ϕθ(ξ;L) = 1− ζθ(ξ;L).

Note that eθ + `>θ + `<θ = 1. The function `>θ is supported on the set |ξ + θ/2| > 5ρ/4,
and `<θ is supported on the set |ξ + θ/2| < 3ρ/4. The function eθ is supported in the
shell ρ/2 ≤ |ξ| ≤ 3ρ/2. Omitting the parameter L and using the notation `θ for any of
the functions `>θ or `<θ , we point out that

symmetry:eqsymmetry:eq (3.10)

{
eθ(ξ) = e−θ(ξ + θ), `θ(ξ) = `−θ(ξ + θ),

ϕθ(ξ) = ϕ−θ(ξ + θ), ζθ(ξ) = ζ−θ(ξ + θ).

Note that the above functions satisfy the estimates

varphi:eqvarphi:eq (3.11)

{
|Ds

ξeθ(ξ)|+ |Ds
ξ`θ(ξ)| � ρ−|s|,

|Ds
ξϕθ(ξ;L)|+ |Ds

ξζθ(ξ;L)| � L−|s|.

Let

T:eqT:eq (3.12) Θr = Θr(Γ) = {θ ∈ Γ† : 0 < |θ| ≤ r}, Θ0
r = Θr ∪ {0},

with some r > 0. We always assume that 1 ≤ r ≤ ρκ, where κ < β is a fixed (small)
positive number the precise value of which will be chosen later. Using the above cut-off
functions, for any symbol b ∈ Sα(w) we introduce six new symbols bLF, bSE, bo, bLE, bNR, bR
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in the following way:

bLF(x, ξ; ρ) =
1√
d(Γ)

∑
θ/∈Θ0

r

b̂(θ, ξ)eiθx,uparrow:equparrow:eq (3.13)

bLE(x, ξ; ρ) =
1√
d(Γ)

∑
θ∈Θr

b̂(θ, ξ)`>θ (ξ)eiθx,sharp:eqsharp:eq (3.14)

bNR(x, ξ; ρ) =
1√
d(Γ)

∑
θ∈Θr

b̂(θ, ξ)ϕθ(ξ; ρβ)eθ(ξ)eiθx,natural:eqnatural:eq (3.15)

bR(x, ξ; ρ) =
1√
d(Γ)

∑
θ∈Θr

b̂(θ, ξ)ζθ(ξ; ρβ)eθ(ξ)eiθx,flat:eqflat:eq (3.16)

bSE(x, ξ; ρ) =
1√
d(Γ)

∑
θ∈Θr

b̂(θ, ξ)`<θ (ξ)eiθx,downarrow:eqdownarrow:eq (3.17)

bo(x, ξ; ρ) = bo(ξ; ρ) =
1√
d(Γ)

b̂(0, ξ).o:eqo:eq (3.18)

The superscripts here are chosen to mean correspondingly: LF =‘large Fourier’ (coeffi-
cients), LE = ‘large energy’, NR = ‘non-resonance’, R = ‘resonance’, SE =‘small energy’,
o =0-th Fourier coefficient. Sometimes the dependence of the introduced symbols on the
parameter ρ is omitted from the notation. The corresponding operators are denoted by

BLF = Op(bLF), BLE = Op(bLE), BNR = Op(bNR),

BR = Op(bR), BSE = Op(bSE), Bo = Op(bo).

By definition (
eta:eq
3.7),

b = bo + bSE + bR + bNR + bLE + bLF.

The role of each of these operator is easy to explain. The symbol bLF contains only Fourier
coefficients with |θ| > r, and the remaining symbols contain the Fourier coefficients with

|θ| ≤ r. Note that on the support of the functions b̂NR(θ, · ; ρ) and b̂R(θ, · ; ρ) we have

ds:eqds:eq (3.19) |θ| ≤ ρβ,
1

2
ρ ≤ |ξ + θ/2| ≤ 3

2
ρ,

1

2
ρ− 1

2
ρκ ≤ |ξ| ≤ 3

2
ρ+

1

2
ρκ.

On the support of bSE(θ, · ; ρ) we have

supportell<:eqsupportell<:eq (3.20)

∣∣∣∣ξ +
θ

2

∣∣∣∣ ≤ 3

4
ρ, |ξ| ≤ 3

4
ρ+

1

2
ρκ.

On the support of bLE(x, · ; ρ) we have

supportell>:eqsupportell>:eq (3.21)

∣∣∣∣ξ +
θ

2

∣∣∣∣ ≥ 5

4
ρ, |ξ| ≥ 5

4
ρ− 1

2
ρκ.

The introduced symbols play a central role in the proof of the Main Theorem
main:thm
2.1. As

we show in the course of the proof, due to (
supportell<:eq
3.20) and (

supportell>:eq
3.21) the symbols bLF, bSE and
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bLE make only a negligible contribution to the spectrum of the operator (
h:eq
2.8) near the

point λ = ρ2m. The only significant components of b are the symbols bNR, bR and bo. The
symbol bNR will be transformed in the next Section into another symbol, independent of
x.

We will often combine BR, BLE and BLF, BSE: for instance BR,LE = BR + BLE,
BR,LE,LF = BR,LE + BLF. A similar convention applies to the symbols. Under the
condition b ∈ Sα(w) the above symbols belong to the same class Sα(w) and the following
bounds hold:

subord:eqsubord:eq (3.22) bR
(α)
l,s + bNR (α)

l,s + bLE (α)
l,s + bo

(α)
l,s + bSE (α)

l,s + bLF (α)
l,s � b

(α)
l,s .

Indeed, let us check this for the symbol bNR, for instance. According to (
ds:eq
3.19) and (

varphi:eq
3.11),

on the support of the function b̂NR(θ, · ; ρ) we have

|Dsϕθ(ξ, ρβ)| � ρ−β|s| � w−|s|,

|Ds`>θ (ξ)|+ |Ds`<θ (ξ)|+ |Dseθ(ξ)| � ρ−|s| � w−|s|.

This immediately leads to the bound of the form (
subord:eq
3.22) for the symbol bNR.

The introduced operations also preserve symmetry. Precisely, calculate using (
symmetry:eq
3.10):

b̂R(−θ, ξ + θ) = b̂(−θ, ξ + θ)ζ−θ(ξ + θ; ρβ)e−θ(ξ + θ)

= b̂(θ, ξ)ζθ(ξ; ρβ)eθ(ξ) = b̂R(θ, ξ).

Therefore, by (
selfadj:eq
2.7) the operator BR is symmetric if so is B. The proof is similar for the

rest of the operators introduced above.
Let us list some other elementary properties of the introduced operators. In the Lemma

below we use the projection P(C),C ⊂ R whose definition was given in Subsection
fibre:subsect
2.3.

smallorthog:lem Lemma 3.5. Let b ∈ Sα(w), w = 〈ξ〉β, β ∈ (0, 1], with some α ∈ R. Then the following
hold:

(i) The operator Op(bSE) is bounded and

‖Op(bSE)‖ � b
(α)
l,0 ρ

βmax(α,0).

Moreover,(
I − P(B(7ρ/8))

)
Op(bSE) = Op(bSE)

(
I − P(B(7ρ/8))

)
= 0.

(ii) The operator BR satisfies the following relations

P(B(3ρ/8))BR = BRP(B(3ρ/8))

=
(
I − P(B(13ρ/8))

)
BR = BR

(
I − P(B(13ρ/8))

)
= 0,bflatorthog:eqbflatorthog:eq (3.23)

and similar relations hold for the operator BNR as well.
Moreover, for any γ ∈ R one has bNR, bR ∈ Sγ and

nat:eqnat:eq (3.24) bNR (γ)
l,s + bR

(γ)
l,s � ρβ(α−γ) b

(α)
l,s ,
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for all l and s, with an implied constant independent of b and ρ ≥ 1. In particular,
the operators BNR, BR are bounded and

‖BNR‖+ ‖BR‖ � ρβα b
(α)
l,0 ,

for any l > d.
(iii)

P
(
B(9ρ/8)

)
BLE = BLEP

(
B(9ρ/8)

)
= 0.

(iv) If R ≤ 2ρ, then

shar:eqshar:eq (3.25) ‖P(B(R))BLF‖+ ‖BLFP(B(R))‖ � b
(α)
l,0 r

p−lρβmax(α,0),

for any p > d and any l ≥ p.

Proof. Proof of (i). By (
decay:eq
2.3),

|b̂(θ, ξ; ρ)| ≤ b
(α)
l,0 〈θ〉

−l〈ξ〉βα,

for any l > 0. It follows from (
supportell<:eq
3.20) that

flatdecay:eqflatdecay:eq (3.26) |b̂SE(θ, ξ; ρ)| � b
(α)
l,0 ρ

βmax(α,0)〈θ〉−l, ∀l > 0.

By Proposition
bound:prop
3.1 this implies the sought bound for the norm ‖Op(bSE)‖.

In view of (
supportell<:eq
3.20), the second part of statement (i) follows from (

downarrow:eq
3.17) by inspection.

Proof of (ii). The relations (
bflatorthog:eq
3.23) follow from the definitions (

flat:eq
3.16) and (

natural:eq
3.15) in view

of (
ds:eq
3.19).

Furthermore, by (
decay:eq
2.3) and (

subord:eq
3.22),

|Ds
ξb̂

NR(θ, ξ; ρ)|+ |Ds
ξb̂

R(θ, ξ; ρ)| � b
(α)
l,s 〈ξ〉

β(α−γ)〈ξ〉β(γ−s)〈θ〉−l.

Thus, using again (
ds:eq
3.19), we obtain:

|Ds
ξb̂

NR(θ, ξ; ρ)|+ |Ds
ξb̂

R(θ, ξ; ρ)| � ρβ(α−γ) b
(α)
l,s w

γ−s〈θ〉−l.

This means that bNR, bR ∈ Sγ for any γ ∈ R and (
nat:eq
3.24) holds. The bounds for the norms

follow from (
nat:eq
3.24) with γ = 0, and Proposition

bound:prop
3.1.

Proof of (iii) is similar to (i). The required result follows from (
supportell>:eq
3.21).

Proof of (iv). By definition (
T:eq
3.12) the sum (

uparrow:eq
3.13) contains only those values of θ for

which |θ| ≥ r. Thus, in view of (
decay:eq
2.3) and (

subord:eq
3.22), for any l ≥ p we have

|b̂LF(θ, ξ; ρ)| ≤ b
(α)
l,0 wα〈θ〉−l � rp−l b

(α)
l,0 wα〈θ〉−p,

Thus the symbol of BLFP
(
B(R)

)
is bounded by

Crp−l b
(α)
l,0 Rβmax(α,0)〈θ〉−p,

so that the sought estimate follows by Proposition
bound:prop
3.1. The same argument leads to the

same bound for P
(
B(R)

)
BLF. �



16 L. PARNOVSKI & A.V. SOBOLEV

In what follows a central role is played by the operator of the form

newAnewA (3.27) A := H0 +Bo +BR

with some symmetric symbol b ∈ Sα. In the next Lemma we study the continuity of the
Floquet eigenvalues λj(A(k)), j = 1, 2, . . . , as functions of the quasi-momentum k ∈ R.
Here, A(k) are the fibers of the operator (

newA
3.27). To state the result, we introduce for

any vector η ∈ Rd the distance on the torus:

distorus:eqdistorus:eq (3.28) |η|T = min
m∈Γ†

|η −m|.

unperturbed:thm Theorem 3.6. Suppose that ρ ≥ 1 and

beta:eqbeta:eq (3.29) β(α− 1) < 2m− 1.

If for some j

newA1newA1 (3.30) λj(A(k)) � ρ2m,

then for any l > d we have

unperturbed:equnperturbed:eq (3.31) |λj(A(k + η))− λj(A(k))| �
(
1 + b

(α)
l,1

)
|η|Tρ2m−1.

The implied constant in (
unperturbed:eq
3.31) depends on the constants in (

newA1
3.30).

Proof. By Lemma
smallorthog:lem
3.5 (ii),

P
(
k, B(3ρ/8)

)
BR(k) = BR(k)P

(
k, B(3ρ/8)

)
= 0,

so that

P
(
0, B(3ρ/8− |k|)

)
BR(k) = BR(k)P

(
0, B(3ρ/8− |k|)

)
= 0.

Similarly, (
bflatorthog:eq
3.23) implies that(

I − P
(
0, B(13ρ/8 + |k|)

))
BR(k) = BR(k)

(
I − P

(
0, B(13ρ/8 + |k|)

))
= 0.

Thus, if one assumes that |k| ≤ R with some R, then the operator A(k) can be repre-
sented in the form

orthog:eqorthog:eq (3.32) A(k) = A−(k)⊕ Ac(k)⊕ A+(k),

with

A±(k) = P±(H0(k) +Bo(k))P±, Ac(k) = PcA(k)Pc,

where by P± and Pc we have denoted the following projections in H:

P− = P
(
0, B(3ρ/8−R)

)
,

Pc = P
(
0, B(13ρ/8 +R)

)
− P

(
0, B(3ρ/8−R)

)
,

P+ = I − P
(
0, B(13ρ/8 +R)

)
.
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Due to (
orthog:eq
3.32) and a standard pigeonhole principle argument, in order to establish (

unperturbed:eq
3.31)

it suffices to prove this inequality for eigenvalues (labeled in the standard ascending
order) of each of the operators A−, Ac, A+.

Suppose first that |η|T = |η|, so that

|η| ≤ R := min
06=m∈Γ†

|m|.

The operator A0(k) = H0(k) + Bo(k) has constant coefficients and its eigenvalues are
found explicitly:

µm(k) = (m + k)2m + bo(m + k),m ∈ Γ†.

Assuming that |m + k| ≥ 2R, from (
differ:eq
2.4) and (

subord:eq
3.22) we obtain that

|µm(k + η)− µm(k)| �
(
|m + k|2m−1 + b

(α)
0,1 |m + k|β(α−1)

)
|η|.

Due to conditions (
beta:eq
3.29),

seig0:eqseig0:eq (3.33) |µm(k + η)− µm(k)| �
(
1 + b

(α)
0,1

)
|m + k|2m−1|η|.

If we assume that the considered eigenvalue µm(k) satisfies (
newA1
3.30), then |m + k| � ρ,

and hence the inequality (
seig0:eq
3.33) implies that

seig1:eqseig1:eq (3.34) |µm(k + η)− µm(k)| �
(
1 + b

(α)
0,1

)
ρ2m−1|η|.

In order to rewrite this bound for the eigenvalues λj(A±(k)) arranged in the ascending
order, note that for m ∈ B(3ρ/8− R) or m /∈ B(13ρ/8 + R), the previous inequality is
equivalent to the following one:

N(λ− C
(
1 + b

(α)
0,1

)
ρ2m−1|η|;A±(k)) ≤ N(λ;A±(k + η)) ≤

N(λ+ C
(
1 + b

(α)
0,1

)
ρ2m−1|η|;A±(k)),

which, in turn means that

seig:eqseig:eq (3.35) |λj(A±(k + η))− λj(A±(k))| �
(
1 + b

(α)
0,1

)
ρ2m−1|η|

for all eigenvalues satisfying the condition |λj(A±(k))| � ρ2m.
Let us study the eigenvalues of Ac. This operator is bounded, and hence it suffices to

find an upper bound for the sum of the norms

‖Pc
(
A0(k + η)− A0(k)

)
Pc‖+ ‖BR(k + η)−BR(k)‖.

Using (
seig1:eq
3.34) for 3ρ/8−R ≤ |m| ≤ 13ρ/8 +R, we get

a0:eqa0:eq (3.36) ‖Pc
(
A0(k + η)− A0(k)

)
Pc‖ �

(
1 + b

(α)
0,1

)
ρ2m−1|η|.

(note that PcA0(k+η)Pc and PcA0(k)Pc have the same eigenvectors). By Lemma
smallorthog:lem
3.5(ii),

bR ∈ Sγ with any γ ∈ R, so that (
formdiffer:eq
3.3) and (

nat:eq
3.24) give:

‖BR(k + η)−BR(k)‖ � |η| bR (1)
l,1 � |η| b

(α)
l,1 ρ

β(α−1),
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for any l > d. By (
beta:eq
3.29) β(α− 1) < 2m− 1, so that the above estimate in combination

with (
a0:eq
3.36), proves that

|λj(Ac(k + η)− λj(Ac(k))| � |η|(1 + b
(α)
l,1 )ρ2m−1,

uniformly in j. In its turn, this estimate together with (
seig:eq
3.35) leads to (

unperturbed:eq
3.31).

For a general η, note that according to (
periodicity:eq
2.12), λj(A(k + η)) = λj(A(k + m + η)) for

any m ∈ Γ†. Choose m in such a way that

|η|T = |η + m|.

Denote η1 = η + m and use the first part of the proof for η1. �

4. A “gauge transformation”
gauge:sect

In this and all the subsequent sections we assume that Sα = Sα(w) with w(ξ) = 〈ξ〉β,
β ∈ (0, 1]. Recall that we study spectral properties of the operator H defined in (

h:eq
2.8).

Our ultimate goal is to prove that each sufficiently large λ belongs to the spectrum of
H. We are going to use the notation from the previous section with the parameter
ρ = λ

1
2m ≥ 1.

4.1. Preparation. Our strategy is to find a unitary operator which reduces H = H0 +
Op(b) to another PDO, whose symbol, up to some controllable small errors, depends
only on ξ. The sought unitary operator is constructed in the form U = eiΨ with a
suitable bounded self-adjoint Γ-periodic PDO Ψ. This is why we sometimes call it a
“gauge transformation”. It is useful to consider eiΨ as an element of the group

U(t) = exp{iΨt}, ∀t ∈ R.

We assume that the operator ad(H0,Ψ) is bounded, so that U(t)D(H0) = D(H0).
This assumption will be justified later on. Let us express the operator

At := U(−t)HU(t)

via its (weak) derivative with respect to t:

At = H +

∫ t

0

U(−t′) ad(H; Ψ)U(t′)dt′.

By induction it is easy to show that

A1 = H +
M∑
j=1

1

j!
adj(H; Ψ) +R

(1)
M+1,decomp:eqdecomp:eq (4.1)

R
(1)
M+1 :=

∫ 1

0

dt1

∫ t1

0

dt2 . . .

