BETHE-SOMMERFELD CONJECTURE FOR PERIODIC OPERATORS
WITH STRONG PERTURBATIONS
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ABSTRACT. We consider a periodic self-adjoint pseudo-differential operator H = (—A)™+
B, m > 0, in R? which satisfies the following conditions: (i) the symbol of B is smooth
in x, and (ii) the perturbation B has order less than 2m. Under these assumptions,
we prove that the spectrum of H contains a half-line. This, in particular implies the
Bethe-Sommerfeld Conjecture for the Schrodinger operator with a periodic magnetic
potential in all dimensions.

1. INTRODUCTION

Under very broad conditions, spectra of elliptic differential operators with periodic
coefficients in L*(R?), d > 1, have a band structure, i.e. they represent a u lon of closed
intervals (bands), possibly separated by spectrum-free intervals (gaps) (see FZU] and
Since the 30’s it has been a general belief among the physicists that the number of gaps
in the spectrum of the Schrodinger operator Hy = —A 4+ V' with a periodic electric
potential (i.e. a realzyalued function) V' in dimension three must be finite. After the
classical monograph [2] this belief is known as the Bethe-Sommerfeld conjecture. It is
relatively straightforward to see that this conjegture holds for potentials which admit
a partial separation of variables, as shown in [6], p.121. For general potentials this
problem turned out to be quite difficult, and the first rigorous results appeared only in
the beginning of thef‘;g—]f We do not intend to discuss these and more recent results in
details, but refer to for a more comprehensive survey and further references. Here
we content ourselves with a very short description.

In the case of the Schrodinger perator Hy it is known that the number of gaps is
generically infinite if d = 1 (see %ZU]) For d > 2 there has been a large number of
publications proving the conjecture for Hy under various conditions on the potential
and the periodicity lattice. First rigorous resuls 0. Schrodin or relied on
number-theoretic ideas, and they appeared in 9 : % id and%%z%% d>2).
that time it was found out that the complexity of the problem increases together Wlth
the dimension: the validify of the conjecture for dimensions d > 4 was established only
for rational lattices, see . Later the conjecture for arbitrary lattices was extended
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1Moh
tod =4in %_The definitive result was obtained in the recent paper HEIG where the
Bethe-Sommerfeld conjecture was proved for the Schrodinger operator for a riodi
lattice in all dimensions d > 2, with an arbitrary smooth potential V' Seen;?%@and %%,
for an alternative approach).

The study of the polyharmonic operator (—A)™+V, m > 0 in %l, Hiﬁrj and Hzlsﬁ, Hil%
revealed that large values of m facilitate the overlap of the spectral bands. Precisely,
it was found that for 4m > d + 1 the Bethg.gommerfeld conjecture holds for arbitrary
bounded self-adjoint perturbations see %g% and if 8m > d + 3, then it holds for
arbitrary smooth potentials V' (see E{Yﬁ

Returning to the case of the Schrodinger operator, we observe that the complex-
ity of the problem increases dramatically when instead of the bounded potential per-
turbation one introduces in the Schrodinger operator a periodic magnetic potential
a = (ar,ay,...,aq): (=iV —a)* + V. Until recently the,I et%%—rSammerfeld conjecture
for this operator was known to hold only for d = 2, ejﬁ%, . A new step_towards
the study of higher order perturbations was made in Fﬁ_where the methods of [16] were
extended to the operator

operator:eq| (1.1) H=(-A)"+DB, m>0,

with a symmetric pseudo-differential perturbation B of order a < 2m — 1 and arbitrary
d> 2.

In the present paper we prove the Bethe—Sommeﬂrfeld %m%]aectprehmor the operator (FI)'EIerat')M1
for arbitrary B of order a < 2m, see Theorems 2.T and 2.2. In particular, our result
covers the magnetic Schrodinger operator with a smooth periodic vector potential in any
dimension d > 2.

Our proof is based on a subtle analysis of the Floquet eigenvalues of the operator H. It
is known that the Floquet eigenvalues are divided in two groups: stable (or non-resonant)
and unstable (or resonant). From the perturbation-theoretic point of view, the stable
eigenvalues are generated by the isolated non-degenerate Floquet eigenvalues of the free
operator Hy = (—A)™, and hence they can be described using familiar methods of the
theory. The unstable eigenvalues, on the contrary, are produced by the clusters of close
(or even degenerate) eigenvalues of Hy, and their detailed description is not that si
%%a%l(qk‘( ) ptotie formulas for sta%rand Jor unstable eigenvalues were obtained 11%
, T 18] O T2 A2l psge also | for more references.

As papers show, the increase of the order of the perturbation requires a
more careful analysis of the resqnant eigenvalues. The same observation can be made
for higher dimensions, see 6],% In the present paper we are forced to study the
unstable eigenvalues in detail for arbitrary dimensions d > 2 and higher order pertur-
bations. Associated with the partition of the eigenvalues into two groups, is a partition
of the phase space into resonant and non-resonant zones (sets). In fact, the main fo-
cus of the present paper is the precise construction of these zones and understanding
of the eigenyalues as %iated with them. Technically, our approach is a combination of
methods of [16] and . Our construction of the resonant zones is a simplified variant
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of that suggested in HEIG] However, in spite of the simplification, these are rather com-
plicated geometrical objects, and the study of their properties is not straightforward.
The reduction of the operator q the resonant and non-resonant parts is done using the
“near-similarity” approach of [28]. It consists in finding a unitary operator U such that
A =U"HU is “almost” an operator with constant coefficients. The operator U is sought
in the form €Y where ¥ is a self-adjoint periodic PDO, and hence we sometimes call
this similarity transformation a “gauge tra cf_g mation”. For d = 1 such a reduction to
constant coefficients can be done (see [21], , but for d > 2 only a partial reduction
is possible. Namely, we explicitly describe the procedure of finding a pseudo-differential
operator ¥ with symbol 9(x, €) such that the operator A = e~"¥ He'¥ has constant co-
efficients in the non-resonant zone. Thus the Floquet eigenvalues in the non-resonant
subspace can be found explicitly, which leads to relatively straightforward estimates for
the band overlap. As far as the resonant zones are concerned, our construction ensures
that ch o m the new operator A admits a partial separation of variables (see
%%d% p. 143 for a similar observation for the Schrodinger operator in
dlmensmns d = 2,3). This fact enables us to show that the volume (more precisely, the
angular measure) of the resonant sets is negligibly small compared to the non-resonant
ne. Having established this fact, we apply the combinatorial-geometric argument of

6], which allows us to deduce that the resonant zones do not destroy the band overlap
obtained for the non-resonant one.

It is clear that the unitary transformation U = €' establishes a one-to-one corre-
spondence between the Bloch functions for the operators H and A defined above. In
particular, in the non-resonant zone the Bloch functions of A are just exponentials, and
hence, applying the operator U one immediately obtains an explicit simple formula, in-
volving the symbol 1(x, £), for the 1a(%C]§ functions of H. Thus it is not surprising that
a similar representation appears in , where the spectral properties of the magnetic
Schrodinger operator (—iV — a)? + V are studied in the case d = 2. The core of the

approach of 1S to construct a suitable high-energy approximation for the Bloch func-
x-£+iS(x,€)

tions. In the non-resonant zone such an approximation is sought j }? form e’ o
with a suitable phase S(x,&). Comparing formulas (30) from %"Z]Land r%_I'T)thhe
present paper, we see that the leading terms of S(x, E) and »(x,€), as & — oo, are
in fact the same, as should be expected. In spite of this connection with the Bloch
functions, in the present paper we prefer to use the operator language. We believe that
it is precisely this choice, in combination with the use of PDO calculus, that made it
possible to extend the previously known results on the Bethe-Sommerfeld Conjecture to
the degree of generality described in this paper.