∫ tM

0

U(−tM+1) adM+1(H; Ψ)U(tM+1)dtM+1.
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The operator Ψ is sought in the form

psik:eqpsik:eq (4.2) Ψ =
M∑
k=1

Ψk, Ψk = Op(ψk),

with symbols ψk from some suitable classes Sσ, σ = σk to be specified later on. Substitute
this formula in (

decomp:eq
4.1) and rewrite, regrouping the terms:

A1 = H0 +B +
M∑
j=1

1

j!

M∑
l=j

∑
k1+k2+···+kj=l

ad(H; Ψk1 ,Ψk2 , . . . ,Ψkj)

+R
(1)
M+1 +R

(2)
M+1,

R
(2)
M+1 :=

M∑
j=1

1

j!

∑
k1+k2+···+kj≥M+1

ad(H; Ψk1 ,Ψk2 , . . . ,Ψkj).rtilde:eqrtilde:eq (4.3)

Changing this expression yet again produces

A1 = H0 +B +
M∑
l=1

ad(H0; Ψl) +
M∑
j=2

1

j!

M∑
l=j

∑
k1+k2+···+kj=l

ad(H0; Ψk1 ,Ψk2 , . . . ,Ψkj)

+
M∑
j=1

1

j!

M∑
l=j

∑
k1+k2+···+kj=l

ad(B; Ψk1 ,Ψk2 , . . . ,Ψkj) +R
(1)
M+1 +R

(2)
M+1.

Next, we switch the summation signs and decrease l by one in the second summation:

A1 = H0 +B +
M∑
l=1

ad(H0; Ψl) +
M∑
l=2

l∑
j=2

1

j!

∑
k1+k2+···+kj=l

ad(H0; Ψk1 ,Ψk2 , . . . ,Ψkj)

+
M+1∑
l=2

l−1∑
j=1

1

j!

∑
k1+k2+···+kj=l−1

ad(B; Ψk1 ,Ψk2 , . . . ,Ψkj) +R
(1)
M+1 +R

(2)
M+1.

Now we introduce the notation

B1 := B,

Bl :=
l−1∑
j=1

1

j!

∑
k1+k2+···+kj=l−1

ad(B; Ψk1 ,Ψk2 , . . . ,Ψkj), l ≥ 2,bl:eqbl:eq (4.4)

Tl :=
l∑

j=2

1

j!

∑
k1+k2+···+kj=l

ad(H0; Ψk1 ,Ψk2 , . . . ,Ψkj), l ≥ 2.tl:eqtl:eq (4.5)
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We emphasise that the operators Bl and Tl depend only on Ψ1,Ψ2, . . . ,Ψl−1. Let us
make one more rearrangement:

A1 = H0 +B +
M∑
l=1

ad(H0,Ψl) +
M∑
l=2

Bl +
M∑
l=2

Tl +RM+1,

RM+1 = BM+1 +R
(1)
M+1 +R

(2)
M+1.r:eqr:eq (4.6)

Now we can specify our algorithm for finding Ψk’s. The symbols ψk will be found from
the following system of commutator equations:

ad(H0; Ψ1) +BNR
1 = 0,psi1:eqpsi1:eq (4.7)

ad(H0; Ψl) +BNR
l + TNR

l = 0, l ≥ 2,psil:eqpsil:eq (4.8)

and hence

lm:eqlm:eq (4.9)


A1 = A0 +XR

M +XSE,LE,LF
M +RM+1,

XM =
∑M

l=1Bl +
∑M

l=2 Tl,

A0 = H0 +X
(o)
M .

Below we denote by xM the symbol of the PDO XM . Recall that by Lemma
smallorthog:lem
3.5(ii),

the operators BNR
l , TNR

l are bounded, and therefore, in view of (
psi1:eq
4.7), (

psil:eq
4.8), so is the

commutator ad(H0; Ψ). This justifies the assumption made in the beginning of the
formal calculations in this Section.

4.2. Commutator equations. Recall that h0(ξ) = |ξ|2m with m > 0. Before proceed-
ing to the study of the commutator equations (

psi1:eq
4.7), (

psil:eq
4.8) note that for ξ in the support

of the function b̂NR(θ, · ; ρ) the symbol

taut:eqtaut:eq (4.10) τθ(ξ) = h0(ξ + θ)− h0(ξ) =
(
|ξ|2 + 2θ · (ξ + θ/2)

)m − |ξ|2m
satisfies the bound

|τθ(ξ)| � ρ2m−2 |θ · (ξ + θ/2)|,
which easily follows from (

ds:eq
3.19). Using (

ds:eq
3.19) again, we conclude that

|θ|ρ2m−2+β � τθ(ξ)� |θ|ρ2m−1.

Note also that

|Ds
ξτθ(ξ)| � |θ|ρ2m−1−s, |s| = s.

Therefore,

tau:eqtau:eq (4.11) |Ds
ξτ
−1
θ | � |θ|

−1ρ−2m+2−β(1+s) � |θ|−1w−(2m−2)β−1−1−s, θ 6= 0,

for all ξ in the support of the function b̂NR(θ, · ; ρ). This estimate will come in handy
in the next lemma.
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commut:lem Lemma 4.1. Let A = Op(a) be a symmetric PDO with a ∈ Sω. Then the PDO Ψ with
the Fourier coefficients of the symbol ψ(x, ξ; ρ) given by

psihat:eqpsihat:eq (4.12)

ψ̂(θ, ξ; ρ) = i
âNR(θ, ξ; ρ)

τθ(ξ)
, θ 6= 0,

ψ̂(0, ξ; ρ) = 0,

solves the equation

adb:eqadb:eq (4.13) ad(H0; Ψ) + Op(aNR) = 0.

Moreover, the operator Ψ is bounded and self-adjoint, its symbol ψ belongs to Sγ with
any γ ∈ R and the following bound holds:

psitau:eqpsitau:eq (4.14) ψ
(γ)
l,s � ρβ(σ−γ) a

(ω)
l−1,s,

where

sigma:eqsigma:eq (4.15) σ = ω − (2m− 2)β−1 − 1.

Proof. For brevity we omit ρ from the notation. Let t be the symbol of ad(H0; Ψ). The
Fourier transform t̂(θ, ξ) is easy to find using (

prodsymb:eq
3.1):

t̂(θ, ξ) = i
(
h0(ξ + θ)− h0(ξ)

)
ψ̂(θ, ξ) = iτθ(ξ)ψ̂(θ, ξ).

Therefore, by definition (
natural:eq
3.15), the equation (

adb:eq
4.13) amounts to

iτθ(ξ)ψ̂(θ, ξ) = −âNR(θ, ξ; ρ) = −â(θ, ξ; ρ)ϕθ(ξ; ρβ)eθ(ξ), |θ| ≤ r.

By definition of the functions ϕθ, eθ, the function ψ̂ given by (
psihat:eq
4.12) is defined for all ξ.

Moreover, the symbol ψ̂ satisfies the condition (
selfadj:eq
2.7), so that Ψ is a symmetric operator.

In order to prove that ψ ∈ Sγ for all γ ∈ R, note that according to (
nat:eq
3.24) and (

decay:eq
2.3),

|Ds
ξâ

NR(θ, ξ; ρ)| � ρβ(ω−γ) a
(ω)
l,s w

γ−s|θ|−l.

Together with (
tau:eq
4.11) this implies that

|Ds
ξψ̂(θ, ξ; ρ)| � ρ−βγ a

(ω)
l,s w

σ+γ−s|θ|−l−1,

so that ψ ∈ Sγ and it satisfies (
psitau:eq
4.14).

The estimate (
psitau:eq
4.14) with γ = 0, s = 0, and Proposition

bound:prop
3.1 ensure the boundedness of

Ψ. �

Let us apply Lemma
commut:lem
4.1 to equations (

psi1:eq
4.7) and (

psil:eq
4.8).

gauge:lem Lemma 4.2. Let b ∈ Sα be a symmetric symbol, ρ ≥ 1, and let

sigmaeps:eqsigmaeps:eq (4.16)


σ = α− (2m− 2)β−1 − 1,

σj = j(σ − 1) + 1,

εj = j(σ − 1) + (2m− 2)β−1 + 2,
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j = 1, 2, . . . . Then there exists a sequence of self-adjoint bounded PDO’s Ψj, j = 1, 2, . . .
with the symbols ψj such that ψj ∈ Sγ for any γ ∈ R, (

psi1:eq
4.7) and (

psil:eq
4.8) hold, and

psik1:eqpsik1:eq (4.17) ψj
(γ) � ρβ(σj−γ)

(
b (α))j, j ≥ 1.

The symbols bj, tj of the corresponding operators Bj, Tj belong to Sγ for any γ ∈ R and

bt:eqbt:eq (4.18) bj
(γ) + tj

(γ) � ρβ(εj−γ)( b (α))j, j ≥ 2.

If ρβ(σ−1) b (α) � 1, then for any M and ψ =
∑M

j=1 ψj the following bounds hold:

ψ (γ) � ρβ(σ−γ) b (α), ∀γ ∈ R; xM
(α) � b (α),xm:eqxm:eq (4.19)

‖RM+1‖ � ( b (α))M+1ρβεM+1 ;rm:eqrm:eq (4.20)

uniformly in b satisfying ρβ(σ−1) b (α) � 1.

Proof. The existence of ψ1 ∈ Sγ with required properties follows from Lemma
commut:lem
4.1. Fur-

ther proof is by induction.
Suppose that ψk with k = 1, 2, . . . , K − 1 satisfy (

psik1:eq
4.17). In order to conclude that ψK

also satisfies (
psik1:eq
4.17), first we need to check that bK and tK satisfy (

bt:eq
4.18).

Step I. Estimates for bj. Note that

εj = σj−1 + α− 1

= (j − 1)σ + α− (j − 1), j ≥ 2.
sigmatoeps:eqsigmatoeps:eq (4.21)

To begin with, we prove that all the symbols bj with j ≤ K, satisfy the estimate (
bt:eq
4.18).

We first obtain a bound for ad(b;ψk1 , ψk2 , . . . , ψkq) with k1 +k2 + · · ·+kq = j−1. To this
end we use (

psik1:eq
4.17) with γ = (ω− α)q−1 + 1 for each ψkn and Proposition

commut0:prop
3.4 to conclude

that

b:eqb:eq (4.22) ad(b;ψk1 , ψk2 , . . . , ψkq)
(ω) � b (α)

q∏
n=1

ψkn
(γ) � ( b (α))j

q∏
n=1

ρβ(σkn−γ),

for any ω ∈ R. Obviously, we have:
q∑

n=1

β(σkn − γ) = β
(
q(1− γ) +

q∑
n=1

kn(σ − 1)
)

= β
(
(j − 1)(σ − 1)− ω + α

)
= β(σj−1 + α− 1− ω) = β(εj − ω).

Now, (
bl:eq
4.4) implies

bj
(ω) � ρβ(εj−ω)( b (α))j,

for all ω ∈ R, i.e. bj satisfies (
bt:eq
4.18) for all j ≤ K.

Step II. Estimates for tj. For the symbols tj the proof is by induction. First of all,

note that

ad(h0;ψ1, ψ1) = − ad(bNR, ψ1),
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so that, using (
subord:eq
3.22), Proposition

commut0:prop
3.4, and (

psik1:eq
4.17) with γ = ω − α + 1, we obtain

ad(h0;ψ1, ψ1) (ω) � b (α) ψ1
(γ) � ρβ(σ1−γ)( b (α))2.

By (
sigmaeps:eq
4.16), we have σ1−γ = σ1 +α−1−ω = ε2−ω, and hence t2 satisfies (

bt:eq
4.18). Suppose

that all tk with k ≤ j− 1 ≤ K− 1 satisfy (
bt:eq
4.18). As we have already established that all

bk, k ≤ K satisfy (
bt:eq
4.18), by definition (

psil:eq
4.8) and (

subord:eq
3.22) all ad(h0;ψk), k ≤ j − 1, satisfy

the same bound, i.e.

ad(h0, ψk)
(γ) � ρβ(εk−γ)( b (α))k, k ≤ j − 1.

Using the bound (
psik1:eq
4.17) for ψk, k ≤ j − 1, with γ = (ω − 1)q−1 + 1, and applying

Proposition
commut0:prop
3.4, we obtain for k1 + k2 + · · ·+ kq = j, q ≥ 2 the following estimate:

ad(h0;ψk1 , ψk2 , . . . , ψkq)
(ω) = ad

(
ad(h0;ψk1);ψk2 , . . . , ψkq

)
(ω)

� ad(h0;ψk1)
(γ)

q∏
n=2

ψkn
(γ) � ( b (α))jρβ(εk1−γ)

q∏
n=2

ρβ(σkn−γ),h0:eqh0:eq (4.23)

for any ω ∈ R. Obviously, we have:

β(εk1 − γ) +

q∑
n=2

β(σkn − γ) = β
(
(σ − 1)

q∑
n=1

kn + 2 + (2m− 2)β−1 + q − 1− qγ
)

= β
(
j(σ − 1) + 2 + (2m− 2)β−1 + q(1− γ)− 1

)
= β

(
εj − ω

)
.

This leads to (
bt:eq
4.18) for all tj, j ≤ K.

Step III. In order to handle ΨK , we use the solution Ψ of the equation (
adb:eq
4.13) con-

structed in Lemma
commut:lem
4.1. Then from definition (

psil:eq
4.8) and steps I, II we immediately con-

clude that ψK ∈ Sγ for any γ ∈ R. Moreover, estimate (
psitau:eq
4.14) with ω = γ implies

ψK
(γ) � ρβ(−(2m−2)β−1−1)

(
bK

(γ) + tK
(γ)
)

� ρβ(εK−γ−(2m−2)β−1−1)( b (α))K .

Since εK − (2m− 2)β−1 − 1 = σK , the required result follows.
Step IV. Proof of (

rm:eq
4.20) and (

xm:eq
4.19). We assume that ρβ(σ−1) b (α) � 1 throughout.

Before treating the remainder RM+1 (see (
r:eq
4.6) for its definition), let us prove estimates

(
xm:eq
4.19) for the symbols ψ =

∑M
j=1 ψj and xM = b+

∑M
j=2(bj + tj). Using (

psik1:eq
4.17), we get

ψ (γ) �
M∑
j=1

ρβ(σj−γ)( b (α))j = ρβ(1−γ)

M∑
j=1

(
ρβ(σ−1) b (α)

)j
,

which implies that

globalpsi:eqglobalpsi:eq (4.24) ψ (γ) � ρβ(σ−γ) b (α)

(
1 +

(
ρβ(σ−1) b (α)

)M−1
)
� ρβ(σ−γ) b (α)
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with an arbitrary γ ∈ R. Similarly, in view of (
bt:eq
4.18) and (

sigmatoeps:eq
4.21),

xM
(α) � b (α) +

M∑
j=2

ρβ(εj−α)( b (α))j = b (α) +
M∑
j=2

ρβ(j−1)(σ−1)( b (α))j

� b (α)

(
1 + (ρβ(σ−1) b (α))M−1

)
� b (α).globalx:eqglobalx:eq (4.25)

Now we apply these estimates to find upper bounds for RM+1.
The remainder RM+1 consists of three components. To estimate the first one, BM+1,

note, that in view of (
bt:eq
4.18), bM+1 ∈ S0 and bM+1

(0) � ρβεM+1( b (α))M+1. By Proposi-
tion

bound:prop
3.1, we conclude that the norm of BM+1 is bounded by ( b (α))M+1ρβεM+1 as required.

Consider now R
(1)
M+1 defined in (

decomp:eq
4.1). Using (

globalpsi:eq
4.24) with γ = −(M + 1)−1α + 1 and

applying Proposition
commut0:prop
3.4,we conclude that

adM+1(b;ψ) (0) � b (α)
(
ψ (γ)

)M+1 � ρβ(M+1)(σ−γ)
(
b (α)

)M+2
.

In view of (
sigmatoeps:eq
4.21),

(M + 1)(σ − γ) = Mσ + α−M + σ − 1 = εM+1 + σ − 1,

so that Proposition
bound:prop
3.1 yields:

big:eqbig:eq (4.26) ‖ adM+1(B; Ψ)‖ � ρβεM+1
(
b (α)

)M+1
ρβ(σ−1) b (α) � ρβεM+1

(
b (α)

)M+1
.

To estimate the norm of adM+1(H0; Ψ), note that by (
globalx:eq
4.25) and (

nat:eq
3.24),

xNR
M

(γ) � ρβ(α−γ) b (α)

for any γ ∈ R. It follows from (
psi1:eq
4.7) and (

psil:eq
4.8) that ad(h0, ψ) + xNR

M = 0. Thus, using the
above bound and (

globalpsi:eq
4.24) with γ = M(1 + M)−1, we obtain with the help of Proposition

commut0:prop
3.4 that

adM+1(h0;ψ) (0) = adM(xNR
M ;ψ) (0) � xNR

M
(γ)
(
ψ (γ)

)M
� ρβM(σ−γ)+β(α−γ)

(
b (α)

)M+1
.

According to (
sigmatoeps:eq
4.21),

M(σ − γ) + α− γ = Mσ + α−M − (M + 1)γ +M = εM+1,

so that by Proposition
bound:prop
3.1,

‖ adM+1(H0; Ψ)‖ � ρβεM+1
(
b (α)

)M+1
.

Together with (
big:eq
4.26) this leads to the estimate of the form (

rm:eq
4.20) for R

(1)
M+1.

Following the same strategy, one easily obtains the sought estimate for the norm of

the R
(2)
M+1 defined in (

rtilde:eq
4.3). This completes the proof of (

rm:eq
4.20). �

Let us now summarize the results of this section in the following Theorem: the impli-
cations of the above Lemma for the operator H = H0 + Op(b), defined in (

h:eq
2.8).
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reduction:thm Theorem 4.3. Let b ∈ Sα(w), w(ξ) = 〈ξ〉β, β ∈ (0, 1], α ∈ R be a symmetric symbol,
and let H be the operator defined in (

h:eq
2.8). Suppose that the condition (

alm1:eq
2.15) is satisfied.