To conclude the introduction, we give a brief outline of the paper. In the next section,
we introduce necessary notation, discuss the classes of pseudo-differential operators we
will be using throughout and formulate the main result of the paper. In Section 3, we
provide necessary information about the classes of pseudo-differential operators intro-
duced in Section 2. The “gauge transformation” is studied in Section 4. In Section 5, we



stsingbsect

4 L. PARNOVSKI & A.V. SOBOLEV

describe the partition of the phase space into resonant and non-resonant zones. This sec-
tion has a purely combinatorial-geometric character, and can be read separately from the
rest of the paper. In Section 6, we construct the decomposition of A into an orthogonal
sum over the resonant and non-resonant subspaces. On the basis of this decomposition
we study the Floquet eigenvalues of A in Section 7. Sections 8, 9 are concerned with
estimates for the volumes of resonant and non-resonant sets. These estimates become
the central ingredient of the proof, completed in Section 10.

Acknowledgment. This work was supported by the EPSRC grants EP/F029721/1
and EP/D00022X/2. The first author was partially supported by the Leverhulme fel-
lowship. We would like to thank Roman Shterenberg, Sergey Morozov, and Gerassimos
Barbatis for reading the preliminary version of this manuscript and making useful com-
ments. We are very grateful to the referees for helpful comments and suggestions.

2. PERIODIC PSEUDO-DIFFERENTIAL OPERATORS. MAIN RESULT

2.1. Classes of PDQ’s. Before we define the pseudo-differential operators (PDO’s),
we introduce the relevant classes of symbols. Let I € R? be a lattice. Denote by O
its fundamental domain. For example, for O one can choose a parallelepiped spanned
by a basis of . The dual lattice and its fundamental domain are denoted by I'" and
OF respectively. Sometimes we reflect the dependence on the lattice and write Or and
Of. In particular, in the case I = (27Z)% one has ' = Z¢ and it is natural to take
O =1[0,2m)¢, OF = [0,1)%. For any measurable set € C R? we denote by |€| or vol(€) its
Lebesgue measure (volume). The volume of the fundamental domain does not depend
on its choice, it is called the determinant of the lattice I' and denoted d(I') = |O|. By
ey, e, ...,eq we denote the standard orthonormal basis in RY.

For any u € L*(0) and f € L*(R?) define the Fourier coefficients and Fourier transform
respectively:

U = —1 e (@ L
© N /(9 (2m)2

Let us now define the periodic symbols and PDO’s associated with them. Let b = b(x, £),
x, €& € R%, be a -periodic complex-valued function, i.e.

b(x+7,§) =b(x,§), vy €.
Let w : R? — R be a locally bounded function such that w(&) > 1 V&€ € R? and
(2.1) w(€+mn) < Cw(€)(m)”, V& n R,

for some k > 0. Here we have used the standard notation (t) = /1 + [¢[2, Vt € R%
We say that the symbol b belongs to the class S, = S, (w) = S,(w,T), a € R, if for any
[ > 0 and any non-negative s € Z the condition

(22) Ibll(’ojg) = 1|’I1|2X8up<9>l w(&')_a+|s||D2[;(0’£)| < 00, |S| =81+ S+ -+ Sq.
s|<s ¢0

My(x)dx, @ € TT, (Ff)(E) =

/ e 18X f(x)dx, € e R
Rd
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is fulfilled. Here 13(0, &) is the foyrier coefficient of the symbol b(-, &) with respect to the
first variable. The quantities (;.2) define norms on the class S.. In the situations when
it is not important for us to know the exact values of [, s, we denote the above norm by
[6](@). In this case the inequality A < C'|b]® means that there exist values of [ and

s, and a constant C' > 0, possibly depending on [, s, such that A < C|b|lz). Similarly,
when we write |b]) < C|g|® for some symbols b € S,,g € S, we mean that for any
[ and s the norm |b|l(78) is bounded by |g|% with some p and n depending on [, s, and
some constant C' = Cj 5. In general, by C,¢(with or without indices) we denote various
positive constants, whose precise value is unimportant. Throughout the entire paper we
adopt the following convention. An estimate (or an assertion) is said to be uniform in a
symbol b € S, if the constants in the estimate (or assertion) at hand depend only on the

constants Cj , in the bounds |b|l(°;) < Cjs. This is sometimes expressed by saying that

an estimate (or assertion) is uniform in the symbol b satisfying |b]®) < C.
- We use the classes S, mainl.y Wit.h the Weight w(ﬁ) = (S)B , B € (0, 1], which satisfies
(}‘Z.I E for k = 8. Note that S, is an increasing function of o, i.e. S, C S, for a < . For

1 ter, reference we write ]%%r.e the following convenient bounds that follow from definition
e wel e
(%.2) and property (ZI E

(2:3) [D(8.€)] < [b1;5(6) " w(&)*,

(24)  |DEh(8,€ +n) — DEh(8.£)| < CIBIL%, (8) (€)™ m)* = in|, s = s,
with a constant C' depending only on «, s. For a vector n € R? introduce the symbol
(2.5) bn(x,€) = b(x,€ +m),n € RY,

so that by,(0,€) = b(0,& +mn) . The bound (%es that for all |n| < C we have
(2.6) b= b i3 < Culol I,

uniformly in n: |n| < C.
Now we define the PDO Op(b) in the usual way:

u(x) = ! x, £)e! e (Fy
Op0ux) = o [ o O T et

the integrals being over R?. Under the condition b € S, the integral in the r.h.s. is
. d ..

clearly finite for any u from the Schwgrz glasz S(R%). More?o.ver, the condition b € .SO

guarantees the boundedness of Op(b) in L*(R%), see Proposition }3. . Unless otherwise

stated, from now on S(R?) is taken as a natural domain for all PDO’s at hand. Observe

that the operator Op(b) is symmetric if its symbol satisfies the condition

(2.7) b(6,€) = b(—06,& +0).

We shall call such symbols symmetric.
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Our aim is to study the spectrum of the operator

H = Op(h)’ h(Xv E) = hO(S) + b(Xa S)a
(2.8) ho(§) = €[>, m > 0,
b€ S,((€)%), aB < 2m,

with a symmetric ;symbol b. The operator Op(b) is infinitesimally Hy-bounded, see
Lemma E3.2, so that H is self-adjoint on the domain D(H) = D(H,) = H*™(R%). Due

to the -periodicity of the symbol b, the operator H commutes with the shifts along the
lattice vectors, i.e.

HT, =T, H, v€T.
with (Tyu)(x) = u(x + ). This allows us to use the Floquet decomposition.

2.2. Floquet decomposition. We identify the underlying Hilbert space 5 = L*(R%)
with the direct integral

&= [ $Hdk, H=L%*0).
ot
This identification is implemented by the Gelfand transform
1 ) )
2.9 Uu)(x, k) = ————e (kX e My (x + ), ke RY,
(2:9) (OW01) = e e )

which is initially defined on u € S(R?) and extends by continuity to a unitary mapping
from H onto &. In terms of the Fourier transform the Gelfand transform is defined as
follows: (Uu)(0,k) = (Fu)(0 + k), 6 € T'". The unitary operator U reduces T to the

diagonal form:
(U(‘T‘YU_lf)( ’ 7k) = eik“yf( ’ 7k)7 V’)’ erl.

Let us consider a self-adjoint operator A in H which commutes with T, for all v € T,
Le. AT, =JyA. We call such operators (I'-)periodic. Then A is partially diagonalised
by U (see HBZ'O]), that is, there exists a measurable family of self-adjoint operators (fibres)
A(k),k € OF acting in 9, such that

(2.10) UAU* :/ A(k)dk.
ot
It is easy to show that any periodic operator T', which is A-bounded with relative bound
€ < 1, can be also decomposed into a measurable set of fibers T'(k) in the sense that
(UT)( k) =TE)UF( k), ae ke O,

for all f € D(A). Moreover, the fibers T'(k) are A(k)-bounded with the bound ¢, and if
T is symmetric, then the operator A(k) + T'(k) is self-adjoint on D(A(k)).
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Suppose that the operator A (and hence A(k)) is bounded from below and that the
spectrum of each A(k) is discrete. Denote by A, (A(k)),j =1,2,..., the eigenvalues of
A(k) labeled in the ascending order. Define the counting function in the usual way:

N\ A®R) = #{ N (AK) <A} AR,

If A= Op(a) with a real-valued symbol a € L{%.(R?) depending only on &, then A(k) is
a self-adjoint PDO in $) defined as fOHOWS'

A(k)u(x) = \/— > ¢™>a(m + k)i(m).
melt

If a(§) — oo as €] — oo, then the spectrum of each A(k) is purely discrete with eigen-
values given by A (k) = a(m + k), m € I'". Consequently, the number of eigenvalues
below each A € R is essentially bounded from above uniformly in k € Of. If T is a peri-
odic symmetric operator which is A-bounded with a bound € < 1, then the spectrum of
A(k) + T'(k) is also purely discrete and the counting function is also bounded uniformly
in k. In particular, the above applies to the elliptic operator H defined in (2.8). In fact,
applying the Gelfand transform (%‘.%‘t?@%(b), one finds that, similarly to A considered
above, the operator H(k) is a PDO in 9 of the form

(2.11) H(k)u(x) = Z e™*h(x, m + k)i(m), k € R%

\% mEFT

The values H (k) for k € Of determine H (k) for all k € R¢ due to the following unitary
equivalence: ' '
Hk+m)=e ™ H(k)e™ mecTll
This implies, in particular, that
(2.12) A (H(& 4 m)) = X (H(K), j=1,2,....

for all m € I'". The images
= |J MHK

keOf
are called spectral bands of H. The spectrum of H is the union

U
J

Due to the mentioned boundedness of the counting function N (A, H(k)), each interval
(—00, A] has non-empty intersection with finitely many spectral bands. When proving
the Bethe-Sommerfeld conjecture we study the band overlap, which is characterized by
the the overlap function ((\), A € R, defined as the maximal number ¢ such that the
symmetric interval [\ — ¢, A + t] is entirely contained in one band, i.e.

max; max{t : [\ —t,\+t] Co;}, A € o(H);

(2.13) COH) = {O Vet
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It is easy to see that ¢ is continuous in A. An equivalent definition of {(A) is

(2.14) C(\ H) = sup{t = min N(A+ ¢, H(K)) < max N(A = t, H(K)}.

kril
The function ((\; H) was first introduced by M. Skriganov, see e.g. ;23]:.
The main result of the paper is the following Theorem:

Theorem 2.1. Let H = Hy + Op(b) where Hy = (—A)™ with some m > 0, and b is a
symmetric symbol from Sy(w), w = (€)P, with some o € R and 3 € (0,1) satisfying the
condition

almi:eq| (2.15) 2m — 2 > fla — 2).

Then the spectrum of the operator H contains a half-line, i.e. there exists a number
Ao € R such that [\g,00) C o(H). Moreover, there is a number S € R and a constant
¢ > 0 such that for each X > \g we have ((\; H) > c\°. The constant ¢ and parameter

Xo are uniform in b satisfying |b]® < C.

It one prefers stating the conditions on b in terms of the “standard” classes S.((£)),
one can re-write Theorem 2.1 as follows:

Theorem 2.2. Let H = Hy + Op(b) where Hy = (—A)™ with some m > 0, and b
is a symmetric symbol from S,(w), w = (€), with some a < 2m. Then the spectrum
of the operator H contains a half-line, i.e. there exists a number \g € R such that
[Ao, 00) C o(H). Moreover there is a number S € R and a constant ¢ > 0 such that for
each A > Ay we have ¢(\; H) > c\®. The constant c and parameter \g are uniform in b
satisfying |b]® < C.

main]:thmmain:thm

To deduce Theorem u 2 from 2.1 1€ suffices to note that S,((&)) C Sa ((¢)P) for any
B € (0,1) and a = a7, and that for this a the condition (2.15) 1S equivalent to

(2.16) §>35-m+l.

Remark 2.3. The magnetic Schrodinger operator H = (—iV —a)?+V with a smooth I'-
periodic vector- Q%ential a: R? — R and electric potential V : R — R, is a special case
of the operator (2.8) with ho(€) = [£]” and b(x, §) = —2a(x)-£+iY-a(x +|a P4+V ().
Thus defined symbols satisfy th o conditions of Theorem 2.2 with m =1 and a = 1. In
this case any 3 > 1/2 satisfies (2.16).

")

rPar . .
Remark 2.4. In [I] the Bethe-Sommerfeld conjecture was proved for symmetric symbols
b satisfying the conditions‘ |b|l(al) < 00 (here w(&) = (€)) for some a < 2m — 1, and. all
[ > 1. Although the restriction on the order of b is stronger than in Theorem B.Z, the
paper [I] does not impose any conditions on derivatives w.r.t. & of order higher than one.
In general, an interesting question is to find out how the smoothness of the perturbation
in & affects the band overlap. We hope to address this issue in a further publication.

We conclude this Section by fixing some notations which will be used throughout the
paper.
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2.3. Some notational conventions. For any measurable set € C R? we denote by
P(€) the operator Op(x( - ;€)), where x( - ;C€) is the characteristic function of the set
€. We denote H(€) = P(C)H, H = L*(R%). Accordingly, the fibres P(k, ),k € Of, of
P(€), which act in $), are PDO’s with symbols )+ x(m +k; C). In other words, each
P(k; C) is a projection in $ on the linear span of the exponentials

1 .
(2.17) Em(x) = e™* mel :m+keC
d(r)

The subspace P(k; C)$ of 9 is denoted by H(k;C). _

Suppose that H(C) is an invariant subspace of the operator H defined in (b‘S‘)q, that
is (H —il)7'H(€) C H(C). Then the subspace H(k;C), k € O, is invariant for H (k).
We denote by H(k;C) the part of H(k) in $(k; C), so that

H(k)=H(k;C)® H(k;R\ €), ke OF,

where @ denotes the orthogonal sum. If H(C) is invariant for H, then we denote by
N(X, H(k); €) the counting function of H(k;C) on the subspace 9(k; C).