Then for any positive integer M there exist symmetric symbols ψ = ψM , x = xM , and a
self-adjoint bounded operator RM+1 satisfying the following properties:

(1) ψ ∈ Sγ for all γ ∈ R, x ∈ Sα, and

ψ (γ) � ρβ(σ−γ) b (α),

x (α) � b (α),

‖RM+1‖ � ( b (α))M+1ρβεM+1 ,

uniformly in b satisfying b (α) � 1;
(2) The operator A1 = e−iΨHeiΨ,Ψ = Op(ψ), has the form

a1:eqa1:eq (4.27) A1 = A0 +XR +XSE,LE,LF +RM+1, A0 = H0 +Xo.

Proof. Note that the condition (
alm1:eq
2.15) is equivalent to σ < 1. Thus the existence of

symbols ψ, x and the operator RM+1 with required properties follows from Lemma
gauge:lem
4.2.

In particular, the claimed upper bounds are direct consequences of (
xm:eq
4.19) and (

rm:eq
4.20). �

5. Geometry of congruent points: resonant sets
ezhiki:sect

In the course of the proof we need a substantial number of certain lattice-geometric
constructions. They are discussed in this section. First, we fix the notation.

For any vector ξ ∈ Rd, ξ 6= 0, we denote e(ξ) = ξ|ξ|−1. For any η ∈ Rd the
vector ξη is the projection of ξ onto the one-dimensional subspace spanned by η, i.e.

ξη = (ξ · e(η))e(η). Let Θr ⊂ Γ† and Θ0
r ⊂ Γ† be the sets defined in (

T:eq
3.12). We always

assume that

r ≥ r0, where r0 is such that Θ0
r contains d linearly independent lattice vectors.

We say that a subspace V ⊂ Rd is a lattice r-subspace if V is spanned by some linearly
independent lattice vectors from the set Θ0

r. A one dimensional lattice subspace spanned
by a vector θ ∈ Θr is denoted by V(θ). The set of all lattice r-subspaces of dimension
n is denoted by V(n) = V(r, n), n = 0, 1, . . . , d, and W = W(r) = ∪dn=0V(r, n). We have
included in this list the zero dimensional subspace X = {0}. For any vector ξ ∈ Rd we
denote by ξV its orthogonal projection on V ∈ V(r, n). In particular, ξX = 0.

The notation wn is used for the volume of the unit ball in Rn.

5.1. Elementary geometrical estimates. We begin with estimates for distances be-
tween lattice subspaces and lattice points.

cassels:lem Lemma 5.1. (1) For any V ∈ V(r, d − 1) there exists a vector γ ∈ Γ such that
γV = 0, and |γ| ≤ 2 d(Γ) w−1

d−1 π
1−drd−1.

(2) For any W ∈ V(r, n), n ≤ d− 1, and any ν /∈W, ν ∈ Γ†, one has

dist(ν,W) ≥ d(Γ)−1 wd−1 π
dr1−d.
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Proof. Denote by e ∈ Rd a unit vector, orthogonal to V. For t ≥ 1, let At ⊂ Rd be the
cylindrical set

At = {ξ ∈ Rd : |ξV| < 2πr−1, |ξe| ≤ t},
which is obviously convex and symmetric about the origin. Moreover,

vol(At) = t(2π)d−1r−d+1 wd−1 .

By
Cas
[4], §III.2.2 Theorem II, under the condition vol(At) ≥ d(Γ)2d the set At contains at

least two points ±γ ∈ Γ. The above condition is satisfied if t = d(Γ) w−1
d−1 2d(2π)1−drd−1.

By definition of At, for any m ∈ Θr ∩ V we have |γ · e(m)| < 2πr−1, and hence
|γ ·m| < 2πr−1|m| ≤ 2π. Since γ ∈ Γ and m ∈ Γ†, the latter inequality implies that
γ ·m = 0, so γV = 0. It is also clear that |γ| ≤ t = 2 d(Γ) w−1

d−1 π
1−drd−1.

To prove the second statement, we find a subspace V ∈ V(r, d − 1) such that ν /∈ V
and W ⊂ V, and denote by γ ∈ Γ the vector orthogonal to V, found at the first step of
the proof. Since

dist(ν,W) ≥ dist(ν,V) =
1

|γ|
|ν · γ| ≥ 2π

|γ|
,

the required inequality follows from the first part of the Lemma. �

projections:lem Lemma 5.2. Let V ∈ V(r,m), m ≤ d− 1.

(1) If θ ∈ Θr and θ /∈ V, then for any ξ ∈ V + V(θ) we have

|ξ| � rd(|ξθ|+ |ξV|).

(2) For any subspace W ∈ V(r, n), n ≤ d− 1,

|ξV+W| � rnd(|ξV|+ |ξW|).

Proof. Let θ /∈ V, and let ξ ∈ V + V(θ). By Lemma
cassels:lem
5.1,

e:eqe:eq (5.1) |θe| = dist(θ,V)� r1−d,

where e ∈ V + V(θ) is a unit vector orthogonal to V. We have:

ex:eqex:eq (5.2) ξ = ξe + ξV,

so that

ξθ · θ = ξ · θ = ξe · θe + ξV · θV.

Since |ξe · θe| = |ξe| |θe|, using (
e:eq
5.1) we obtain

|ξe| ≤
1

|θe|
(
|ξV|+ |ξθ|

)
|θ| � rd(|ξV|+ |ξθ|).

Together with (
ex:eq
5.2) this implies the required bound.

To prove the second statement we may assume that ξ ∈ V + W. Let θ1,θ2, . . . ,θn ∈
Θr ∩W be a linearly independent set of lattice vectors. Denote by W(j), j = 1, 2, . . . , n
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the subspace spanned by θ1,θ2, . . . ,θj. Applying the first part of the Lemma repeatedly,
we get

|ξ| � rd(|ξθn|+ |ξW(n−1)+V|)

� rd
(
|ξθn|+ rd(|ξθn−1

|+ |ξW(n−2)+V|)
)
� · · · � rnd

( n∑
j=1

|ξθj
|+ |ξV|

)
.

Noticing that |ξθ| ≤ |ξW| for any θ ∈W, we get the proclaimed estimate. �

5.2. Congruent vectors. For a non-zero vector θ we define the resonant layer corre-
sponding to θ by

layer:eqlayer:eq (5.3) Λ(θ) := {ξ ∈ Rd, |ξ · θ| < ρα1|θ|}.
Here and below, α1 ∈ (0, 1) is a fixed number which will be specified later, and ρ ≥ 1.
For the sake of uniformity of the notation, in case θ = 0 we denote Λ(0) = Rd.

reachability:defn Definition 5.3. Let θ,θ1,θ2, . . . ,θm be some vectors from Θ0
r, which are not necessarily

distinct.

1 (1) We say that two vectors ξ,η ∈ Rd are θ-resonant congruent if both ξ and η are
inside Λ(θ) and (ξ − η) = lθ with l ∈ Z. In this case we write ξ ↔ η mod θ.
In particular, each ξ ∈ Rd is 0-resonant congruent to itself.

2 (2) For each ξ ∈ Rd we denote by Υθ(ξ) the set of all points which are θ-resonant
congruent to ξ. For θ 6= 0 we say that Υθ(ξ) = ∅ if ξ /∈ Λ(θ).

3 (3) We say that η is θ1,θ2, . . . ,θm-resonant congruent to ξ, if there exists a sequence
ξj ∈ Rd, j = 0, 1, . . . ,m such that ξ0 = ξ, ξm = η, and ξj ∈ Υθj(ξj−1) for
j = 1, 2, . . . ,m.

(4) We say that η and ξ are resonant congruent, if η is θ1,θ2, . . . ,θm-resonant con-
gruent to ξ with some θ1,θ2, . . . ,θm ∈ Θr. The set of all points, resonant
congruent to ξ, is denoted by Υ(ξ). We use the notation N(ξ) = {m ∈ Γ† :
ξ +m ∈ Υ(ξ)}, i.e. N(ξ) = Υ(ξ)−ξ ⊂ Γ†. For points η ∈ Υ(ξ) we write η ↔ ξ.

reachability:rem Remark 5.4. (1) Note that according to the above definition every point in Rd is
resonant congruent to some point. In particular, every vector ξ is 0-resonant
congruent to itself, i.e. Υ0(ξ) = {ξ}.

(2) It is clear that the resonant congruence defines an equivalence relation, so that if
η ↔ ξ then we have Υ(ξ) = Υ(η).

3:rem (3) Note also that if η is θ1,θ2, . . . ,θm-resonant congruent to ξ, then ξ is θm,θm−1, . . . ,θ1-
resonant congruent to η, and ξ is θ1,θ2, . . . ,θm−1,θm,θm−1, . . . ,θ1-resonant con-
gruent to itself.

Let us establish some immediate properties of congruent points:

trans:lem Lemma 5.5. For any vectors ξ ∈ Rd, θ ∈ Θr, and any ν ⊥ θ we have Υθ(ξ) + ν ⊂
Υθ(ξ + ν).
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As a consequence, if N(ξ) ⊂ V, then for any vector ν ∈ V⊥ we have Υ(ξ) + ν ⊂
Υ(ξ + ν) and N(ξ) ⊂ N(ξ + ν).

Proof. If Υθ(ξ) is empty, the result is obvious. For a non-empty Υθ(ξ) the first statement
is an immediate consequence of Definition

reachability:defn
5.3 in view of the orthogonality of θ and ν.

Under the conditions N(ξ) ⊂ V, ν ∈ V⊥, this leads to the inclusion N(ξ) ⊂ N(ξ+ν). �

The next Lemma is the first of many results, establishing some inequalities for con-
gruent points and/or lattice subspaces. To avoid unnecessary repetitions in their formu-
lations, we adopt the following convention.

uniform:conv Convention 5.6. (1) Each inequality (e.g. �, � or �), involving points of the
Euclidean space and/or lattice subspace(s), is assumed to be uniform in those
objects.

(2) The constants in the inequalities are allowed to depend on the dimension d and
the lattice Γ† only.

(3) We say that a certain statement, involving points of the Euclidean space and/or
lattice subspace(s), holds for sufficiently large ρ, if there is a number ρ0 > 0,
independent of the points and/or subspace(s) at hand, such that the statement
holds for all ρ ≥ ρ0.

lem:reachability1 Lemma 5.7. If η ∈ Υ(ξ), then

couple:eqcouple:eq (5.4) |ξ − η| � ρα1r(d−1)d.

In particular,

sn:eqsn:eq (5.5) max
N(ξ)
|m| � ρα1rd(d−1), N(ξ) := card N(ξ)� ρdα1rd

2(d−1),

uniformly in ξ.

The proof of this Lemma relies on the following result:

lem:reachability11 Lemma 5.8. (i) Let η ∈ Υ(ξ) be θ1,θ2, . . . ,θm-resonant congruent to ξ, and let

span(θ1,θ2, . . . ,θm) =: V ⊂ V(n)

with some n ≤ d. Then

couple10:eqcouple10:eq (5.6) |ξV| � ρα1r(n−1)d.

(ii) Suppose that

span N(ξ) = V ∈ V(n),

with some n ≤ d. Then

couple1:eqcouple1:eq (5.7) |ξV| � ρα1r(n−1)d.
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Proof of Lemma
lem:reachability1
5.7. As the relation ξ ↔ η is symmetric, Lemma

lem:reachability11
5.8 implies that |ξV|+

|ηV| � ρα1r(d−1)d. As ξ − η ∈ V, we have

|ξ − η| = |(ξ − η)V| ≤ |ξV|+ |ηV| � ρα1r(d−1)d,

which is (
couple:eq
5.4). The first estimate in (

sn:eq
5.5) follows from the inequality

max
m∈N(ξ)

|m| ≤ sup
η∈Υ(ξ)

|ξ − η|

and from (
couple:eq
5.4). The bound for N(ξ) is simply an estimate for the number of lattice

points in the ball of radius � ρα1rd(d−1). �

Proof of Lemma
lem:reachability11
5.8. The proof of the first part is by induction. For n = 1 the statement

is an immediate consequence of the definitions. Assume that (
couple10:eq
5.6) holds for all n ≤ k,

k ≥ 1, and let us prove (
couple10:eq
5.6) for n = k + 1.

Let η ∈ Υ(ξ) be θ1,θ2, . . . ,θm-resonant congruent to ξ, and let ξ0, ξ1, . . . , ξm be the
vectors from Definition

reachability:defn
5.3(

3
3). Let l ≥ k, l < m, be a number, uniquely defined by the

following conditions: span(θ1, . . . ,θl+1) = V ⊂ V(k + 1), and W := span(θ1, . . . ,θl) 6=
V. Clearly, dim W = k. Since ξl+1 ↔ ξl mod θl+1, by Definition

reachability:defn
5.3(

1
1) we have

|(ξl)θl+1
| < ρα1 . At the same time, since ξl ↔ ξ, we also have |(ξl)W| � ρα1r(k−1)d by

the induction assumption, as W ∈ V(k). Thus, according to Lemma
projections:lem
5.2(1),

eq:1eq:1 (5.8) |(ξl)V| � rd(|(ξl)W|+ |(ξl)θl+1
|)� ρα1rkd.

Noticing that ξ − ξl ∈W, we infer from the induction assumption again that

|ξ − ξl| = |(ξ − ξl)W| ≤ |ξW|+ |(ξl)W| � ρα1r(k−1)d,

Together with (
eq:1
5.8) this leads to |ξV| � ρα1rkd. Thus by induction, (

couple10:eq
5.6) is proved.

In order to prove part (ii), we use the observation made in Remark
reachability:rem
5.4 (

3:rem
3) to conclude

that under the assumption span N(ξ) = V there are vectors θ1, . . . ,θm such that ξ is
θ1, . . . ,θm-resonant congruent to itself and span(θ1, . . . ,θm) = V. It remains to use the
first part of the Lemma. �

One important conclusion of Lemma
lem:reachability1
5.7 is that the numbers card Υ(ξ) are bounded

uniformly in ξ ∈ Rd.
We need further notions related to congruency:

chain:defn Definition 5.9. We say that a point ξ ∈ Rd is θ-non-critical, if for a sufficiently small
ε > 0 we have Υθ(ξ + µ) = Υθ(ξ) + µ for all µ : |µ| < ε. Otherwise we call ξ θ-critical.

If ξ is θ-non-critical for all θ ∈ Θr, we call it non-critical.
We say that the set Υ(ξ) is non-critical, if it consists of non-critical points. In other

words, for a sufficiently small ε > 0, we have Υ(ξ + µ) = Υ(ξ) + µ if |µ| < ε. Otherwise
Υ(ξ) is said to be critical.

If Υ(ξ) is non-critical, then the set N(·) remains constant in a neighbourhood of ξ.
It is clear that if θ 6= 0, then the set

{ξ ∈ Rd : ξ · e(θ) 6≡ ±ρα1 mod |θ|},
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consists of θ-non-critical points. Each ξ ∈ Rd is obviously 0-non-critical. Thus, the set
of ξ ∈ Rd for which Υ(ξ) is non-critical, is open and of full measure.

resonant:subsect
5.3. Resonant sets and their properties. Our aim is to construct a collection of sets
Ξ(V) ⊂ Rd parametrised by subspaces V ∈ V(r, n) for n = 0, 1, . . . , d, and depending on
the parameter ρ > 0, satisfying the following properties:

exhaust:eqexhaust:eq (5.9) Rd =
⋃

V∈W(r)

Ξ(V),

disjoint:eqdisjoint:eq (5.10) Ξ(V1) ∩ Ξ(V2) = ∅ for V1 6= V2,

span:eqspan:eq (5.11) For each ξ ∈ Ξ(V), one has Υ(ξ) ⊂ Ξ(V) and N(ξ) ⊂ V.

The required sets will depend on the arbitrarily chosen real parameters α0, α1, . . . , αd
and κ, satisfying the conditions 0 = α0 < α1 < α2 < · · · < αd < 1 and

eq:condition1eq:condition1 (5.12)

{
r ≤ ρκ,

αn+1 > αn + 2κd2, n = 0, 1, . . . , d− 1.

From now on these conditions are always assumed to hold. Under these conditions the
inequalities (

sn:eq
5.5) give for sufficiently large ρ:

card:eqcard:eq (5.13)

|m| ≤ ρ
α1+α2

2 ,m ∈ N(ξ);

card Υ(ξ) ≤ ρ
α1+α2

2
d,

uniformly in ξ. The next Lemma is a straightforward consequence of the above inequal-
ities:

bups:lem Lemma 5.10. Let |ξ| ≥ ρ/2. Then

max
Υ(ξ)
|η| � min

Υ(ξ)
|η| � |ξ|,

uniformly in ξ.

For each lattice subspace V ∈ V(n), n = 0, 1, . . . , d we introduce the (open) sets

xi1:eqxi1:eq (5.14) Ξ1(V) := {ξ ∈ Rd, |ξV| < ραn}, Ξ2(V) :=
⋃

ξ∈Ξ1(V)

Υ(ξ),

and

xi:eqxi:eq (5.15) Ξ(V) :=

Ξ2(V) \
d⋃

m=n+1

⋃
W∈V(m)

Ξ2(W), n < d;

Ξ2(V), n = d.
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The set Ξ(V),V 6= X, is referred to as the resonant set, associated with the lattice
subspace V. By definition of Ξ2(V), we have ξ ∈ Ξ2(V) if and only if Υ(ξ) ⊂ Ξ2(V), so
that

xi2:eqxi2:eq (5.16) ξ ∈ Ξ(V) if and only if Υ(ξ) ⊂ Ξ(V).

This observation immediately leads to the natural representation of Ξ(V) as a union of
non-intersecting equivalence classes:

equiv:eqequiv:eq (5.17) Ξ(V) =
⋃

ξ∈Ξ(V)/↔

Υ(ξ).

Note that Ξ1(V(θ)) = Λ(θ) for each θ ∈ Θr. For V = X we have Ξ1(X) = Ξ2(X) = Rd.
The sets

(non)resonant:eq(non)resonant:eq (5.18) B := Ξ(X) = Rd \
⋃
m≥1

⋃
W∈V(m)

Ξ2(W) and D = Rd \B

are called the non-resonant set and resonant set of Rd respectively. The sets introduced
above obviously depend on the parameter ρ. Whenever necessary, the dependence on ρ
is reflected in the notation, e.g. Ξ(V; ρ), B(ρ),D(ρ).

Remark 5.11. To illustrate the difference between the sets Ξ1(V) and Ξ2(V) assume for
simplicity that the set Θ0

r contains two non-zero vectors only, which we denote θ,η. Away
from the intersection with Λ(η), the set Ξ2(θ) coincides with Ξ1(θ) = Λ(θ). However,
near Λ(θ) ∩ Λ(η) the set Ξ2(θ) acquires some extra points. Namely, along with each
point ξ ∈ Λ(θ) the set Ξ2(θ) contains the points from Λ(η) obtained by translating ξ
by ±η,±2η, ... etc.

Note an immediate consequence of the definition (
xi:eq
5.15) and Lemma

lem:reachability1
5.7:

lem:properties3 Lemma 5.12. Assume (
eq:condition1
5.12). Let V ∈ V(n), n = 1, 2, . . . , d, and ξ ∈ Ξ2(V). Then for

sufficiently large ρ we have:

proj:eqproj:eq (5.19) |ξV| ≤

2ρ
α1+α2

2 , n = 1,

2ραn , n = 2, . . . , d.

Proof. By definition (
xi1:eq
5.14), ξ ∈ Υ(η) for some η ∈ Ξ1(V). Thus, by (

card:eq
5.13),

|ξV| ≤ |ηV|+ max
m∈N(η)

|m| < ραn + ρ
α1+α2

2 .

In view of monotonicity of αj’s, this proves (
proj:eq
5.19). �

The previous Lemma shows that the resonant sets Ξ(V),V 6= X, are “small” relative
to the non-resonant set B = Ξ(X). More precisely, we show that the resonant set D has
a small angular measure. To this end for each θ ∈ Θr define

Λ̃(θ) = {ξ ∈ Rd : |ξ · e(θ)| < 2ραd−1},
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cf. (
layer:eq
5.3). By Lemma

lem:properties3
5.12, for any V ∈ V(n), n ≤ d− 1 we have

Ξ(V) ⊂
⋃

θ∈V∩Θr

Λ̃(θ)

so that
D \B(ρ/8) ⊂

⋃
θ∈Θr

Λ̃(θ) \B(ρ/8).

An elementary calculation shows that

Λ̃(θ) \B(ρ/8) ⊂ S(θ; ρ)× [ρ/8,∞), S(θ; ρ) := {Ω ∈ Sd−1 : |Ω · e(θ)| < 16ραd−1−1},
for all sufficiently large ρ. Let

surface:eqsurface:eq (5.20) S(ρ) =
⋃

θ∈Θr

S(θ; ρ), T (ρ) = Sd−1 \ S(ρ).

surface:lem Lemma 5.13. Let the sets S(ρ) ⊂ Sd−1, T (ρ) ⊂ Sd−1 be as defined above. Then

surface1:eqsurface1:eq (5.21) volSd−1 S(ρ)� ραd−1, volSd−1 T (ρ) � 1,

for sufficiently large ρ.

Proof. The elementary bound

volSd−1 S(θ; ρ) =

∫
Sd−2

∫
| cosω|≤16ραd−1−1

sind−2 ωdωdΩ̂� ραd−1−1,

together with the observation that the number of the sets Λ̃(θ) is bounded above by
card Θr � rd, gives the estimate

volSd−1 S(ρ)� rdραd−1−1 � ραd−1.

Here we have used (
eq:condition1
5.12).

The second bound in (
surface1:eq
5.21) immediately follows from the first one by definition (

surface:eq
5.20).

�

In what follows, apart from the non-resonant set B(ρ), the set

angular:eqangular:eq (5.22) B̃(ρ) = T (ρ)× [ρ/8,∞)

will play an important role. Since (D \B(ρ/8)) ⊂ S(ρ)× [ρ/8,∞), and B = Rd \D (see
(
(non)resonant:eq
5.18)), we have

B̃(ρ) ⊂ B(ρ).

Let us now proceed with our study of the resonant sets Ξ(V). Introduce a new notion:

strdis:defn Definition 5.14. Two subspaces V1, V2 are said to be strongly distinct, if they are
distinct, and neither of V1, V2 is a subspace of the other.

An equivalent definition of this property is that dim(V1+V2) > max(dim V1, dim V2).

Here is a simple relation between the sets Ξ1,Ξ2:
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xi12:lem Lemma 5.15. Assume (
eq:condition1
5.12). Then for any strongly distinct lattice subspaces V and

W we have

strongly:eqstrongly:eq (5.23) Ξ2(V) ∩ Ξ2(W) ⊂ Ξ1(V + W),

for sufficiently large ρ.

Proof. Let V ∈ V(n), W ∈ V(m), and assume without loss of generality that m ≥ n.
Suppose first that m ≥ 2. By Lemma

lem:properties3
5.12, for any ξ ∈ Ξ2(V) ∩ Ξ2(W) we have

|ξV| < 2ραm , |ξW| < 2ραm .

Therefore, by Lemma
projections:lem
5.2, for the projection onto the subspace A = V + W we have

|ξA| � ραmrd
2

.

Since V and W are strongly distinct, we have p := dim A > m, and hence, by (
eq:condition1
5.12),

for sufficiently large ρ the right hand side is bounded above by ραp , which implies the
proclaimed inclusion in view of the definition (

xi1:eq
5.14).

Suppose that n = m = 1, so that by Lemma
lem:properties3
5.12

|ξV|, |ξW| < 2ρ
α1+α2

2 .

Lemma
projections:lem
5.2 gives again that |ξA| � ρ

α1+α2
2 rd

2
. Since p := dim A = 2, by (

eq:condition1
5.12), for

sufficiently large ρ the right hand side is bounded above by ρα2 , which implies (
strongly:eq
5.23)

again. �

Lemma
xi12:lem
5.15 has a number of very useful consequences. First of all note that in the

definition (
xi:eq
5.15) we could have written V ⊂W without changing the set Ξ(V). Precisely,

we have the following lemma.

equiv:lem Lemma 5.16. Let

xi11:eqxi11:eq (5.24) Ξ′(V) := Ξ2(V) \
⋃
m>n

⋃
W∈V(m),V⊂W

Ξ2(W).

Then for sufficiently large ρ, we have Ξ(V) = Ξ′(V) for all V ∈ V(n), n ≤ d− 1.

Proof. Let V ∈ V(r, n). Clearly, Ξ(V) ⊂ Ξ′(V). Let us prove the opposite inclusion. On
the r.h.s. of the formula (

xi:eq
5.15) one can replace Ξ2(W) by Ξ2(W) ∩ Ξ2(V). For strongly

distinct W and V, from Lemma
xi12:lem
5.15 we obtain that

Ξ2(W) ∩ Ξ2(V) ⊂ Ξ2(W + V).

For m > n this entails the inclusion⋃
W∈V(m)

Ξ2(W) ∩ Ξ2(V) ⊂
( ⋃

W∈V(m),V6⊂W

Ξ2(W + V)

)⋃( ⋃
W∈V(m),V⊂W

Ξ2(W)

)

⊂
⋃
p≥m

⋃
W∈V(p),V⊂W

Ξ2(W),

so that Ξ(V) ⊃ Ξ′(V), as required. �



34 L. PARNOVSKI & A.V. SOBOLEV

The next lemma shows that all resonant sets Ξ(V) are non-empty. It is given here for
the sake of completeness, and it will not be used in the subsequent argument.

Lemma 5.17. Let V ∈ V(n), n ≤ d. For any R� ρ and sufficiently large ρ, we have

nonempty:eqnonempty:eq (5.25) vol
(
Ξ(V) ∩B(R)

)
� ρnαnRd−n.

Proof. Let us fix a subspace V ∈ V(n). By definition (
xi1:eq
5.14),

V0(ρ,R) := vol
(
Ξ2(V) ∩B(R)

)
≥ vol

(
Ξ1(V) ∩B(R)

)
� ρnαnRd−n.

For n = d we have V = Rd and Ξ2(V) = Ξ(V), so the above lower bound yields (
nonempty:eq
5.25).

Suppose that n ≤ d− 1. By Lemma
lem:properties3
5.12, for any V ∈ V(n) and any W ∈ V(m),m =

n+ 1, . . . , d, such that V ⊂W, we have

vol
(
Ξ2(W) ∩ Ξ2(V) ∩B(0, R)

)
� ρnαnρ(m−n)αmRd−m.

If n = d− 1, then definition (
xi:eq
5.15) ensures that

vol
(
Ξ(V) ∩B(R)

)
� V0(ρ,R)− Cρ(d−1)αd−1+αd

� ρ(d−1)αd−1R
(
1− Cραd−1

)
� ρ(d−1)αd−1R.

For n ≤ d − 2 we recall that the number of lattice subspaces W ∈ V(m),m ≤ d − 1, is

less than Crd
2

with a universal constant C. This leads to the estimate

V (ρ,R) := vol
⋃

m≥n+1

⋃
W∈V(m)

V⊂W

(
Ξ2(W) ∩ Ξ2(V) ∩B(R)

)

� rd
2

d−1∑
m=n+1

ρnαnρ(m−n)αmRd−m + ρnαnρ(d−n)αd

� ρnαnRd−n
[ d−1∑
m=n+1

rd
2

ρ(m−n)αmRn−m + ρ(d−n)αdRn−d
]
.

Therefore, under the condition R� ρ, using (
eq:condition1
5.12), we obtain that

V (ρ,R)

V0(ρ,R)
�

d∑
m=n+1

ρ(m−n)(αd−1) → 0, ρ→∞.

Now the required estimate (
nonempty:eq
5.25) follows from Lemma

equiv:lem
5.16. �

properties2:lem Lemma 5.18. Let V ∈ V(n) and W ∈ V(m) be two strongly distinct lattice subspaces.
Then for sufficiently large ρ we have Ξ(V) ∩ Ξ2(W) = ∅. In particular, if θ /∈ V, then
Ξ(V) ∩ Λ(θ) = ∅.

Proof. By Lemma
xi12:lem
5.15, for sufficiently large ρ,

Ξ(V) ∩ Ξ2(W) ⊂ Ξ2(V) ∩ Ξ2(W) ⊂ Ξ2(U), U = V + W.
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Since dim U > n, by definition (
xi:eq
5.15), the left hand side is empty, as required.

As Λ(θ) = Ξ1(V(θ)) ⊂ Ξ2(V(θ)), the second statement follows immediately. �

properties2:cor Corollary 5.19. Let V ∈ V(n). If ξ ∈ Ξ(V), then Υ(ξ) ⊂ Ξ(V), and for sufficiently
large ρ also N(ξ) ⊂ V.

Proof. The inclusion Υ(ξ) ⊂ Ξ(V) immediately follows from (
xi2:eq
5.16).

To prove the second statement, it suffices to show that if η ∈ Υθ(ξ) with some θ ∈ Θr,
then θ ∈ V. The assumption η ∈ Υθ(ξ) means, in particular, that ξ ∈ Λ(θ). By Lemma
properties2:lem
5.18 the latter inclusion is possible only if θ ∈ V. �

Now we are in position to prove that the constructed sets Ξ(V) satisfy the conditions
(
exhaust:eq
5.9), (

disjoint:eq
5.10) and (

span:eq
5.11):

partition:thm Theorem 5.20. Let α0, α1, . . . , αd and κ be some numbers satisfying (
eq:condition1
5.12). Then for

sufficiently large ρ the collection of sets Ξ(V) ⊂ Rd,V ∈W(r), defined by the equalities
(
xi1:eq
5.14), (

xi:eq
5.15), satisfies the properties (

exhaust:eq
5.9), (

disjoint:eq
5.10) and (

span:eq
5.11).

Proof. Proof of (
exhaust:eq
5.9). Let us prove that

xixi1:eqxixi1:eq (5.26) Ξ(n) :=
⋃
m≥n

⋃
V∈V(m)

Ξ(V) =
⋃
m≥n

⋃
V∈V(m)

Ξ2(V) =: Ξ
(n)
2 ,

for all n = 0, 1, 2, . . . , d. If n = d, then Ξ(d) = Ξ(Rd) = Ξ2(Rd) = Ξ
(d)
2 . Suppose that

0 ≤ n ≤ d− 1. By definition (
xi:eq
5.15) and backward induction,

Ξ
(n)
2 =

⋃
V∈V(n)

Ξ2(V)
⋃

Ξ
(n+1)
2 =

⋃
V∈V(n)

Ξ(V)
⋃

Ξ
(n+1)
2 =

⋃
V∈V(n)

Ξ(V)
⋃

Ξ(n+1) = Ξ(n).

Therefore Rd = Ξ2(X) ⊂ Ξ
(0)
2 = Ξ(0), as claimed.

Proof of (
disjoint:eq
5.10). Let V1 and V2 be distinct lattice subspaces, dim Vj = pj, j = 1, 2. If

V1 ⊂ V2, then p1 < p2, and it follows from Definition (
xi:eq
5.15) that

Ξ(V1) ⊂ Ξ2(V1) \ Ξ(V2),

so that Ξ(V1)∩Ξ(V2) = ∅. If V1 and V2 are strongly distinct, then the required result
follows from Lemma

properties2:lem
5.18.

Proof of (
span:eq
5.11). See Corollary

properties2:cor
5.19. �

5.4. Scaling properties of the sets Υ(ξ).

lem:upsilon Lemma 5.21. Suppose that ξ ∈ Ξ(V) and ξ + ν ∈ Ξ(V) with some ν ∈ V⊥. Then for
sufficiently large ρ,

upsilon:item1 (1) N(ξ) = N(ξ + ν),
upsilon:item2 (2) For ξ ∈ Ξ(V) the set N(ξ) depends only on the vector ξV.

Proof. By Corollary
properties2:cor
5.19 N(ξ),N(ξ + ν) ⊂ V, so Part

upsilon:item1
1 follows from Lemma

trans:lem
5.5. State-

ment
upsilon:item2
2 is a rephrased statement

upsilon:item1
1. �
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perpendicular:lem Lemma 5.22. Suppose that ξ ∈ Ξ(V) with some V ∈ V(n), n ≤ d, and ξt = ξ + tν,ν =
ξV⊥ with t ≥ 0. Then for sufficiently large ρ the vector ξt ∈ Ξ(V) for all t ≥ 0.

We precede the proof with another Lemma:

coupl:lem Lemma 5.23. Suppose that ξ ∈ Ξ(V) with some V ⊂ V(n), n ≤ d, and ξt = ξ+ tν,ν =
ξV⊥ with t ≥ 0. Then for sufficiently large ρ we have N(ξ) = N(ξt) for all t ≥ 0, and, in
particular, N(ξt) ⊂ V.

Proof. For n = d the result is trivial, so we assume that n ≤ d− 1. We consider the case
n > 0; the case n = 0 is similar, and we leave it to the reader.

Let us fix a t > 0. By Corollary
properties2:cor
5.19, N(ξ) ⊂ V, so that N(ξ) ⊂ N(ξt) by Lemma

trans:lem
5.5.

In order to prove the opposite inclusion, it suffices to prove that Υθ(ξt)− tν ⊂ Υθ(ξ)
for each θ ∈ Θ0

r such that Υθ(ξt) 6= ∅. If θ = 0, then the above assertion is obvious.
Suppose that θ 6= 0. Let µt ∈ Υθ(ξt), so we need to show that µ := µt − tν ⊂ Υθ(ξ).

First, we prove that θ ∈ V. Suppose the converse, i.e. that θ /∈ V, and define
W = V + V(θ) ∈ V(n + 1). We may assume that |ξW| ≥ ραn+1 . Indeed, otherwise we
would have |ξW| < ραn+1 , which would imply that ξ ∈ Ξ1(W) ⊂ Ξ2(W), but the latter
is impossible in view of the condition ξ ∈ Ξ(V). Since

aux:eqaux:eq (5.27) |ξV| ≤ 2ρ
αn+αn+1

2 ,

see Lemma
lem:properties3
5.12, we can claim by virtue of Lemma

projections:lem
5.2 and conditions (

eq:condition1
5.12) that

|ξθ| ≥ r−d|ξW| − |ξV| � ραn+1r−d.

Consequently,

|νθ| = |ξV⊥ · e(θ)| ≥ |ξθ| − |ξV| � ραn+1r−d.

Therefore,

|(ξt)θ| = |ξθ + tνθ| = |(ξV)θ + (t+ 1)νθ|

≥ (t+ 1)|νθ| − |ξV| ≥ ραn+1r−d ≥ ρα1 , t ≥ 0,

so that ξt /∈ Λ(θ), t ≥ 0, which contradicts the fact that ξt ↔ µt mod θ. Thus, θ ∈ V.
As ν ∈ V⊥, the inclusion µt ∈ Υθ(ξt) implies µ ∈ Υθ(ξ) by Lemma

trans:lem
5.5. Therefore,

Υθ(ξt) = Υθ(ξ) + tν, which in turn implies Υ(ξt) = Υ(ξ) + tν and N(ξt) = N(ξ). The
inclusion N(ξt) ⊂ V follows from N(ξ) ⊂ V. �

Proof of Lemma
perpendicular:lem
5.22. As in the previous proof assume that n ≤ d − 1. Let us fix a

t > 0. Since ξ ∈ Ξ(V) ⊂ Ξ2(V), one can find a vector η ∈ Ξ1(V) ∩Υ(ξ). As ν ∈ V⊥,
this implies that ηt := η + tν ∈ Ξ1(V) and by Lemma

trans:lem
5.5, ξt ∈ Υ(ηt) ⊂ Ξ2(V). Thus,

in view of Lemma
equiv:lem
5.16 it remains to prove that ξt 6∈ Ξ2(W) for any W ) V. Suppose

the contrary, i.e. for some W ∈ V(m), m > n, W ⊃ V, we have ξt ∈ Ξ2(W). We show
that under this condition we have ξ ∈ Ξ2(W), which would contradict the assumption
ξ ∈ Ξ(V).
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Denote U := W	V (U does not have to be a lattice r-subspace). By Definition (
xi1:eq
5.14)

there is a vector µt ∈ Ξ1(W), resonant congruent to ξt. By Lemma
coupl:lem
5.23, N(ξt) = N(ξ) ⊂

V, so that (µt)U = (ξt)U. Therefore, for the vector µ = µt − tν we also have µU = ξU.
This implies that

|(µt)W|2 = |µW + tνW|2 = |µW + tξU|2 = |µW + tµU|2

= |µV + (t+ 1)µU|2 = |µV|2 + (t+ 1)2|µU|2 ≥ |µW|2, t ≥ 0.