Each & € R? can be uniquely represented as the sum & = m + k, where m € ' and
k € Of. We say that m =: [¢] is the integer part of &€ and k =: {€} is the fractional part
of &.

The notation B(xg, R) is used for the open ball in R? of radius R > 0, centered at
xo € R%. We also write B(R) for the open ball of radius R centered at 0.

For the reference convenience we copy here the conventions about symbol classes made
earlier in this section. In the situations when it is not important for us to know the
exact values of [, s in the norm |b|z(i)a we denote the above norm by |b](®). In this case
the inequality A < Cb]® means that there exist values of [ and s, and a constant
C > 0, possibly depending on [, s, such that A < C’|b|l(f;). Similarly, when we write
6] < Clg|@ for some symbols b € S.,,g € S,, we mean that for any [ and s

the norm |b|l(78) is bounded by |g]| ;,a,% with some p and n depending on [, s, and some
constant C' = Cy . In general, by C, ¢(with or without indices) we denote various positive
constants, whose precise value is unimportant. Throughout the entire paper we adopt
the following convention. An estimate (or an assertion) is said to be uniform in a symbol
b € S, if the constants in the estimate (or assertion) at hand depend only on the constants
(s in the bounds |b|l(as) < (5. This is sometimes expressed by saying that an estimate
(or assertion) is uniform in the symbol b satisfying |b]® < C.

We sometimes use notation f < g or g > f for two positive functions f, g, if there is
a constant C' > 0 independent of f, g such that f < Cg. If f < g and g < f, then we
write f < g.
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3. PROPERTIES OF PERIODIC PDQO’s

In this section we collect various properties of periodic PDO’s to be used in what
follows.

3.1. Some basic results on the calculus of periodic PDO’s. We begi ogé, listing
some elementary results for periodic PDO’s, some of which can be found in Fﬂ?

Recall that S(RY) is taken as a natural domain of Op(b). Unless otherwise stated, all
the symbols are suppo Wee(% t}(l)tl?eelong to the class S, = So(w; ), o € R, with an arbitrary
function w satisfying (E.Tfmﬂa lattice I'. The functions w and the lattice I' are usually
omitted from the notation.

. ob0 (0) ‘
Proposition 3.1. (See e.g. FZ?T) Suppose that |b|;; < oo with some | > d. Then
B = Op(b) is bounded in H and ||B]| < C’|b|l(f)0), with a constant C' independent of b.

Since Op(b)u € S(RY) for any b € S, and u € S(R?), the product Op(b) Op(g),
b€ S.,g €S, is well defined on S(R?Y). A straightforward calculation gives the following
formula for the symbol b o g of the product Op(b) Op(g):

(bog)(x,&) = Zbes+¢) (¢, &)e' 0T

and hence

(3.1) (hog)(x. &) =

> W66+ ¢)j(e.€), x €TT, £ eRY.
d(r)0+¢x

Here and below 8, ¢ € I'". In particular, one sees that Op(b) Op(w®) = Op(bw?) for any
0 € R. This q)seféza,glon leads to the following Lemma. We remind that the symbol b,
is defined in (!tZ) D).

Lemma 3.2. Let b € S, (w) with w(&) = (€)%, 3 € (0,1]. Then for any u € S(R?) and
any | > d, we have

o s s of

(3.2) | Op®)ull < CIBNSNI(Ho + 1l 5 = o .

with a constant C' independent of b,u. In particular, if a8 < 2m, then Op(b) is Ho-
bounded with an arbitrarily small relative bound.

Moreover, for any n € RY and any | > d,
Bla—1)

2m

Y

(3.3) |(Op(b) — Op(by))ull < Clallb1S1(Ho + I)7ull, 5 =

where the constant C' does not depend on b,u, and is uniform in n: |n| < C.

Proof. Define G = BOp(w~®). As we have observed earlier, G = Op(g) with g = bw™?,

ound:

so that g € Sp(w) and |g|(0) |b|(a) Hence, by Lemma B.T, < C’|b|l(%) and
(3.4) 1 Op(b)ul| = |G Op(w*)ul| < C16] 3| Op(w)ull.
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As Op( ) QQ’HH% iQr e?é gf(orm ound §et (%QW

The bo gifgd 3L ollows from (3.2) when apphed to the symbol b — b, and from the
estimate (g Gi O

The bound (E{%%)ﬁl%e to give a prope ing to th t %_:8%)9 ince b i
. oper meaning to the operator (2.8), since b is
infinitesimally Hy-bounded. The bound (E§3i will be useful in the study of the Floquet
eigenvalues as functions of the quasi-momentum k. o

For general symbols b, g we have the following proposition (see e.g. %Zﬂ%

Proposition 3.3. Let b€ S,, g€ S,. Then bo g € So4, and
|bog|(0‘+7) < Clbl(a”glm?
with a constant C' independent of b, g.

We are also interested in the estimates for symbols of commutators. For PDO’s
AV, 1=1,2,...,N, denote

ad(A; Wy, Uy, ..., Wy) = i[ad(A; Wy, Uy, ..., Uyoy), U],
ad(A; 0) = i[A, 0], adV(A; V) =ad(A; ¥, ¥,..., ), ad’(4; ) = A,
For the sake of convenience we use the notation ad(a; ¢y, ¢, . .. . ¥n) and ad (a,v) for
(])% [) %%a’ﬁ f‘é

the symbols of multiple commutators. It follows from e Fourier coefficients
of the symbol ad(b, g) are given by

(3.5) ad(b, g)(x, &) =

> [b(0.€+ d)g(h.€) — b(0.€)d(¢, & +6)],

d(r) 0+¢=x

x €I, € e R

.. 0b0 .
Proposition 3.4. (See e.qg. )2/) Let b € Sy and g; € Sy, j = 1,2,...,N. Then
ad(b; g1,...,9n) € Sy with
N

and
(3.6) | ad(b; g1, ..., gx)|) < C|b]©@ nglm

with a constant C' independent of b, g;.

3.2. Partition of the perturbation. ;From now on the weights in the definition of
classes S, = S,(w) are assumed to be w(¢) = (£)” with some 3 € (0,1]. Here we
partition every symbol b € S, into the sum of several symbols, restricted to different
parts of the phase space. These symbols depend on the parameter p > 1, but this
dependence is usually omitted from the notation. Later on, we will put p = Az
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Let ¢ € C*(R) be a non-negative function such that

1, = < 1/4;

(3.7) 0<:<1, L(Z)—{ 0. 2> 1/2.

For L >1and @ € I'",0 # 0, define the following C*-cut-off functions:

o= ()
(35) AGE 1%%_1)7
(5(8) = 1_L<1_I€+_/f/2!),
and
(3.9) Go(&; L) = L(W)

wo(§; L) = 1—(o(&;L).