By definition (
xi1:eq
5.14), |(µt)W| < ραm , and hence |µW| < ραm , i.e. µ ∈ Ξ1(W). On the other

hand, since µt ∈ Υ(ξt), Lemma
coupl:lem
5.23 entails that µ ∈ Υ(ξ), and thus µ ∈ Ξ(V). This

contradicts the inclusion µ ∈ Ξ1(W), by definition of Ξ(V). Consequently, ξt /∈ Ξ2(W)
for any W ⊃ V, and the proof of the Lemma is complete. �

6. Invariant subspaces for the “gauged” operator

The resonant sets Ξ(V) are designed to describe the invariant subspaces of the periodic
PDO’s having the form

model:eqmodel:eq (6.1) A = H0 +Bo +BR

with the symbols h0(ξ) = |ξ|2m and b ∈ Sα(w), where α ∈ R, w(ξ) = 〈ξ〉β, β ∈ (0, 1).
By (

decay:eq
2.3) and (

subord:eq
3.22),

bm:eqbm:eq (6.2) |Ds
ξb̂(θ, ξ)|+ |Ds

ξb̂
o(θ, ξ)|+ |Ds

ξb̂
R(θ, ξ)| � b

(α)
l,s 〈ξ〉

(α−|s|)β〈θ〉−l,

for all s. We always assume that (
alm1:eq
2.15) is satisfied, so that

alm:eqalm:eq (6.3) 2m > αβ, 2m− 1 > β(α− 1), 2m− 2 > β(α− 2).

This guarantees that the symbol b and its first two derivatives grow slower than the
principal symbol h0 and its corresponding derivatives respectively.

In order to use the resonant sets Ξ(V) constructed previously, set

α1 = β,

and assume that the condition (
eq:condition1
5.12) is satisfied. In addition to the symbol (

flat:eq
3.16), for

any lattice subspace V ∈ V(n), n = 1, 2, . . . , d we define

bflatv:eqbflatv:eq (6.4) bRV(x, ξ; ρ) =
1√
d(Γ)

∑
θ∈Θr∩V

b̂(θ, ξ; ρ)ζθ(ξ; ρβ)eθ(ξ)eiθx.

It is clear that the above symbol retains from bR only the Fourier coefficients with θ ∈ V.
Introduce also the notation for the appropriate reduced version of the model operator
(
model:eq
6.1):

AV = H0 +Bo +BR
V, B

R
V = Op(bRV).

Recall (see Subsect.
fibre:subsect
2.3) that for any set C ⊂ Rd we denote by P(C) the operator χ(D; C),

where χ( · ; C) is the characteristic function of the set C. Accordingly, for the operators
in the Floquet decomposition acting on the torus, we define P(k; C) to be χ(D + k; C).
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In what follows we still apply Convention
uniform:conv
5.6, and add to it one more rule: the

estimates which we obtain are also uniform in the symbol b, satisfying the condition
b (α) � 1.

Lemma 6.1. Let b be as above. Then for sufficiently large ρ, and any V ∈ V(n) we have

inv:eqinv:eq (6.5) BRP
(
Ξ(V)

)
= BR

VP
(
Ξ(V)

)
= P

(
Ξ(V)

)
BR

VP
(
Ξ(V)

)
,

and

inv0:eqinv0:eq (6.6) BR(k)P(k; Υ(µ)) = P(k; Υ(µ))BR
V(k)P(k; Υ(µ)),

for any k ∈ O† and any µ ∈ Ξ(V) with {µ} = k.

Proof. Assume without loss of generality that bR has only one non-zero Fourier coefficient,
i.e.

odin:eqodin:eq (6.7) bR(x, ξ; ρ) =
1√
d(Γ)

b̂(θ, ξ; ρ)ζθ(ξ; ρβ)eθ(ξ)eiθx,

so that bRV = 0 if θ /∈ V. According to (
floquet:eq
2.11),

(BR(k)u)(x) =
1

d(Γ)

∑
m∈Γ†

b̂R(θ,m + k)ei(m+θ)xû(m),

(
BR(k)P(k; Υ(µ))u

)
(x) =

1

d(Γ)

∑
m:m+k∈Υ(µ)

b̂R(θ,m + k)ei(m+θ)xû(m),floquetups:eqfloquetups:eq (6.8)

for any u ∈ L2(Td). Observe that by virtue of (
phizeta:eq
3.9) for any ξ := m + k ∈ supp ζθ( · ; ρβ)

we have

|ξ · θ| ≤ |θ(ξ + θ/2)|+ |θ|2/2 ≤ (ρβ/2 + r/2)|θ| < ρβ|θ|,

that is ξ ∈ Λ(θ), and a similar calculation shows that ξ + θ ∈ Λ(θ) as well. By Lemma
properties2:lem
5.18, Υ(µ) ∩ Λ(θ) = ∅, if θ /∈ V, so it follows from (

floquetups:eq
6.8) that

BR(k)P(k; Υ(µ)) = BR
V(k)P(k; Υ(µ)) = 0, if θ /∈ V.

In the case θ ∈ V, by Definition
reachability:defn
5.3, the points ξ := m + k ∈ Υ(µ) and ξ + θ are

θ-resonant congruent, so that ξ + θ ∈ Υ(µ). This completes the proof of (
inv0:eq
6.6).

Using (
equiv:eq
5.17) we get from (

inv0:eq
6.6):

BR(k)P(k; Ξ(V)) = P(k; Ξ(V))BR
V(k)P(k; Ξ(V)).

Taking the direct integral in k yields (
inv:eq
6.5). �
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6.1. Operator A in the invariant subspaces. Due to the properties (
exhaust:eq
5.9) and (

disjoint:eq
5.10),

the formulas (
inv:eq
6.5) and (

inv0:eq
6.6) imply the following orthogonal decomposition for the Floquet

fibres A(k):

orhogonal:eqorhogonal:eq (6.9) A(k) =
⊕

V∈W(r)

A(k; Ξ(V)) =
⊕

V∈W(r)

⊕
µ∈Ξ(V)/↔
{µ}=k

AV(k; Υ(µ)).

Since card Υ(µ) <∞, see (
card:eq
5.13), for each µ ∈ Ξ(V) the operator AV(k; Υ(µ)) is finite

dimensional. In the basis
E[µ]+m(x), m ∈ N(µ)

(see definition (
exp:eq
2.17)), of the subspace H

(
k; Υ(µ)

)
, the operator A(k; Υ(µ)) reduces to

the matrix A(µ) with the entries

ca:eqca:eq (6.10) Am,n(µ) =
1√
d(Γ)

â(m− n,µ + n; ρ), m,n ∈ N(µ).

Denote by λj(A(µ)), j = 1, 2, . . . , N(µ) = card N(µ) the eigenvalues of the matrix A(µ),
arranged in descending order. It is easy to check that the matrices A(µ) and A(µ′) with
µ′ ∈ Υ(µ), are unitarily equivalent, so that the eigenvalues do not depend on the choice
of µ, but only on the set Υ(µ).

twosided:lem Lemma 6.2. Let λj(A(µ)) be the eigenvalues introduced above. Then for sufficiently
large ρ, for all |µ| � ρ, and for all j = 1, 2, . . . , N(µ) one has

λj(A(µ)) � min
η∈Υ(µ)

|η|2m � max
η∈Υ(µ)

|η|2m � |µ|2m,

uniformly in µ.

Proof. The operator A has the form H0 +Bo,R, and since αβ < 2m (see (
alm:eq
6.3)), by Lemma

formbound:lem
3.2, the perturbation Bo,R is infinitesimally H0-bounded, so that cH0−C̃ ≤ A ≤ CH0+C̃
with some positive constants C, c, C̃. Therefore, the same bounds hold for the fibers
H0(k) and A(k). As a consequence, the restriction of both operators to the subspace
H(k,Υ(µ)) satisfy the same inequalities:

cH0(k; Υ(µ))− C̃ ≤ A(k; Υ(µ)) ≤ CH0(k; Υ(µ)) + C̃.

Now the claimed inequalities follows from Lemma
bups:lem
5.10. �

If Υ(µ) is non-critical (see Definition
chain:defn
5.9), the set N(µ) remains constant in a neigh-

bourhood of µ. Since the entries of the matrix A depend continuously on µ, we conclude
that the eigenvalues λj(A( · )) are continuous in a neighbourhood of such a point µ.
Moreover, by virtue of Lemma

lem:upsilon
5.21, for any µ ∈ Ξ(V) the set N(µ) remains constant if

µV is kept constant, and hence it makes sense to study the eigenvalues as functions of
the component ν = µV⊥ . Define the matrix

Ã(t) = A(µV + te(ν)), e(ν) =
ν

|ν|
,
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with a real-valued parameter t ≥ t0 := |ν|. By (
ca:eq
6.10) the entries of this matrix are

cb:eqcb:eq (6.11) Ãm,n(t) =
1√
d(Γ)

â(m− n,µV + n + te(ν); ρ), m,n ∈ N(µ).

By Lemma
perpendicular:lem
5.22 the matrix Ã is well-defined on the interval [t0,∞).

radial:lem Lemma 6.3. Let (
alm:eq
6.3) be satisfied. Suppose that µ ∈ Ξ(V) and |µ| � ρ. Then

radial1:eqradial1:eq (6.12) λj(Ã(t2))− λj(Ã(t1)) � ρ2m−1(t2 − t1),

for any t1, t2 � t0, t0 ≤ t1 < t2, uniformly in j = 1, 2, . . . ,N(µ), µ and V.

Proof. By Lemma
lem:properties3
5.12, |µV| ≤ 2ραd , so that t0 = |ν| � |µ| � ρ. By the elementary

perturbation theory, it would suffice to establish for the matrix

Ã(t1, t2) = Ã(t2)− Ã(t1)

the relation

(Ã(t1, t2)u, u) � ρ2m−1(t2 − t1)‖u‖2, t1, t2 � ρ, t2 > t1 ≥ t0,

for all u ∈ H. The entries of this matrix are∫ t2

t1

Ym,n(t)dt, Ym,n(t) =
d

dt
Ãm,n(t).

We show that the matrix Y(t) satisfies

caly:eqcaly:eq (6.13) (Y(t)u, u) � ρ2m−1‖u‖2, t � ρ,

for all u ∈ H, uniformly in µ, V, and the symbol b. Denote

µt = µV + te(ν),ν = µV⊥ .

Corollary
properties2:cor
5.19 implies that N(µ) ⊂ V. Therefore, Y(t) is the sum of the matrix with

diagonal entries
d

dt
h0(µt + m) = 2m|µt + m|2m−2t, m ∈ N(µ),

and the matrix Z(t) with the entries

Zm,n(t) =
1√
d(Γ)

∇ξb̂
o,R(m− n, ξ; ρ) · e(ν)

∣∣∣
ξ=µt+n

.

By (
card:eq
5.13), |m| ≤ ραd , and hence

both:eqboth:eq (6.14) ρ� t ≤ |µt + m| � ρ, m ∈ N(µ).

Thus

radial:eqradial:eq (6.15)
d

dt
h0(µt + m) � ρ2m−1.

Also, by (
bm:eq
6.2),

|Zm,n(t)| � 〈m− n〉−l|µt + n|(α−1)β � 〈m− n〉−lρ(α−1)β,
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for any l > 0. Assuming that l > d, from here we get:

‖Z(t)‖ ≤ max
n

∑
m

|Zm,n(t)|

≤ Clρ
(α−1)β sup

n
max

m
〈m− n〉−l � Cρ(α−1)β.

This, together with (
alm:eq
6.3) and (

radial:eq
6.15), leads to (

caly:eq
6.13), which implies (

radial1:eq
6.12), as required. �

7. Global description of the eigenvalues of operator A(k)
global:sect

In this section we continue the study of the discrete spectrum of the fibres A(k). Our
aim is to construct a function g : Rd → R, which establishes a one-to-one correspondence
between the points of Rd and the eigenvalues of A(k). More precisely, we seek a function
g such that

(1) for every ξ ∈ Rd the value g(ξ) is an eigenvalue of the operator A(k), k = {ξ},
and

(2) for every j ∈ N there exists a uniquely defined point ξ with {ξ} = k such that
g(ξ) = λj(A(k)).

In other words, we intend to label the eigenvalues of A(k) by the points of the lattice
Γ†, shifted by k. The construction of the convenient function g is conducted using the
decomposition (

orhogonal:eq
6.9), individually in the invariant subspaces generated by the sets Ξ(V).

We begin with the non-resonant set B = Ξ(X),X = {0}. On the subspace H(Ξ(X)) the
symbol of the operator A is x-independent, and it is ao(ξ) = h0(ξ)+bo(ξ). Therefore the
eigenvalues of the operator A(k) are given by ao(µ + k),µ ∈ Γ†,µ + k ∈ Ξ(X). Clearly,
it is natural to label the eigenvalues by lattice points. Let us define

g(ξ) = ao(ξ), ξ ∈ Ξ(X) = B.

According to (
bm:eq
6.2),

ginb:eqginb:eq (7.1) g(ξ) = h0(ξ) + bo(ξ),

∣∣∣∣ ∂∂|ξ|bo(ξ)

∣∣∣∣ ≤ C〈ξ〉(α−1)β,

∣∣∣∣ ∂2

∂|ξ|2
bo(ξ)

∣∣∣∣ ≤ C〈ξ〉(α−2)β

for all ξ ∈ B.
Suppose now that ξ ∈ Ξ(V) with some non-trivial lattice subspace V. In view of

(
orhogonal:eq
6.9), it suffices to define the function g on the sets Υ(ξ). Let us label all numbers

η ∈ Υ(ξ), ξ ∈ Ξ(V) in the increasing order of their length |η| by natural numbers from
the set {1, 2, . . . , N(ξ)}; if there are two different vectors η, η̃ ∈ Υ(ξ) with |η| = |η̃|, we
label them in the lexicographic order of their coordinates, i.e. we put η = (η1, η2, . . . , ηd)
before η̃ = (η̃1, η̃2, . . . , η̃d) if either η1 < η̃1, or η1 = η̃1 and η2 < η̃2, etc. Such a labeling
associates in a natural way with each point η ∈ Υ(ξ) a positive integer ` = `(η) ≤ N(ξ).
Clearly, this number does not depend on the choice of the point ξ as long as ξ remains
within the same ↔-equivalence class. In particular,

newindicesnewindices (7.2) |η|2m = λ`(η)(H0(k; Υ(η))).
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Now for every η ∈ Rd we define

g(η) := λ`(η)(A(η)),

where A( · ) is the matrix defined in (
ca:eq
6.10). Note that in view of Lemma

twosided:lem
6.2

twosided:eqtwosided:eq (7.3) g(η) � |η|2m, |η| � ρ,

for sufficiently large ρ.
In order to analyse the continuity of g( · ), we assume that η is a non-critical point, i.e.

the set N( · ) remains constant in a neighbourhood of η, see Definition
chain:defn
5.9. Furthermore,

in the non-critical set, `(η) remains constant, if the point 0 stays away from the Voronoi
hyper-planes associated with pairs of points from the set Υ(η). Recall that the Voronoi
hyper-plane for a pair η1,η2 ∈ Rd is the set of all points z ∈ Rd such that |η1 − z| =
|η2 − z|. Thus, the function g( · ) is continuous on an open set of full measure in Rd.

In each set Ξ(V) the labeling function ` possesses the following important property.

lem:new1 Lemma 7.1. Let η, η̃ ∈ Ξ(V) satisfy ν := η̃ − η ⊥ V. Then `(η̃) = `(η).

Proof. Recall that by Lemma
lem:upsilon
5.21 Υ(η) + ν = Υ(η̃). Let η ↔ µ, so that (η + ν) ↔

(µ + ν). By Corollary
properties2:cor
5.19, µV⊥ = ηV⊥ , and hence the inequality |µ| ≤ |η| holds or

does not hold simultaneously with |µ + ν| ≤ |η + ν|. The same property is true for the
coordinates of the vectors involved. Therefore, `(η) = `(η + ν). �

The next lemma allows us to establish smoothness of the function g with respect to
the variable ηV⊥ .

Lemma 7.2. Let V ∈ V(n), 1 ≤ n ≤ d − 1 and let (
alm:eq
6.3) be satisfied. Suppose that

η ∈ Ξ(V) and |η| � ρ, and let ν = ηV⊥. Then for sufficiently large ρ, on the interval
[t0,∞), t0 := |ν|, the function g̃(t; η) := g(ηV + te(ν)) satisfies

radial2:eqradial2:eq (7.4) g̃(t2,η)− g̃(t1,η) � ρ2m−1(t2 − t1),

for any t1, t2 ∈ [t0,∞) such that t1 < t2 and t1, t2 � t0, uniformly in η ∈ Ξ(V) and V.

Proof. Recall that in view of Lemma
perpendicular:lem
5.22, ηV + te(ν) ∈ Ξ(V) for all t > t0. Thus by

Lemma
lem:new1
7.1, `(η) = `(ηV + te(ν)) =: ` for t ∈ [t0,∞). Therefore,

g̃(t; η) = λ`(A(ηV + te(ν))).

It remains to apply Lemma
radial:lem
6.3. �

In order to study the global properties of g, note that by the above construction there
is a bijection J : Γ† + k→ N such that

g(η) = λJ(η)(A(k)), k = {η},

for all η ∈ Rd. For the following Lemma recall that the distance on the torus | · |T is
defined in (

distorus:eq
3.28).
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partialofs2 Lemma 7.3. Let a,b ∈ Rd be such that |a| � ρ. Then there exists a vector n ∈ Γ† such
that

lip:eqlip:eq (7.5) |g(b + n)− g(a)| � ρ2m−1|b− a|T,
for sufficiently large ρ.

Suppose in addition, that m ∈ Γ†,m 6= 0, is a vector such that |a + m| � ρ. Then
there exists a ñ ∈ Γ†, such that n 6= ñ and

lip1:eqlip1:eq (7.6) |g(b + ñ)− g(a + m)| � ρ2m−1|b− a|T,
for sufficiently large ρ.