Note that eg + (5 + (5 = 1. The function ¢ is supported on the set |€ + 0/2| > 5p/4,
and /5 is supported on the set |£ + 0/2| < 3p/4. The function eg is supported in the
shell p/2 < |€| < 3p/2. Omitting the parameter L and using the notation ¢g for any of
the functions (5 or ¢, we point out that

{6o(€) =e o(+0), lo(§) =( 6(§+0),
vo(§) =p-o(§+0), Co(§) =C0(§+0).

Note that the above functions satisfy the estimates

(3.10)

(3.11) {IDiee(ﬁ)l + |Dglo(€)] < p7H,
IDgwe(&; L)| 4 |DgCo(&; L) < L1
Let
(3.12) 0,=0,(N={0cr:0<|6]<r}, 6°=06,U0{0},

with some r > 0. We always assume that 1 < r < p*, where » < [ is a fixed (small)
positive number the precise value of which will be chosen later. Using the above cut-off
functions, for any symbol b € S, (w) we introduce six new symbols %7, 53¢, b°, %€ pNR p*
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in the following way:
1

(3.13) (%, & p) = NGl %299 b(8, &)e'™,

(3.14) b (x, 1) = ﬁ > 0.0
(3.15) (x5 p) = ﬁ 3 MOl ol
(3.16) BR(x, € p) = ﬁ 3 H0.€)cle:eale)e
(3.17) B (x, & p) ﬁ > 0.0
(3.18) b(x, € p) = V(€ ) = j(r)z%m,s).

The superscripts here are chosen to mean correspondingly: LF =‘large Fourier’ (coeffi-
cients), LE = ‘large energy’, NR = ‘non-resonance’, R = ‘resonance’, 8€ =‘small energy’,
o =0-th Fourier coefficient. Sometimes the dependence of the introduced symbols on the
parameter p is omitted from the notation. The corresponding operators are denoted by

BT = Op(b™), B¢ = Op(b™), B™ = Op(b™),
B* = Op(b"™), B% = Op(b**), B = Op(K*).
By definition (Et/ i:,e
b=+ 0% + b* + b 05 0

The role of each of these operator is easy to explain. The symbol b*7 contains only Fourier
coefficients with |@| > r, and the remaining symbols contain the Fourier coefficients with

|@| < r. Note that on the support of the functions ZA)N:R(O, - p) and ZAJR(G, -5 p) we have

1 3 1 1 3 1
1 <pP Zp< 20 < Zp, —p—=p* < |&]| < =p+ =p~.
(3.19) 0l <07, 5p<[€+0/2|<5p, Sp—5r <[] <gp+5p
On the support of b%¢(0, - ; p) we have
0 3 3 1
3.20 -l <= < Z iy
(3.20) E+ < yp el = pt+gp
On the support of b~¢(x, - ;p) we have
0 5} 5) 1
21 — > = > —p— =p”~.
(3.21) E+ 52 gp €2 3p—350

in:th
h(% gin Theorem Eful.n As
e ‘eq

The introduced symbols play a central role %gulgggrperﬁ%ggp‘% il
we show in the course of the proof, due to (3.:20) and (3.21) the symbols b*7, b5¢ and
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h:e
b*¢ make only a negligible contribution to the spectrum of the operator (2.8; near the
point A = p?™. The only significant components of b are the symbols b™*, b® and b°. The
symbol 6™ will be transformed in the next Section into another symbol, independent of
X.

We will often combine BX, B*¢ and B*?, B%: for instance B®**¢ = BR® 4+ B¢
BRLELT — pRLE L BLT A gimilar convention applies to the symbols. Under the

condition b € S, (w) the above symbols belong to the same class S, (w) and the following
bounds hold:

(322) [P NI 0L+ 1 1L+ 1 < ol
ds: i:
Indeed, let us check this for the symbol b™*, for instance. According to (%.Sl 9e§ and (Vér ,l .

on the support of the function BNR(H, -3 p) we have

Do (&, p%)| < p Bl < w ™,

D05 (€)] + D5 (€)| + [D%eq(§)] < p~™ < w .
bord:
This immediately leads to the bound of the form (ETIZZOE for the symbol ™%, Svmmetry: e
The introduced operations also preserve symmetry. Precisely, calculate using (%3 10):
bR(—6,& +6) = b(—6,€ + 6)(_o(& + 6: p")c_o(¢ +6)
= b(8.&)Co(&: p")ea(€) = (6, 6).

selfadj:e
Therefore, by (b 7) tiie operator B® is symmetric if so is B. The proof is similar for the
rest of the operators introduced above.
Let us list some other elementary properties of the introduced operators. In the Le ma
. . o . . . ibre:subsect
below we use the projection P(€), € C R whose definition was given in Subsection 3.3.

lorthog:lem| Lemma 3.5. Letb € S, (w), w = (£)?, B € (0,1], with some o € R. Then the following
hold:

(i) The operator Op(b%¢) is bounded and
| Op(b*) ]| < ol p” (.
Moreover,
(I —P(B(7p/8))) Op(b°°) = Op(b>) (I — P(B(7p/8))) = 0.
(ii) The operator B® satisfies the following relations
P(B(3p/8))B* = B*P(B(3p/8))

atorthog:eq| (3.23) = (I —P(B(13p/8))) B* = B*(I — P(B(13p/8))) = 0,

and similar relations hold for the operator BN* as well.
Moreover, for any v € R one has b™* b* € S, and

(3.24) IR+ 02 < o7 ],
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for alll and s, with an implied constant independent of b and p > 1. In particular,
the operators BN®, B® are bounded and

IBNX| + 1BX]| < ™ [b]%).
for any l > d.
(iii)
P(B(9p/8)) B~¢ = B~*P(B(9p/8)) =
(iv) If R < 2p, then
(3.25) [P(BE) B + | BETPBR)|| < [b]i5r o,

for any p > d and any l > p.

d :
Proof. Proof of (i). By (}’2.623%5, .

b(0,& p)| < [b]13(8) (€)™,
|supportell<:eqg
for any [ > 0. It follows from (3.20) that

latdecay:eq| (3.26) 050, ¢; p)| < Ibllo pPmax(e0) (@)=t vl > 0.
d:
By Proposmlo%uE%Zulo I;t'p {&nghes the sought bound for the norm || O é@ii}uow .
Eg I?i Byml%%geftlon

In view of (3:20), the SGCOH% Pt of 8! statement (i) follows fro
Proof of (ii). The relations (3. zd) follow from the definitions (B.10) nd (B-I5) in view

of (B.
ldecay:eq [subord:eq
Furthermore by (2.3) and (3.22),

D8, ;)| + IDED™(8, & )| < 10117 ()7 ()°0~(9)
Thus, using again ( 13. I9i we obtain:
[DEY(8,€:p)| + IDN(0, & )| < o7 b T (6) "
This means thag bNR b* € S, for any v € R aundg gE% gdZ_I} t_]olds The bounds for the norms
follow from E% ZZH with v = O and Proposition
|[supportell>:eq
Proof of (111) is similar to (i ) The required result follows from (B:21).