Proof. As λJ(a)(A(k)) = g(a), by (
twosided:eq
7.3), we have

|λJ(a)(A(k))| � ρ2m.

Denote k = {a}, k1 = {b}. Recall that the condition (
beta:eq
3.29) is satisfied due to (

alm:eq
6.3), so

by Theorem
unperturbed:thm
3.6

lip2:eqlip2:eq (7.7) |λJ(a)(A(k))− λJ(a)(A(k1))| � ρ2m−1|k− k1|T = ρ2m−1|b− a|T.
Let p ∈ Rd be a vector such that {p} = k1 and g(p) = λJ(a)(A(k1)). Now (

lip2:eq
7.7) implies

(
lip:eq
7.5) with n = p− b.

In order to prove (
lip1:eq
7.6), we use (

lip2:eq
7.7) with a + m instead of a. Then, as above, one can

find a vector p̃ such that {p̃} = k1 and g(p̃) = λJ(a+m)(A(k1)). Since J is one-to-one,
we have J(a + m) 6= J(a), and hence p 6= p̃. As a consequence, ñ = p̃ − b 6= n, as
required, and (

lip2:eq
7.7) again leads to (

lip1:eq
7.6). �

8. Estimates of volumes

In this section we continue the investigation of the operator of the form (
model:eq
6.1), with a

symbol b ∈ Sα(w), w(ξ) = 〈ξ〉β, with parameters α, β, satisfying the conditions (
alm:eq
6.3).

Let g : Rd → R be the function defined in the previous section, and let B(ρ),D(ρ) and

B̃(ρ) be the sets introduced in (
(non)resonant:eq
5.18) and (

angular:eq
5.22) respectively.

Let δ ∈ (0, λ/4], λ = ρ2m, and let

ABD:eqABD:eq (8.1)



A(ρ, δ) = A(g; ρ, δ) := g−1([λ− δ, λ+ δ]),

B(ρ, δ) = B(g; ρ, δ) := A(ρ, δ) ∩B(ρ),

D(ρ, δ) = D(g; ρ, δ) := A(ρ, δ) ∩D(ρ),

B̃(ρ, δ) = B̃(g; ρ, δ) := A(ρ, δ) ∩ B̃(ρ).

The estimates for the volumes of the above sets are very important for our argument.

lem:volumeCA Lemma 8.1. Let A be the operator (
model:eq
6.1), and let α, β satisfy the conditions (

alm:eq
6.3). Then

for any δ ∈ (0, ρ2m/4] and for all sufficiently large ρ, the following estimates hold

volume_tildeCB:eqvolume_tildeCB:eq (8.2) vol B̃(ρ, δ) � δρd−2m,
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and

eq:volumeCDeq:volumeCD (8.3) vol(D(ρ, δ))� δρd−1−2m+αd .

Here αd ∈ (0, 1) is the number defined together with α1, α2, . . . , αd−1 at the beginning of
Subsection

resonant:subsect
5.3(see (

eq:condition1
5.12)).

Before proving the above lemma we find a convenient representation of the set B̃(ρ, δ).

Since B̃(ρ, δ) ⊂ B(ρ), for all ξ ∈ B̃(ρ, δ) the function g is defined by the formula (
ginb:eq
7.1),

and in particular, it is continuous. For all Ω ∈ T (ρ) (see (
surface:eq
5.20) for definition), we

introduce the subsets of the real line defined as follows:

iomd:eqiomd:eq (8.4) I(Ω; ρ, δ) = {t > 0 : ρ2m − δ ≤ g(tΩ) ≤ ρ2m + δ}.

By (
ginb:eq
7.1), for t ∈ I(Ω; ρ, δ) we have ρ/2 < t < 2ρ, and hence tΩ ∈ B̃(ρ, δ). If ρ is

sufficiently large, by virtue of (
ginb:eq
7.1), for these values of t the function g(tΩ) is strictly

increasing, and hence I(Ω; ρ, δ) is a closed interval. Moreover, (
ginb:eq
7.1) implies the relation

iomd1:eqiomd1:eq (8.5) |I(Ω; ρ, δ)| � δρ1−2m

for its length, uniformly in Ω. By construction,

tildecb:eqtildecb:eq (8.6) B̃(ρ, δ) =
⋃

Ω∈T (ρ)

I(Ω; ρ, δ)Ω.

Proof of Lemma
lem:volumeCA
8.1. In view of Lemma

surface:lem
5.13 and of the bound (

iomd1:eq
8.5), we obtain from

(
tildecb:eq
8.6):

vol B̃(ρ, δ) =

∫
T (ρ)

∫
I(Ω;ρ,δ)

td−1dtdΩ � δρd−2m.

This proves (
volume_tildeCB:eq
8.2).

Proof of (
eq:volumeCD
8.3). By definition (

(non)resonant:eq
5.18) and relation (

exhaust:eq
5.9),

D(ρ) =
⋃

V⊂V(n),1≤n≤d

Ξ(V; ρ).

Let us estimate the volume of each intersection Ξ(V; ρ) ∩ A(ρ, δ). Since Lemma
lem:properties3
5.12

implies that Ξ(Rd) ∩A(ρ, δ) = ∅, we assume that n ≤ d− 1.
For all χ ∈ V and Ω ∈ V⊥, |Ω| = 1 denote

S(χ,Ω; ρ) = {t ≥ 0 : χ + tΩ ∈ Ξ(V; ρ)}.

According to Lemma
perpendicular:lem
5.22, this set is either empty, or it is a half-line of the form [t0,∞) or

(t0,∞) with some t0 ≥ 0. Due to the estimate (
proj:eq
5.19), S(χ,Ω; ρ) is empty if |χ| ≥ 2ραd−1 .

From now on we assume that S(χ,Ω; ρ) 6= ∅, so that |χ| < 2ραd−1 . Consider the subset

S:eqS:eq (8.7) S(χ,Ω; ρ, δ) = {t ∈ S(χ,Ω; ρ) : ρ2m − δ ≤ g(χ + tΩ) ≤ ρ2m + δ}.
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In view of (
twosided:eq
7.3), t � ρ. By (

radial2:eq
7.4), the function g̃(t) = g(χ + tΩ) is strictly increasing and

continuous, and hence, S(χ,Ω; ρ, δ) is an interval. The bound (
radial2:eq
7.4) also guarantees the

upper bound

|S(χ,Ω; ρ, δ)| � δρ1−2m,

for the length of this interval, uniformly in χ and Ω. Now we can estimate the volume
of the intersection:

vol(Ξ(V; ρ) ∩A(ρ, δ)) =

∫
|χ|<2ραd−1

∫
Sd−n−1

∫
S(χ,Ω;ρ,δ)

td−n−1dtdΩ dχ

� ρd−n−1

∫
|χ|<2ραd−1

∫
Sd−n−1

|S(χ,Ω; ρ, δ)|dΩ dχ

� δρ1−2mρd−n−1(ραd−1)n � δρd−1−2m+αd−1 .

Recall that the number of distinct subspaces V ⊂W(r) does not exceed Crd
2

with some
universal constant C, so that

vol D(ρ, δ)� δρd−1−2m+αd−1rd
2 � δρd−1−2m+αd ,

where we have used the conditions (
eq:condition1
5.12). Now (

eq:volumeCD
8.3) is proved. �

The next estimate is more subtle:

volumeCB2a Theorem 8.2. Let B(g; ρ, δ), δ ∈ (0, ρ2m/4], be as defined in (
ABD:eq
8.1). Let ε > 0 be a fixed

number. If δρ2−2m+2ε → 0 as ρ→∞, then

nokiss:eqnokiss:eq (8.8) vol
(
B(g; ρ, δ) ∩

(
B(g; ρ, δ) + b

))
� δ2ρ4−4m+d+6ε + δρ1−2m−ε(d−1),

uniformly in b, |b| � 1.

This Theorem will be proved in the next section. As an immediate consequence, we
can write the following estimate:

sobranie:eqsobranie:eq (8.9) vol
⋃

n∈Γ†\{0}

(
B(g; ρ, δ) ∩

(
B(g; ρ, δ) + n

))
� δ2ρ4−4m+2d+6ε + δρ1−2m+d−ε(d−1),

valid under the condition δρ2−2m+2ε → 0, ρ → ∞. Indeed, to get (
sobranie:eq
8.9) from (

nokiss:eq
8.8) one

notices that the union in the above estimate does not extend to the lattice points n such
that |n| ≥ 3ρ.

Another important ingredient is the following estimate on the volumes:
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Lemma 8.3. Let B(g; ρ, δ), D(g; ρ, δ), δ ∈ (0, ρ2m/4], be as defined in (
ABD:eq
8.1). Let ε > 0

be some number. If δρ2−2m+2ε → 0 as ρ→∞, then

vol
⋃

n∈Γ†\{0}

(
B(g; ρ, δ)∩

(
D(g; ρ, δ) + n

))
� δ2ρ4−4m+2d+6ε + δρ1−2m+d−ε(d−1) + δρd−1−2m+αd .BD:eqBD:eq (8.10)

Proof. Let us split D(ρ, δ) in three disjoint sets:

D0(ρ, δ) = {ξ ∈ D(ρ, δ) : ξ + n /∈ B(ρ, δ), for all n ∈ Γ† \ {0}},

D1(ρ, δ) = {ξ ∈ D(ρ, δ) :

there exists a unique n = n(ξ) ∈ Γ† \ {0} such that ξ + n ∈ B(ρ, δ)},

D2(ρ, δ) = D(ρ, δ) \
(
D0(ρ, δ)

⋃
D1(ρ, δ)

)
.

The definition of D0(ρ, δ) immediately implies that

CD0:eqCD0:eq (8.11) B(ρ, δ)
⋂( ⋃

n∈Γ†\{0}

(
D0(ρ, δ) + n

))
= ∅.

For the set D2(ρ, δ) we have the inclusion

CD2:eqCD2:eq (8.12)
⋃

n∈Γ†\{0}

(
D2(ρ, δ) + n

)
⊂

⋃
n∈Γ†\{0}

(
B(ρ, δ) + n

)
.

Indeed,for each ξ ∈ D2(ρ, δ) there are at least two distinct lattice vectors n1,n2 6= 0 such
that ξ + n1 ∈ B(ρ, δ) and ξ + n2 ∈ B(ρ, δ), so that any lattice vector m 6= 0 is distinct
either from n1 or from n2. Thus, assuming for definiteness that m 6= n1, we get

ξ + m = ξ + n1 + (m− n1) ∈
(
B(ρ, δ) + m− n1

)
⊂

⋃
n∈Γ†\{0}

(
B(ρ, δ) + n

)
.

This proves (
CD2:eq
8.12).

Now observe that by definition of D1(ρ, δ) the sets D1(ρ, δ)∩
(
B(ρ, δ)+n

)
are disjoint

for different n ∈ Γ† \ {0}. Therefore

vol
⋃

n∈Γ†\{0}

((
D1(ρ, δ) + n

)
∩B(ρ, δ)

)
=

∑
n∈Γ†\{0}

vol
(
D1(ρ, δ) ∩

(
B(ρ, δ) + n

))
≤ vol D1(ρ, δ) ≤ vol D(ρ, δ).

Together with (
CD0:eq
8.11) and (

CD2:eq
8.12) this produces the bound

vol
⋃

n∈Γ†\{0}

(
B(ρ, δ)∩

(
D(ρ, δ) + n

))
≤ vol D(ρ, δ) + vol

⋃
n∈Γ†\{0}

(
B(ρ, δ)∩

(
B(ρ, δ) + n

))
.

The estimate (
BD:eq
8.10) follows from (

sobranie:eq
8.9) and (

eq:volumeCD
8.3). �
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The next section is devoted to the proof of Theorem
volumeCB2a
8.2.

9. Estimates of volumes: part two

9.1. Results and preliminary estimates for the intersection volume. Consider
two continuous functions gj : Rd → R such that gj(ξ) → ∞, |ξ| → ∞, j = 1, 2. Our
objective is to establish upper bounds for the measure of the set

X(g1, g2; ρ; δ; b1,b2) :=
(
A(g1; ρ; δ) + b1

)
∩
(
A(g2; ρ; δ) + b2

)
,

for arbitrary vectors b1,b2 ∈ Rd such that |b1 − b2| � 1, and δ ∈ (0, ρ2m/4]. Clearly,

vol
(
X(g1, g2; ρ; δ; b1,b2)

)
= vol

(
X(g1, g2; ρ; δ; 0,b2 − b1)

)
,

so that it suffices to study the set

bigx:eqbigx:eq (9.1) X := X(g1, g2; ρ; δ; 0,b)

with some b ∈ Rd, 1 � |b| � ρ. Note that the condition |b| � ρ does not restrict
generality, since for |b| ≥ 3ρ the set X is empty.

Let us make more precise assumptions about the functions g1, g2. Suppose that

gsmall:eqgsmall:eq (9.2) gj(ξ) = |ξ|2m +Gj(ξ), Gj ∈ C2(Rd), j = 1, 2.

Further conditions are imposed for the following range of values of ξ:

range:eqrange:eq (9.3) |ξ| � ρ, |ξ − b| � ρ.

The functions Gj’s are assumed to satisfy the following conditions:

cond1cond1 (9.4) |Gj(ξ)| � ργ,

cond2cond2 (9.5) |∇Gj(ξ)| � ρσ,

cond3cond3 (9.6) |∇2Gj(ξ)| � ρω,

cond5cond5 (9.7) |G1(ξ)−G2(ξ − b)| � |b|ρσ,
and

cond4cond4 (9.8) |∇G1(ξ)−∇G2(ξ − b)| � |b|ρω,
for all b, 1� |b| � ρ, with some γ < 2m, σ < 2m− 1, ω < 2m− 2, for all ξ satisfying
(
range:eq
9.3). The constants in these estimates are allowed to depend on the constant C in (

range:eq
9.3).

volumeCB2 Theorem 9.1. Let two functions g1, g2 be as in (
gsmall:eq
9.2), and suppose that the conditions

(
cond1
9.4), (

cond2
9.5), (

cond3
9.6), (

cond5
9.7) and (

cond4
9.8) are satisfied. Then for any ε > 0, if δρ2−2m+2ε → 0,

ρ→∞, then

nokiss1:eqnokiss1:eq (9.9) vol X(g1, g2; ρ, δ; 0,b)� δ2ρ4−4m+d+6ε + δρ1−2m−ε(d−1),

uniformly in b, 1� |b| � ρ.

Let us show how to derive Theorem
volumeCB2a
8.2 from Theorem

volumeCB2
9.1:
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Proof of Theorem
volumeCB2a
8.2. Extend the function g from the non-resonant set B to the entire

space Rd by the formula (
ginb:eq
7.1), and denote the new function by g1. By (

ginb:eq
7.1) and (

alm:eq
6.3),

the functions g1 and g2 = g1 satisfy the conditions (
cond1
9.4), (

cond2
9.5), (

cond3
9.6), (

cond5
9.7), (

cond4
9.8) with

γ = αβ < 2m,σ = (α− 1)β < 2m− 1, ω = (α− 2)β < 2m− 2 for ξ in the range (
range:eq
9.3).

Then, clearly,(
B(g; ρ; δ) ∩

(
B(g; ρ; δ) + b

))
⊂
(
A(g1; ρ; δ) ∩

(
A(g1; ρ; δ) + b

))
.

It remains to use Theorem
volumeCB2
9.1 with g1 = g2. �

Let us concentrate on proving Theorem
volumeCB2
9.1. Our first observation is that it suffices to

do it for m = 1. Indeed, introducing functions

ǧj(ξ) =
(
gj(ξ)

) 1
m , Ǧj(ξ) = ǧj(ξ)− |ξ|2,

we note that under the condition (
range:eq
9.3) the functions Ǧj satisfy the bounds (

cond1
9.4)-(

cond4
9.8)

with the parameters

γ̌ = γ + 2− 2m < 2, σ̌ = max(σ + 2− 2m, γ + 1− 2m) < 1,

ω̌ = max(ω + 2− 2m,σ + 1− 2m, γ − 2m) < 0.

One checks directly that

X(g1, g2; ρ, δ; 0,b) ⊂ X(ǧ1, ǧ2; ρ, δ̌; 0,b), δ̌ = 2m−1δρ2−2m,

for sufficiently large ρ. Moreover, the condition δρ2−2m+2ε → 0 becomes δ̌ρ2ε → 0.

Thus, from now on until the end of this section we assume that m = 1.

Due to the condition δρ2ε → 0, we may assume that δ ∈ (0, 1]. Now, in view of (
cond1
9.4) we

have

inter:eqinter:eq (9.10) c1ρ ≤ |ξ| ≤ C1ρ, c1ρ ≤ |ξ − b| ≤ C1ρ.

Here, the constants c1, C1, c1 < 1 < C1 can be chosen arbitrarily close to 1, assuming
that ρ is sufficiently large.

Below, we denote by φ(ξ,η) ∈ [0, π] the angle between arbitrary non-zero vectors
ξ,η ∈ Rd. A central role in the study of the set X (see (

bigx:eq
9.1)) is played by the angle

φ(µ,µ− b) for the points µ ∈ X. Let us establish some general facts about this angle.
It is convenient to introduce new orthogonal coordinates in Rd in the following way:
ξ = (ξ1, ξ̂) with ξ1 = ξ · e(b) and ξ̂ = ξb⊥ , so that ξ = ξ1e(b) + ξ̂.

polozh:lem Lemma 9.2. Let m = 1, and suppose that the functions Gj, j = 1, 2 satisfy conditions
(
cond1
9.4), (

cond5
9.7), and that δ ∈ (0, 1], 1 � |b| � ρ. Then φ(ξ, ξ − b) � |b|ρ−1 uniformly in

ξ ∈ X.

Proof. Denote for brevity φ = φ(ξ, ξ − b) and X = X(ρ; δ, g1, g2; 0,b). For our purposes
we assume that the constants c1, C1 in (

inter:eq
9.10) satisfy the bound

c1:eqc1:eq (9.11) 5c2
1/4 ≥ C2

1 .
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We consider separately two cases: |ξ1| < (
√

3/2)c1ρ and |ξ1| ≥ (
√

3/2)c1ρ.

Case 1: |ξ1| <
√

3/2c1ρ. Denote φ̃ = φ(b, ξ). Since |ξ| ≥ c1ρ and |ξ1| <
√

3/2c1ρ, we

have φ̃ ∈ (π/6, 5π/6), and hence sin φ̃ > 1/2. By the sine rule

sinφ

|b|
=

sin φ̃

|ξ − b|
,

which implies that

sinφ =
|b|
|ξ − b|

sin φ̃ ≥ C−1
1

|b|
2ρ
.

Thus φ� |b|ρ−1, as claimed.
Case 2: |ξ1| ≥ (

√
3/2)c1ρ. Let us show first that

new*new* (9.12) ξ1 > 0

and

new**new** (9.13) ξ1 − |b| < 0.

Assume, on the contrary, that ξ1 ≤ 0, so that

|ξ − b|2 − |ξ|2 = (ξ1 − |b|)2 − ξ2
1 ≥ −2ξ1|b|.

Then
g2(ξ − b)− g1(ξ) ≥ −2ξ1|b| − |G1(ξ)−G2(ξ − b)|

By condition (
cond5
9.7),

|G1(ξ)−G2(ξ − b)| � |b|ρσ.
Together with the assumption |ξ1| ≥ (

√
3/2)c1ρ this implies that

g2(ξ − b)− g1(ξ)� ρ|b|.
This contradicts the condition g2(ξ − b)− g1(ξ) < 2δ, and hence (

new*
9.12) is satisfied.

Assume now that ξ1 − |b| ≥ 0, Then, similarly to the above argument,

|ξ|2 − |ξ − b|2 = ξ2
1 − (ξ1 − |b|)2 = 2ξ1|b| − |b|2 ≥ ξ1|b|.

Thus, as above,

g1(ξ)− g2(ξ − b) ≥ ξ1|b| − |G1(ξ)−G2(ξ − b)|
By condition (

cond5
9.7),

|G1(ξ)−G2(ξ − b)| � |b|ρσ.
Together with the assumption |ξ1| ≥ (

√
3/2)c1ρ this implies that

g1(ξ)− g2(ξ − b)� ρ|b|.
This contradicts the condition g1(ξ)− g2(ξ − b) < 2δ, and hence (

new**
9.13) is satisfied.

The next step is to show that |b| � ρ. Indeed, it follows from (
inter:eq
9.10) that

|ξ̂|2 = |ξ|2 − ξ2
1 ≤

(
C2

1 −
3

4
c2

1

)
ρ2,
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which implies that

|b|2 = |ξ|2 + |ξ − b|2 − 2ξ · (ξ − b) ≥ |ξ|2 + |ξ − b|2 − 2|ξ̂|2

≥ 2

(
c2

1 − C2
1 +

3

4
c2

1

)
ρ2 = 2

(
7

4
c2

1 − C2
1

)
ρ2 ≥ c2

1ρ
2.

Here we have used (
c1:eq
9.11) as well as (

new*
9.12) and (

new**
9.13). On the other hand,

|b|2 = |ξ|2 + |ξ − b|2 − 2 cosφ|ξ| |ξ − b|

=
(
|ξ| − |ξ − b|

)2
+ 2(1− cosφ)|ξ| |ξ − b|

≤ (C1 − c1)2ρ2 + 4C2
1 sin2

(φ
2

)
ρ2.

Using this, together with the lower bound |b| ≥ c1ρ, we arrive at

4C2
1 sin2

(φ
2

)
≥ c2

1 − (C1 − c1)2 = C1(2c1 − C1) ≥ 1

2
c1C1.

This means that sin(φ/2)� 1� |b|ρ−1, which means that φ� |b|ρ−1, as claimed.
The proof of the Lemma is complete. �

The next result is proved for those µ ∈ X which satisfy the relations

nuli:eqnuli:eq (9.14) ∇G1(µ) = ∇G2(µ− b) = 0.

kiss:lem Lemma 9.3. Let m = 1, and let the functions G1, G2 ∈ C2(Rd) satisfy the conditions
(
cond1
9.4), (

cond3
9.6), and let δ ∈ (0, 1], 1 � |b| � ρ. Suppose that there exists a point µ ∈ X

such that π− φ(µ,µ−b) ≤ lρ−1 with 0 < l ≤ 1, and (
nuli:eq
9.14) is satisfied. Then under the

condition δl−2 → 0, ρ→∞, we have

1. X ⊂ {ξ ∈ Rd : |ξ̂| < 4C2
1c
−1
1 l}, and

2. vol X� δl(d−1)ρ−1.

Proof. First note some useful inequalities for µ,b. Denote φ0 := φ(µ,µ − b), φ1 :=
φ(µ,b). Since π − φ0 ≤ lρ−1, we have φ0 ≥ π/2, so that cosφ0 < 0 and cosφ1 > 0.
Recalling (

inter:eq
9.10), we conclude that

|b|2 = |µ|2 + |µ− b|2 − 2 cosφ0|µ| |µ− b| ≥ 2c2
1ρ

2.

This also gives |µ| < |b| and |µ − b| < |b|. Furthermore, it follows from the sine rule
that

sinφ1 = sinφ0
|µ− b|
|b|

≤ l

ρ

C1ρ

c1ρ
=
C1

c1

l

ρ
.

This leads to the bounds

|µ̂| = |µ| sinφ1 ≤ c2l, c2 = C2
1c
−1
1 , µ1 = |µ| cosφ1 > 0.

Similarly, by considering φ2 := φ(µ− b,b) we can prove that |b| − µ1 > 0.
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Now let ξ be an arbitrary element of X and let us prove that |ξ̂| < 4c2l. Suppose that,

on the contrary, |ξ̂| ≥ 4c2l, and let η = ξ − µ. Clearly, |η̂| ≥ 3c2l ≥ 3|µ̂|, and hence

newtildenewtilde (9.15) |ξ̂|2 − |µ̂|2 = |η̂|2 + 2µ̂ · η̂ ≥ |η̂|(|η̂| − 2|µ̂|) ≥ |η̂|
2

3
.

Let us now assume that η1 ≥ 0. Then, combining (
newtilde
9.15) with the identity

+:eq+:eq (9.16) ξ2
1 − µ2

1 = η2
1 + 2µ1η1,

we obtain

|ξ|2 − |µ|2 ≥ 1

3
|η|2.

At the same time, due to (
nuli:eq
9.14) and (

cond3
9.6),

|G1(ξ)−G1(µ)| � |η|2ρω,
so that

g1(ξ)− g1(µ) ≥ |ξ|2 − |µ|2 − C|η|2ρω ≥
(

1

3
− Cρω

)
|η|2 � l2,

and hence g1(ξ) ≥ g1(µ) +Cl2 ≥ ρ2− δ+Cl2. Since δl−2 → 0 as ρ→∞, it follows that
g1(ξ) > ρ2 + δ for large ρ. This means that ξ /∈ A(g1; ρ; δ), so that, by contradiction,

|ξ̂| < 4c2l.
Consider now the case η1 < 0. Then instead of (

+:eq
9.16) we use

|ξ1 − |b||2 − |µ1 − |b||2 = |η1|2 + 2(µ1 − |b|)η1.

Since µ1 − |b| < 0, combining this with (
newtilde
9.15), we obtain

|ξ − b|2 − |µ− b|2 ≥ 1

3
|η|2.

At the same time, due to (
nuli:eq
9.14) and (

cond3
9.6),

|G2(ξ − b)−G2(µ− b)| � |η|2ρω,
so that

g2(ξ − b)− g2(µ− b) ≥ |ξ − b|2 − |µ− b|2 − C|η|2ρω � l2,

and hence g2(ξ − b) ≥ g2(µ − b) + Cl2 ≥ ρ2 − δ + Cl2. Since δl−2 → 0 as ρ → ∞, it
follows that g2(ξ − b) > ρ2 + δ for large ρ. This means that ξ /∈ (A(g2; ρ; δ) + b), so

that, by contradiction, |ξ̂| < 4c2l. This completes the proof of Part 1.

Let us fix ξ̂ : |ξ̂| < c1ρ/2. For all ξ = (ξ1, ξ̂), |ξ| > c1ρ we have

ξ2
1 = |ξ|2 − |ξ̂|2 ≥ c2

1ρ
2 − 1

4
c2

1ρ
2 =

3

4
c2

1ρ
2.

By conditions (
cond3
9.6) and (

nuli:eq
9.14),

|∇G1(ξ)| = |∇G1(ξ)−∇G1(µ)| � |η|ρω � ρ1+ω,

so that
|∂ξ1g1(ξ1, ξ̂)| = |2ξ1 + ∂ξ1G1(ξ1, ξ̂)| � ρ.
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In particular, the function g( · , ξ̂) is strictly monotone, and the set

Iξ̂ = {ξ1 : |g1(ξ1, ξ̂)− ρ2| ≤ δ}

is a closed interval of length |Iξ̂| � δρ−1. By Part 1,

vol
(
X(g1, g2; ρ, δ,b)

)
≤
∫
|ξ̂|<4c2l

|Iξ̂|dξ̂ � δld−1ρ−1,

as claimed. �

Let us now consider the case when φ0 = φ(µ,µ − b) is separated away from π. The
following elementary observation will be useful:

lem:angle1 Lemma 9.4. Let n1,n2 ∈ R2 be two unit vectors. Then for any other unit vector n ∈ R2

one has

|n · n1|2 + |n · n2|2 ≥ 1− |n1 · n2|.

Proof. The result follows from the following elementary trigonometric calculation for
arbitrary ψ, φ ∈ R:

cos2 ψ + cos2(ψ − φ) = 1 +
1

2

(
cos(2ψ) + cos(2(ψ − φ))

)
= 1 + cos(2ψ − φ) cosφ ≥ 1− | cosφ|.

�

volumeCB2.2 Lemma 9.5. Let m = 1 and δ ∈ (0, 1], 1 � |b| � ρ. Assume that two functions
G1, G2 ∈ C2(Rd) satisfy the conditions (

cond1
9.4), (

cond3
9.6), (

cond5
9.7). Suppose that there exists a

point µ ∈ X such that (
nuli:eq
9.14) holds and π − φ0 ≥ lρ−1, φ0 := φ(µ,µ − b), with some

0 < l ≤ 1. Then for any ε2 > 0

area1area1 (9.17) vol(X ∩B(µ, lρ−ε2))� ld−2ρ−2−ε2(d−2) δ2

sin2 φ0

.

Proof. First of all, notice that assumptions of this Lemma together with Lemma
polozh:lem
9.2

imply

newhatnewhat (9.18) sinφ0 � lρ−1.

Let ξ ∈ B(µ, lρ−ε2), so that |ξ| � ρ. Due to (
nuli:eq
9.14) and (

cond3
9.6) we have

|∇G1(ξ)| = |∇G1(ξ)−∇G1(µ)| � lρω−ε2 ,

|∇G2(ξ − b)| = |∇G2(ξ − b)−∇G2(µ− b)| � lρω−ε2 ,
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for all ξ ∈ B(µ, lρ−ε2), and hence, by elementary trigonometric argument, we have the
following upper bounds:

eq:angle2eq:angle2 (9.19)



φ(ξ,µ) = O(lρ−1−ε2),

φ(ξ − b,µ− b) = O(lρ−1−ε2),

φ(ξ,∇g1(ξ)) = φ(ξ, 2ξ +∇G1(ξ)) = O(lρ−1+ω−ε2),

φ(ξ − b,∇g2(ξ − b)) = φ(ξ − b, 2(ξ − b) +∇G2(ξ − b)) = O(lρ−1+ω−ε2).

Since ∇g1(µ) = 2µ,∇g2(µ− b) = 2(µ− b) and ω < 0, it follows that

φ(∇g1(µ),∇g1(ξ)) = O(lρ−1−ε2), φ(∇g2(µ− b),∇g2(ξ − b)) = O(lρ−1−ε2).

The above bounds imply that

|φ(ξ, ξ − b)− φ0| � lρ−1−ε2 ,∀ξ ∈ B(µ, lρ−ε2).

Since l ≤ 1, together with (
newhat
9.18) this means that

sinφ(ξ, ξ − b)� sinφ0 � lρ−1.

Thus, the vectors ξ,b span a two-dimensional space. ¿From now on we represent every
vector ξ ∈ B(µ, lρ−ε2) as follows: ξ = (z,Θ1, Θ̂), where z = |ξ|, Θ1 ∈ [0, π] is the angle

between ξ and b, and Θ̂ = ξ̂|ξ̂|−1 ∈ Sd−2. We denote the plane spanned by ξ and b by
VΘ̂.

Let ξ ∈ VΘ̂ with some Θ̂ ∈ Sd−2. By Lemma
lem:angle1
9.4, for any unit vector e ∈ VΘ̂ we have

|e(ξ) · e|2 + |e(ξ − b) · e|2 ≥ 1− | cosφ(ξ, ξ − b)| ≥ 1

2
sin2 φ(ξ, ξ − b)� sin2 φ0,

which implies that at least one of the following estimates hold:

(i) |e · e(ξ)| � sinφ0,
or

(ii) |e · e(ξ − b)| � sinφ0.

Since sinφ0 � lρ−1, in view of (
eq:angle2
9.19), we also have that at least one of the following

estimates hold for all ξ ∈ B(µ, lρ−ε2) ∩VΘ̂:{
|e · e(∇g1(ξ))| � sinφ0, for case (i);

|e · e(∇g2(ξ − b))| � sinφ0, for case (ii).

Let us fix another vector η ∈ B(µ, lρ−ε2) ∩VΘ̂ and use (i) or (ii) for

e = e(η − ξ) = e((η − b)− (ξ − b)).

If the condition (i) holds, then

cond(i)cond(i) (9.20) |g1(η)− g1(ξ)| � |η − ξ| inf
χ
|e · ∇g1(χ)| � |η − ξ|ρ sinφ0,
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where the infimum is taken over χ ∈ B(µ, lρ−ε2) ∩ VΘ̂. Here we have used that
|∇g1(χ)| � ρ. Analogously, if the condition (ii) holds, then

cond(ii)cond(ii) (9.21) |g2(η − b)− g2(ξ − b)| � |η − ξ|ρ sinφ0.

Suppose in addition that ξ,η ∈ X∩B(µ, lρ−ε2). Then, if condition (i) holds, by definition
of X we get from (

cond(i)
9.20):

|η − ξ| � |g1(η)− g1(ξ)| 1

ρ sinφ0

� δ
1

ρ sinφ0

.

Similarly, if condition (ii) holds, then (
cond(ii)
9.21) implies

|η − ξ| � |g2(η − b)− g2(ξ − b)| 1

ρ sinφ0

� δ
1

ρ sinφ0

.

Therefore, for any ξ ∈ X∩B(µ, lρ−ε2)∩VΘ̂ we have X∩B(µ, lρ−ε2)∩VΘ̂ ⊂ B(ξ, Cδ(ρ sinφ0)−1),
and hence

2dimarea:eq2dimarea:eq (9.22) vol2(X ∩B(µ, lρ−ε2) ∩VΘ̂)� δ2 1

ρ2 sin2 φ0

,

where vol2 denotes the area on the plane VΘ̂.

Integrating in the coordinates (z,Θ1, Θ̂), introduced previously, we can estimate:

vol(X ∩B(µ, lρ−ε2))� ld−2ρ−ε2(d−2) sup
Θ̂

vol2(X ∩B(µ, lρ−ε2) ∩VΘ̂),

which completes the proof upon using (
2dimarea:eq
9.22). �

9.2. Proof of Theorem
volumeCB2
9.1 for m = 1. In the previous Lemmas the volume of X

was estimated under the assumptions that (
nuli:eq
9.14) holds. Although this condition cannot

be expected to hold for arbitrary functions g1, g2, one can always satisfy (
nuli:eq
9.14) locally,

by ”adjusting” the functions g1, g2 appropriately. Afterwards, one can use the above
Lemmas. This strategy is implemented in the proof of Theorem

volumeCB2
9.1.

Proof of Theorem
volumeCB2
9.1 for m = 1. Pick a vector µ ∈ X, and denote v1 := 1

2
(∇G1(µ)) and

v2 := 1
2
(∇G2(µ− b)). In view of (

cond4
9.8),

v1v2:eqv1v2:eq (9.23) |v1 − v2| � |b|ρω.

Define g̃j(ξ) := gj(ξ − vj) and G̃j(ξ) := g̃j(ξ)− |ξ|2, so that

G̃j(ξ) = |ξ − vj|2 − |ξ|2 +Gj(ξ − vj) = −2ξ · vj + |vj|2 +Gj(ξ − vj),

∇G̃j(ξ) = − 2vj +∇Gj(ξ − vj).

It is easily checked that the functions G̃j satisfy the conditions (
cond1
9.4), (

cond2
9.5) and (

cond3
9.6) with

new parameters γ̃ = max(γ, 1 + σ), σ̃ = max(1 + ω, σ), ω̃ = ω. We also introduce

a := b + v1 − v2
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and notice that in view of (
v1v2:eq
9.23), we have |a| � |b|. Now, writing

G̃1(ξ)− G̃2(ξ−a) = −2ξ · (v1−v2)−2a ·v2 + |v1|2−|v2|2 +G1(ξ−v1)−G2(ξ−v1−b),

and using (
cond5
9.7) and (

cond4
9.8), (

v1v2:eq
9.23), we make the following estimate:

|G̃1(ξ)− G̃2(ξ − a)| � |b|ρ1+ω + |a|ρσ + |b|ρσ+ω + |b|ρσ � |a|ρσ̃.
Thus, the condition (

cond5
9.7) is also satisfied with b replaced by a. Moreover, by definition

of G̃j,

∇G̃1(ν) = 0, ∇G̃2(ν − a) = 0, ν = µ + v1,

so that (
nuli:eq
9.14) is fulfilled. By definition of g̃1, g̃2,

X(ρ; δ; , g1, g2; 0,b) = X(ρ; δ; g̃1, g̃2;−v1,−v2 + b),

and consequently,

vol
(
X(ρ; δ; g1, g2; 0,b)

)
= vol

(
X(ρ; δ; g̃1, g̃2; 0, a)

)
.