Proof of (iv). By definition ( ." gatvheq m, (5.1 qcom ains only those values of @ for

which |@] > r. Thus, in view of (u 3) and (3.22), for any [ > p we have
55700, & p)| < D1 w™(8) ™ < P B] 1Y w™(6) 7,
Thus the symbol of B“?P(B(R)) is bounded by
Cr b fy) R0 ()7,

d:
so that the sought estimate follows by Proposition E%?ul.n Fhie Bame argument leads to the
same bound for P(B(R)) B, O
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In what follows a central role is played by the operator of the form
newA| (3.27) A:=Hy,+ B° + B%

with some symmetric symbol b € S,,. In the next Lemma we study the continuity of the
Floquet eigenvalues \;(A(k)), j =1,2,..., as_functions of the quasi-momentum k € R.
Here, A(k) are the fibers of the operator (%'27) To state the result, we introduce for
any vector n € R? the distance on the torus:

distorus:eq| (3.28) In|r = minJr |n —ml].
mel

rturbed:thm| Theorem 3.6. Suppose that p > 1 and

(3.29) Bla—1) <2m — 1.

If for some j

(330 A(A®K) = o,

then for any | > d we have
erturbed:eq| (3.31) X (Ak+ 1)) — X(Ak))| < (1+ Ibll(f){))|’l7|qyp2m_1.

‘ ‘ . Junperturbed:eq ‘ ewAl
The implied constant in (B.31) depends on the constants in (E‘B’D‘f

il

H

lsmallorthog:lem
Proof. By Lemma 3.5 (11),

P(k, B(3p/8)) B*(k) = B*(k)P(k, B(3p/8)) =0,

so that
P(0, B(3p/8 — |k|)) BX(k) = B*(k)P(0, B(3p/8 — |k|)) = 0.
L bflatorthog:eq
Similarly, (3.23) implies that

(I — P(0, B(13p/8 + |k\))) B*(k) = B*(k) (1 — P(0, B(13p/8 + yk|))> = 0.

Thus, if one assumes that |k| < R with some R, then the operator A(k) can be repre-
sented in the form

(3.32) Ak) = A_(k) ® A.(k) ® Ay (k),

with

Ap(k) = PL(Ho(k) + B°(k))Ps, A.(k) =P.Ak)P,.,
where by Py and P, we have denoted the following projections in $:
P_=?(0,B(3p/8 — R)),

P.=P(0,B(13p/8 + R)) — P(0, B(3p/8 — R)),
P, =1-2(0,B(13p/8 + R)).
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orthog:e . L. . . lunperturbed:eq
Due to (}3.32) 5nd a standard pigeonhole principle argument, in order to establish (\3.31) -

it suffices to prove this inequality for eigenvalues (labeled in the standard ascending
order) of each of the operators A_, A., A, .
Suppose first that ||t = |n|, so that

M < R:= min |m)|.
0#merlf
The operator Ag(k) = Hy(k) + B°(k) has constant coefficients and its eigenvalues are
found explicitly:
(k) = (m +k)*" +b°(m + k), m € I'".

. differ:eq |subord:eq .
Assuming that |m + k| > 2R, from (2.4) and (3.22) we obtain that

[am (ke + 1) = ()] < (Jm+ K"+ 5] [m + k|7 ) ).
L. beta:e
Due to conditions (3.29),

(3.33) (k1) — e (K)] < (1 16157 [m + K[> ).

. . . newAl
If we assume that the considered eigenvalue yim(k) satisfies (}3.3()), then |m + k| =< p,
and hence the inequality (3. implies that

(3.34) [t (ke -71) = pran ()| << (14 10162 " .

In order to rewrite this bound for the eigenvalues A;(A(k)) arranged in the ascending
order, note that for m € B(3p/8 — R) or m ¢ B(13p/8 + R), the previous inequality is
equivalent to the following one:

N = C(1+ [b18) 2 Ml As(k)) < N3 Ax(k +m)) <
N+ C(L+ [l5)) o ml; A= (k).
which, in turn means that
(3.35) IXj(As(k +m) = X (As(K)] < (14 [5]67) o™ ]

for all eigenvalues satisfying the condition |\;(AL(k))| = p*™.
Let us study the eigenvalues of A.. This operator is bounded, and hence it suffices to
find an upper bound for the sum of the norms

1Pe(Ao(k + 1) — Ao(k)) Pe]| + | B*(k +n) — B¥(K)|.
ig]:
Using (&83?315} for 3p/8 — R < |m| <13p/8 + R, we get

(3.36) 1P (Ao(k + 1) — Ag(k)) Pe]| < (1 + 1615762 m].
lsmallorthog:lem

note that P.Ag(k+n)P. and P. Ay (k)P have the same eigenvectors). By Lemma B.5(11),
Formd s eﬁn&%.eq (1)
b* € S, with any v € R, so that (3.3) and (3.24) give:

| B%(k +m) = BX(k)|| < | [0*157) < [ml 811 0",
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beta:
for any J > d. By (k%??gaiezg(a — 1) < 2m — 1, so that the above estimate in combination

with (3.36), proves that

N (Ack+m) — X(Ack))| < |n|(1+ Ibll(i))pzmq’

. o . : : . ig: ot turbed:
uniformly in 7. In its turn, this estimate to ethea.vvlgh‘gsflﬁ ) Teads to (b%)lej et
. eriodici
For a general n, note that according to (@ [2], inﬁ(E +n)) =\ (A(k+m+n)) for
any m € '". Choose m in such a way that
nlr = |n +ml.

Denote 1, = 17 + m and use the first part of the proof for n;. O

4. A “GAUGE TRANSFORMATION”

In this and all the subsequent sections we assume that S, = S, (w) with w(§) = %ﬁ_}é%
B € (0,1]. Recall that we study spectral properties of the operator H defined in (2.
Our ultimate goal is to prove that each sufficiently large A belongs to the spectrum of
H. VVle are going to use the notation from the previous section with the parameter
p=Am > 1.

4.1. Preparation. Our strategy is to find a unitary operator which reduces H = Hy +
Op(b) to another PDO, whose symbol, up to some controllable small errors, depends
only on & The sought unitary operator is constructed in the form U = ¥ with a
suitable bounded self-adjoint -periodic PDO W. This is why we sometimes call it a
“gauge transformation”. It is useful to consider e’V as an element of the group

U(t) = exp{iVt}, VteR.

We assume that the operator ad(Hy, V) is bounded, so that U(t)D(Hy) = D(H,).
This assumption will be justified later on. Let us express the operator

Ay =U(—t)HU(t)
via its (weak) derivative with respect to t:

A= H+ / U(—t) ad (H: 0)U ()t

By induction it is easy to show that

M
1 )
(4.1) Ay =H+Y " —ad(H; )+ Ry},

=17

1 t1 tm
Rg\lﬂ)_’_l = A dtl /0 dtg Ce /0 U(—tM+1) adM+1(H; \II)U(tM+1)dtM+1
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The operator ¥ is sought in the form

M

k=1

with symbols ¢, g%%%}n some suitable classes S, , o = o}, to be specified later on. Substitute
this formula in (hl ) and rewrite, regrouping the terms:

A = H0+B+Z Z S ad(H; Uy, Uy, )

I=j k1+ko+-+k;j=l

+RM+1 + RM+1a
M

(4.9 RPa=0 Y ad(H U U, )
J

|
= kytko+ otk >M+1

Changing this expression yet again produces

Al H0+B+Zad Ho,\lfl —|—Z Z Z d(Hg;\I’kl,‘I}kQ,...,\I/kj>
Jj= =/ ! 1=j k1i+kot-+kj=l
M

M
1 1 2
+3=3" ST adBiW, Uy, ) + Ry, + R,

j=1 J: I=j ki+ka+-+kj=l

Next, we switch the summation signs and decrease [ by one in the second summation:

A = H0+B+Zad Hy; 1)) +ZZ > ad(Hoy Wy, Uy, Uy

=2 j= 2 " ki+kot k=l

M1 -1
+ Z S ad(BiWy, Uy, W)+ RY, + RY,
1=2 j=1 " ki kot hy=l-1

Now we introduce the notation

Bl = B,

-1
1
Z—' > ad(B; Wy, Wy, ..., W), 1> 2,

=1 7 kot =11

1
E _| E ad(Hg;\Ifkl,\Ika,...,\I’kj), l22
2

k1ot =

(1)

(15
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We emphasise that the operators B; and T; depend only on W, Wy, ..., ¥; 4. Let us
make one more rearrangement:

M M M
Av=Hy+ B+ ad(Ho, )+ ) B+ Y T+ Rara,

=1 =2 =2
(4.6) Ryre1 = Bagar + Ry, + R

Now we can specify our algorithm for finding W¥,’s. The symbols ¢, will be found from
the following system of commutator equations:

(4.7) ad(Ho; ¥,) + B =0,
(4.8) ad(Hp; ¥;) + BN+ T =0, 1 > 2,
and hence

A= Ag+ XR + XPEREET L Ry

(4.9) Xp = Z;\il By + ZZJZQ 1,
AO — HO + XI(\;)
lsmallorthog:lem
Below we denote by xy the symbol of the PDO Xj,. Recall that by Lemma B.5(11),
the operators B{** T® are bounded, and therefore, in view of (4.7), (4.8, 5o is the

commutator ad(Hy; V). This justifies the assumption made in the beginning of the
formal calculations in this Section.

4.2. Commutator equations. Recall that hg éliz |1271” Jvith m > 0. Before proceed-
ing to the study of the commutator equations (4.7); (4.8) note that for £ in the support

of the function 8™%(@, - ; p) the symbol

(4.10) 70(&) = ho(& +0) — ho(€) = (I +20- (€ +6/2))" — |¢]*"
satisfies the bound
To(&) = p™ 16+ (£ +0/2)],
. . ds:e . ds:e .
which easily follows from (%TQ’? Using (B.19] again, we conclude that
019" 2 < 7€) < 10]p"™ "
Note also that
[Dere(§)] < 81", |s| = s.

Therefore,
(4.11) |D27_6—1| < |9|—1p—2m+2—6(1+5) < |0|—1w—(2m—2)5*1_1—s’ 0 7& 0,

for all £ in the support of the function ZA)NR(O, -3 p). This estimate will come in handy
in the next lemma.
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Lemma 4.1. Let A = Op(a) be a symmetric PDO with a € S,,. Then the PDO U with
the Fourier coefficients of the symbol 1¥(x,&; p) given by

00 &) — i 0:&p)
psihat:eq| (4.12) Q/j(e,f, p) =i o(&) 0 +0,

solves the equation
adb:eq| (4.13) ad(Hy; ¥) 4+ Op(a™*) = 0.

Moreover, the operator V is bounded and self-adjoint, its symbol ¢ belongs to S, with
any v € R and the following bound holds:

]
-
e I I I
0]
Q

psitau:eq| (4.14) Il/Jll(? < Pﬁ(giv)lall(f)l,sv
where
(4.15) c=w-(2m-2)8" -1

Proof. For brevity we omit p from the notatio . et ¢ be the symbol of ad(Hop; ¥). The
Fourier transform £(, €) is easy to find using (]gl e

1(60,€) = i(ho(& + 0) — ho(€))1(6, &) = i7e(€)1(6, ).
Therefore, by definition (%%Jﬁ%%equation (E%bﬁamounts to
iTo(€)0(8,8) = —a™"(8, & p) = ~a(8,&; p)o(&; p”)ea(€), 16] < 7.

L. . . ~A sihat:e
By definition of the functions g, eg, the fU.IlCthsIé @%a%l,v_%n by (E [2) 1S defined for all .
Moreover, the symbol v satisfies the condition (2.7], so that ¥ is a sy%%eﬁgéc op%ggor.

ay:eq

In order to prove that ¢ € S, for all v € R, note that according to (3.24) and (2.3),
D0, & p)| < p"“ ) [a] D w|0] 7.
tau:
Together with (&f.ml [} this implies that
D0, p) < p " al w00,
. . sitau:e
so that ¢ € S, and.if satisfies (E [1). " bound:pro
The estimate (4.14) with v = 0, s = 0, and Proposition %.l ensure the boundedness of
v. 0
t:1 psil: fpsil:
Let us apply Lemma &Icémml to eqelrlnations (ﬁs/l ) and (Hsg) =

Lemma 4.2. Let b € S, be a symmetric symbol, p > 1, and let

o= a-—02m-2)71-1,

sigmaeps:eq| (4.16) o= jle—1)+1,

= Jjlo=1)+2m—-2)5""+2,
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j=1,2,.... Then there exists a sequence of self—adjoinﬁ)boyﬂded fD?_’s U, 5=1,2...
. sil:éq  psil:eq
with the symbols 1; such that ¢¥; € S, for any v € R, (4.7) and (A.8) hold, and
psikl:eq| (4.17) || <« pﬁ(ajfpy)(lbl(a))j, Jj > 1

The symbols b;, t; of the corresponding operators Bj, T belong to S, for any v € R and
btieq| (4.18) 1617 + 12,17 < " (Jo] @Y, j > 2.
If PPV b < 1, then for any M and ¢ = Z]A/i1 Y; the following bounds hold:

wreq] (4.19) 1619 < PO B, Wy e R; ] @ < 6],

rm:eq| (4.20) | Rarsr|| < (Jb]@)M+1 poenrsa.
uniformly in b satisfying pPC=V|b]@ < 1.

t:1
Proof. The existence of ¥y € S, with required properties follows from Lemma E?m.muF T
ther proof is by induction. Sikl:e
Supppse that thy with k =1,2,... . K -1 satisfy (EI 7). In Qrder to conclude that ¢k
also satisfies (M.17), first we need to check that by and tx satisfy (E ISi.
Step I. Estimates for b;. Note that

Ej = O'j_l + o — 1
=(-—Dot+a=-0G-1),j=2
. . . . . . t.e
To begin with, we prove that all the symbols b; with j < K, satisfy the estimate (E I8i.

We first obt in.a bound for ad(b; ¥y, , 1?;@, ooy k) with ky ko - - -'_i_.kq = j—1, To this
end we use (4.17) with 7 = (w — )¢~ " + 1 for each v, and Proposition &S.ZI to conclude
that

gmatoeps:eq| (4.21)

H

q

q
(4.22)  Jad(b; ey, Vi, - - )| < 11T 10k, 19 < (101 9)7 T o7,
n=1

n=1

for any w € R. Obviously, we have:

D Blon, =) =Ba1l =)+ D kalo=1)) =8((G — Do - 1) —w +a)
=Blojata—1-w)=p(g—w).

bl:
Now, (&NI i implies
11 < g7 (],

t:
for all w € R, i.e. b; satisfies (. ST for all j < K.