Denote X̃ = X(ρ; δ, g̃1, g̃2; 0, a).
Now, depending on the value of φ(ν,ν − a) we use Lemma

kiss:lem
9.3 or Lemma

volumeCB2.2
9.5 with

l = ρ−ε, ε > 0 and ε1 = ε2 = ε. Note that Lemma
kiss:lem
9.3 can be used since δl−2 = δρ2ε → 0

as ρ→∞.
If π − φ(ν,ν − a) ≤ ρ−ε−1, then by Lemma

kiss:lem
9.3

kiss:eqkiss:eq (9.24) vol X̃� δρ−1−ε(d−1).

Assume now that for all points µ ∈ X we have the bound π − φ(ν,ν − a) ≥ ρ−ε−1. It
follows again from definition of g̃j that

vol
(
X(ρ; δ; g1, g2; 0,b) ∩B(µ, ρ−2ε)

)
= vol

(
X(ρ; δ; g̃1, g̃2; 0, a) ∩B(ν, ρ−2ε)

)
.

Since π − φ(ν,ν − a) ≥ ρ−ε−1, according to Lemma
volumeCB2.2
9.5,

vol
(
X ∩B(µ, ρ−2ε)

)
= vol

(
X̃ ∩B(ν, ρ−2ε)

)
� δ2ρ−2ε(d−3).

As X ⊂ B(0, 3ρ), one needs � ρd(1+2ε) balls of radius ρ−2ε to cover X. Thus,

vol X� δ2ρ−2ε(d−3)ρd(1+2ε) = δ2ρd+6ε.

Adding this bound with (
kiss:eq
9.24) produces (

nokiss1:eq
9.9). �

As explained earlier, Theorem
volumeCB2
9.1 for m = 1 implies itself for all m > 0.

10. Proof of the Bethe-Sommerfeld Conjecture

In this section, we prove the Main Theorem
main:thm
2.1. We do it in a few steps. First we

prove it for the model operator A defined (
model:eq
6.1) with conditions (

alm:eq
6.3) satisfied. After that

we invoke Theorem
reduction:thm
4.3, which states that the original operator H can be reduced to the

model operator up to controllable error terms. At the second step we show that these
errors do not destroy the spectral band overlap, obtained for the model operator.
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10.1. Theorem
main:thm
2.1 for the model operator (

model:eq
6.1). Our proof of the spectral band

overlap for the operator A relies on the following elementary Intermediate Value Theorem
type result for the function g(ξ) defined in Section

global:sect
7. As before we assume that λ = ρ2m.

lem:simple1 Lemma 10.1. Let ξ = ξ(t) ⊂ B, t ∈ [t1, t2], t1 < t2, be a continuous path. Suppose
that g(ξ(t1)) ≤ λ − δ, g(ξ(t2)) ≥ λ + δ with some δ ∈ (0, λ/4), and for each t ∈ [t1, t2]
the number g(ξ(t)) is a simple eigenvalue of A(k),k = {ξ(t)}. Then there exists a
t0 ∈ (t1, t2) such that λ = g(ξ(t0)), so that λ ∈ σ(A). Moreover, ζ(λ;A) ≥ δ.

Proof. Recall that on the set B the function g(ξ) is defined by (
ginb:eq
7.1), so that g(ξ(t)) =

|ξ(t)|2m + bo(ξ(t)). Since g(ξ(t)) is a simple eigenvalue of A(k), {ξ(t)} = k for each
t ∈ [t1, t2], we have g(ξ(t)) = λj(A(k)) with j independent of the choice of t. Since g is
continuous on B, the function g(ξ(t)) is a continuous function of t ∈ [t1, t2], and hence the
intermediate value theorem implies that there is a t0 ∈ (t1, t2) such that λj(A({ξ(t0)})) =
λ. The bound ζ(λ;A) ≥ δ follows from the definition (

zeta:eq
2.13) of ζ(λ;A). �

Our next step is to prove that there is a path with the properties required in Lemma
lem:simple1
10.1. In fact we shall prove that the required properties will hold for an interval
I(Ω; ρ, δ) ⊂ (0,∞) (see (

iomd:eq
8.4)) with some Ω ∈ T (ρ).

lem:simple3 Lemma 10.2. There exists a constant Z ≥ 1 with the following property. Suppose that
for some Ω ∈ T (ρ) and some t ∈ I(Ω; ρ, δ), δ ∈ (0, ρ2m/4], the number g(η), η = tΩ is
a multiple eigenvalue of A(k),k = {η}. Then for any τ ∈ I(Ω; ρ, δ) there exists a vector
n ∈ Γ† \ {0} such that τΩ + n ∈ A(ρ, Zδ).

Proof. Since the number g(η),η = tΩ, is a multiple eigenvalue, by definition of the
function g( · ), there is a vector p ∈ Γ† \ {0} such that g(η) = g(η + p). In view of
(
twosided:eq
7.3), |η + p| � ρ. Thus by Lemma

partialofs2
7.3, for any τ ∈ I(Ω; ρ, δ) there exist two vectors

m1,m2 ∈ Γ†, m1 6= m2 such that, with ξ = τΩ,

inthezone:eqinthezone:eq (10.1)

{
|g(η)− g(ξ + m1)| � ρ2m−1|η − ξ| � δ,

|g(η + p)− g(ξ + m2)| � ρ2m−1|η − ξ| � δ.

Here we have used the bound |t− τ | � δρ1−2m, which follows from (
iomd1:eq
8.5). As m1 6= m2,

one of these vectors is not zero. Denote this vector by n. Since g(η) = g(η + p), it
follows from (

inthezone:eq
10.1) that

|g(ξ + n)− g(η)| � δ,

so that ξ + n ∈ A(ρ, Zδ) with some constant Z independent of ξ and ρ, as required. �

The next Lemma is the cornerstone of our argument: it shows that at least for one
Ω ∈ T (ρ) the interval I(Ω; ρ, δ) consists entirely of the points t such that g(tΩ) is a
simple eigenvalue.

lem:simple4 Lemma 10.3. There exists a vector Ω ∈ T (ρ) and a number c3 > 0 such that for

δ = c3ρ
2m−4−d−12(d−1)−1

and each t ∈ I(Ω; ρ, δ) the number g(ξ), ξ = tΩ is a simple
eigenvalue of A({ξ}). Moreover, ζ(ρ2m;A) ≥ δ.
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Proof. Suppose the contrary, i.e. if ρ is sufficiently large, then for any Ω ∈ T (ρ) there is
a t ∈ I(Ω; ρ, δ) such that g(tΩ) is a multiple eigenvalue of A(tΩ). Then due to formula
(
tildecb:eq
8.6), Lemma

lem:simple3
10.2 implies that

cover0cover0 (10.2) B̃(ρ, δ) ⊂
⋃

n∈Γ†\{0}

(A(ρ, δ1) + n)

with δ1 := Zδ. Since B̃(ρ, δ) ⊂ B(ρ, δ1), we can re-write (
cover0
10.2) as

B̃(ρ, δ) ⊂
⋃

n∈Γ†\{0}

((
A(ρ, δ1) + n

)⋂
B(ρ, δ1)

)
=

⋃
n∈Γ†\{0}

((
B(ρ, δ1) + n

)⋂
B(ρ, δ1)

)⋃ ⋃
n∈Γ†\{0}

((
D(ρ, δ1) + n

)⋂
B(ρ, δ1)

)
.

cover1cover1 (10.3)

Let us estimate the volumes of sets on both sides of this inclusion. For a fixed ε > 0,
whose value is chosen a few lines down, assume that δρ2−2m+2ε → 0, ρ → ∞, we can
use (

sobranie:eq
8.9) and (

BD:eq
8.10) for the volume of the right hand side. For the left hand side we use

(
volume_tildeCB:eq
8.2), so that (

cover1
10.3) results in the estimate

δρd−2m � δ2ρ4−4m+2d+6ε + δρ1−2m+d−ε(d−1) + δρd−1−2m+αd ,

which simplifies to

1� δρ4−2m+d+6ε + ρ1−ε(d−1) + ρ−1+αd .

Choose ε = 2(d− 1)−1 and δ = c3ρ
2m−4−d−6ε with a suitably small c3. Then for large ρ

the right hand side is less than the left hand side, which produces a contradiction, thus
proving the Lemma. �

10.2. Proof of the Main Theorem. We assume that the conditions of Theorem
main:thm
2.1 are

satisfied. The proof uses the reduction of the operator H to A1, established in Theorem
reduction:thm
4.3. The first step is to show that the spectrum of A1 is well approximated by that of
the model operator (

model:eq
6.1) with B replaced with X, i.e.

A = H0 +Xo +XR.

Let numbers αj < 1, j = 1, 2, . . . , d be as defined in Subsection
resonant:subsect
5.3.

atoa1:lem Lemma 10.4. Suppose that the conditions of Theorem
main:thm
2.1 are satisfied. Let A1 be the

operator (
a1:eq
4.27), and let r = ρκ with a number κ > 0, satisfying (

eq:condition1
5.12) and the inequality

vark:eqvark:eq (10.4) d2κ < (2m− αβ)αd.

Then for any L > 0 there exists an M (i.e. the number of steps in Theorem
reduction:thm
4.3) such

that

loca:eqloca:eq (10.5) N(µ− ρ−L, A(k)) ≤ N(µ,A1(k)) ≤ N(µ+ ρ−L, A(k))

for all µ ∈
(
(1− c4)2mρ2m, (1 + c4)2mρ2m

)
with any c4 < 1/32.
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Proof. By Theorem
reduction:thm
4.3, ‖RM+1‖ � ρβεM+1 , uniformly in b : b (α) � 1 (see (

sigmaeps:eq
4.16) for

definition of εM+1). The condition (
alm1:eq
2.15) is equivalent to σ < 1, so that εj → −∞

as j → ∞. Thus for sufficiently large M = M(L) we have ‖RM+1‖ � ρ−L/2. As a
consequence,

N
(
µ− ρ−L/2, Ã1(k)

)
≤ N(µ,A1(k)) ≤ N

(
µ+ ρ−L/2, Ã1(k)

)
,

Ã1 = A+XSE,LE,LF,loca2:eqloca2:eq (10.6)

for all µ ∈ R. Due to (
orhogonal:eq
6.9), the operator Ã1 can be represented in the block-matrix form:

Ã1 =
⊕

V∈W(r)

P(Ξ(V))AVP(Ξ(V)) +
⊕

V,W∈W(r),

P(Ξ(V))XSE,LE,LFP(Ξ(W)).

Since the number of distinct subspaces W ∈W(r) is bounded above by Crd
2

with some
universal constant C > 0, the second term satisfies the two-sided estimate

−Crd2
⊕

V∈W(r)

P(Ξ(V))|X|SE,LE,LFP(Ξ(V)) ≤
⊕

V,W∈W(r),

P(Ξ(V))XSE,LE,LFP(Ξ(W))

≤ Crd
2
⊕

V∈W(r)

P(Ξ(V))|X|SE,LE,LFP(Ξ(V)).

Here we have denoted |X|SE,LE,LF = |XSE| + |XLE| + |XLF|, see
BirSol
[3], Chapter 8, p. 183

for definition of the modulus and polar decomposition of a closed operator. Note that in
the above estimate the left- and rightmost terms contain only single orthogonal sums in
contrast to the double sum in the middle term. This bound follows from the following
inequality for the quadratic form of an arbitrary self-adjoint bounded operator K and
any two orthogonal projections P1, P2:

2|(KP1u, P2u)| ≤ (P1|K|P1u, u) + (P2|K|P2u, u).

This follows from the polar representation of K upon applying the elementary inequality
2ab ≤ a2 + b2 for a, b ≥ 0.

Now it follows that

Ã− ≤ Ã1 ≤ Ã+

with

Ã± =
⊕

V∈W(r)

P(Ξ(V))
(
AV ± Crd

2|X|SE,LE,LF
)
P(Ξ(V)).

Since Ã± are orthogonal sums, the problem is reduced to estimating the counting func-
tions of Ã±(k) on each invariant subspace H

(
k; Ξ(V)

)
. From now on we assume that V

is fixed and omit it from the notation.
If V ∈ V(r, d), i.e. V = Rd, then Ξ = Ξ(V) ⊂ B(0, 2ραd), see Lemma

lem:properties3
5.12. Clearly,

‖H0P(Ξ)‖ ≤ ρ2mαd . Also, by (
subord:eq
3.22),

xo (α) + xSE (α) + xLE) (α) + xLF (α) � b (α),
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and hence, by Lemma
formbound:lem
3.2,

‖XoP(Ξ)‖+ rd
2‖P(Ξ)|X|SE,LE,LFP(Ξ)‖ � rd

2

ραβαd .

In view of (
vark:eq
10.4), the right hand side does not exceed ρ2mαd . Consequently, ‖Ã±P(Ξ)‖ �

ρ2mαd , which implies that N(µ, Ã±(k); Ξ) and N(µ,AV(k); Ξ) are independent of µ,k
for all µ ≥ (ρ/2)2m, and N(µ, Ã±(k); Ξ) = N(µ,AV(k); Ξ) if µ ≥ (ρ/2)2m.

Now, let us fix V ∈ V(r, n), n ≤ d− 1, and prove the bounds

loca1:eqloca1:eq (10.7) N(µ− ρ−L/2, AV(k); Ξ) ≤ N(µ, Ã±(k); Ξ) ≤ N(µ+ ρ−L/2, AV(k); Ξ),

for sufficiently large ρ. Split Ξ into three disjoint sets:

Ξ =C< ∪ C0 ∪ C>,

C0 ={ξ ∈ Ξ : 7ρ/8 ≤ |ξV⊥| ≤ 17ρ/16},

C< ={ξ ∈ Ξ : |ξV⊥| < 7ρ/8}, C> = {ξ ∈ Ξ : 17ρ/16 < |ξV⊥|}.
Note that by definition of the operatorAV (see (

bflatv:eq
6.4)) all three subspaces H(C0),H(C<),H(C>)

(see Subsection
fibre:subsect
2.3) are invariant for AV. Since |ξV| < 2ραd−1 (see Lemma

lem:properties3
5.12), we have

Ξ ∩B(0, 7ρ/8) ⊂ C< ⊂ B(0, 29ρ/32),

Ξ ∩B(17ρ/16) ⊂ (C< ∪ C0) ⊂ B(0, 9ρ/8).

Therefore, by Lemma
smallorthog:lem
3.5,

P(Ξ)|XSE|P(Ξ) = P(C<)|XSE|P(C<), P(Ξ)|XLE|P(Ξ) = P(C>)|XLE|P(C>).

Thus Ã±P(Ξ) can be rewritten as

Ã±P(Ξ) = F± ± Crd
2(

P(Ξ)|X|LFP(Ξ)− P(C>)|X|LFP(C>)
)
,

with

F± = P(C<)
(
AV ± Crd

2|XSE|
)
P(C<)⊕ P(C0)AVP(C0)

⊕ P(C>)
(
AV ± Crd

2|X|LF,LE
)
P(C>).

By (
shar:eq
3.25),

rd
2‖P(C< ∪ C0)|XLF|‖+ rd

2‖|XLF|P(C< ∪ C0)‖ � rd
2+p−lρβmax(α,0),

for any p > d and l ≥ p uniformly in b satisfying b (α) � 1. As r = ρκ, κ > 0, by
choosing a sufficiently large l, we can guarantee that the right hand side is bounded by
ρ−L/2. This leads to the bounds

loca4:eqloca4:eq (10.8) N(µ− ρ−L/2, F±(k); Ξ) ≤ N(µ, Ã±(k); Ξ) ≤ N(µ+ ρ−L/2, F±(k); Ξ),

for all µ ∈ R. Consequently, (
loca1:eq
10.7) will be proved if we show that

loca3:eqloca3:eq (10.9) N(µ, F±; Ξ) = N(µ,AV; Ξ),

(
15ρ

16

)2m

≤ µ ≤
(

33ρ

32

)2m

.
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To this end note first that the definition of C< and C> implies

partial:eqpartial:eq (10.10) H0P(C<) ≤ (29ρ/32)2mP(C<), H0P(C>) ≥ (17ρ/16)2mP(C>).

Also, by Lemma
smallorthog:lem
3.5,

‖Xo‖+ ‖XR
V‖+ Crd

2‖XSE‖ � rd
2

ρβmax(α,0).

Under the condition (
vark:eq
10.4) the right hand side of this estimate is bounded by o(ρ2m),

ρ→∞ uniformly in b. Together with (
partial:eq
10.10), this entails that

c<:eqc<:eq (10.11) N(µ,AV ± Crd
2

P(C<)|XSE|P(C<); C<) = N(µ,AV; C<), µ ≥
(

15ρ

16

)2m

.

Furthermore, in view of (
subord:eq
3.22) and (

formbound1:eq
3.2),

P(C>)(|Xo|+ |XR
V|+ Crd

2|X|LF,LE)P(C>)� rd
2

(H0 + I)γP(C>), γ =
αβ

2m
.

Using again (
vark:eq
10.4) and remembering (

partial:eq
10.10), we conclude that the right hand side is

estimated above by o(1)H0P(C>), ρ → ∞, uniformly in b. Together with (
partial:eq
10.10) this

implies that

c>:eqc>:eq (10.12) N(µ,AV ± Crd
2

P(C>)|X|LF,LEP(C>); C>) = 0, µ ≤
(

33ρ

32

)2m

.

Putting together (
c<:eq
10.11) and (

c>:eq
10.12), we arrive at (

loca3:eq
10.9). In combination with (

loca4:eq
10.8)

this leads to (
loca1:eq
10.7). Together with (

loca2:eq
10.6) they yield (

loca:eq
10.5). �

Proof of the Main Theorem. By Theorem
reduction:thm
4.3, it suffices to prove that ζ(ρ2m, A1) > cρS

with some S for sufficiently large ρ. It follows from Lemma
lem:simple4
10.3 that ζ(ρ2m;A) ≥ cρS

with S = 2m− 4− d− 12(d− 1)−1. Using the bounds (
loca:eq
10.5) with L > −S, we get the

required estimate ζ(ρ2m, A1) � ρS from the definition (
zeta1:eq
2.14). This completes the proof

of Theorem
main:thm
2.1. �
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