Step II. Estimates for ¢;. For the symbols ¢; the proof is by induction. First of all,
note that

ad(ho; 1, 91) = — ad(bj\mv v1),
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bord: \ t0; pipsdikl
so that, using (}2531.12203 Per0p081t10n \goérlnm gndp(%} I7) v?flth v =w — a+ 1, we obtain
| ad(hos yr, 1) | < [0] 1|9 < p" = ([] )2,

sigmaeps:e . bt:e
By (4.T6), we have 01 —y = o1 +a—1—w = €25 w, and hence 2y satisfies h I8§ Suppose
that all ¢, with k < j -1 < K —1 satisfgsg% IGSCE s e c{have already estabhshed that all
br, k < K satisfy (4.18), by definition (4.8] and (Lj 11) all ad(h0,¢k) k < j—1, satisfy

the same bound, i.e.

| ad(ho,@bk)lm < pﬁ(ek_'Y)(IbI(a))k,k <j—1.
ikl:
Using the b(c)})lnlllmclllt@.sfr %E for Ve, B < j—1, with v = (w—1)¢"! + 1, and applying
Proposition 3.4, we obtain for ky + ko + -+ + k, = j, ¢ > 2 the following estimate:
| ad(ho; Yy ras -+ ) = | ad (ad(hos g, ); Przs - - - 0n, ) |

q

q
(423 < ad(o; )| O T 1, 1 << (161 0= T o,

n=2 n=2

for any w € R. Obviously, we have:

Bler, — +Zﬁdk ) =0 -1 ka+2+02m=2)"+q-1—-q7)

n=1

=Bl —1+2+2m—-2)8"" +q(1—7) - 1)
. = ﬁ(ej —w).
This leads to (Elfgii for all ¢;, j < K.

db:
Step III. In ordercgo hamldle U, we use th SO}U.’CIOH U of the equation (ha 13e5 con-
structed in Lemma h [. Then from definition E 8) and steps L 1T we immediately con-

clude that i € S, for any v € R. Moreover, estimate E [4)w fch w = 7 implies
[ | < pP DI ([ | ) 4 (e | D)
< p (EK*'Y*(Qm*Q)ﬁ_I*l)(IbI(a))K

Since €x — (2m — 2)4_ ! — 1 = 0. the required result follows.
Step IV. Proof of (1.20) and g (5} We assume that p?—1) )|b]@ < 1 throughout.
Before treating the remainder RM+1 (see (h‘b‘? for its deﬁmtlon) let us prove estimates

(hmeQi for the symbols ¢ = E L and xpr = b+ ijz(by +t;). Using ( T N e get
M
Wl(v) < Zpﬁ(aj—v)(w(a))j — pﬁ(l—v) Z(P’g(a_l)|b|(a))]>
j=1 j=1

which implies that

;:10balpsi:eq (4.24) Wl(v) < pﬁ(a—v)|b|(a) (1 + (pﬁ(a—1)|b|(a))M1> < pﬁ(a—v)|b|(a)
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\mgmatoeps eq
with an arbitrary v € R. Slmllarly, in view of (A 125) and (4.21),

lzar | < 6] + Zpﬁ(ej-fa)(lbl(a))j = |b]©@ + Zpﬁ(jfl)(ofl)(lbl(a))j
j=2 j=2

(4.25) < |b|(“)<1+( @=Dp] @M= ) < b

Now we apply these estimates to find upper bounds for R/ 1.
The remainder R,;; consists of three components. To estimate the first one, By/y1,
note, that in view of (4.18), byr+1 € So and [bara|© < p35M+1(|b|(o‘))M+1. By Proposi-

tion F% [, we conclude that the norm of By is bounded by (Lb| NYMA1 pfen1 ag required.
[decomp:eq lelobalpsi:

Consider now RM sodefined in (1.1). Using (1.24) with 7 = —(M + 1)'a + 1 and
applying Proposition 3.4,we conciude that
M+1 o M+2
IadM-H( )|(0 < |b|(a)(|¢|(7) < pPM+I( v)(lbl(a)) '

. sigmatoeps:e
In view of (4:2T),

(M+1)(c—y)=Mo+a—-—M+oc—1=¢€pyy +0—1,
d:
so that Proposition E%?ul ny1eiarg:

(4.26) HadMJd(B;\I/)H < pﬁeMH(IbI a )M—H B(o—1) Ibl a) < pﬁ€A4+1<|b|(Oé))M+l.

. lobalx:eg mnat:eq
To estimate the norm of ad™ ™! (Hy; ¥), note that by (4 25) and (B.24),

|xm| <p e p) @

for any vy € R. It f lio%zslfrom E 7) and (4 8) that ad(hg, ) + 23% = 0. Thus, using the
above bound and (4. ¥ = M(1+ M)™!, we obtain with the help of Proposmon

S that P

M
| ad* ()| @ = | ad" (@70 < [37 7 (14]17)

< pﬂM(U*W)JrB Q*W)(lbl(a))Mﬂ.
. sigmatoeps:e
According to (hfl ),

Mo—y)+a—y=Mo+a—M—(M+1)y+ M = ey,
d:
so that by Proposition E%)?ul,n =
HadM+1(Ho; )H < pﬁ€M+1(|b|(a))M+1

Together with E 565 this leads to the estimate of the form h ZUi for RMJrl
Followmg the same SJ.Ctrategg one easily obtains the sought estimate for the norm of

the RM 1 defined in (E 3). This completes the proof of (ﬁmZIeii. O

Let us now summarize the results of this section in the following Theorem: the impli-
cations of the above Lemma for the operator H = Hy + Op(b), defined in (g 8;
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duction:thm| Theorem 4.3. Let b € S,( €Y. 3€ (0,1, a € R be a s mmetric symbol,
BB% (’2 15)

and let H be the operator deﬁned m Suppose that the condition 18 satisfied.
Then for any positive integer M there exist symmetric symbols 1 = Yy, x = xp7, and a
self-adjoint bounded operator Ry;,q satisfying the following properties:

(1) v €8S, forallyeR, z €8,, and
WJW) < p5(0*7)|b|(a)
|a:|(°‘) < |b|(0‘)
[Rarsa || << (o] )M pPears,
uniformly in b satisfying |b]™ < 1;
(2) The operator Ay = e ™ He™ | W = Op(v)), has the form
(427) Al = AO + X:R + XSS’L&LB: + RM+1, AO = HO + X°.

L. alml:e .
Proof. Note that the condition (}‘2.155 1S equivalent to 0 < 1. Thus the existenc of o lem
symbols 1, x and the operator Rj;,; with required properties folloy(vs from Legnlr%a jﬁ 2.

In particular, the claimed upper bounds are direct consequences of (4.19) and (4.20). O

— 5. GEOMETRY OF CONGRUENT POINTS: RESONANT SETS
ezhiki:sect

In the course of the proof we need a substantial number of certain lattice-geometric
constructions. They are discussed in this section. First, we fix the notation.

For any vector £ € R4, & # 0, we denote e(§) = &|€]71. For any n € R? the
vector &, is the projection of § onto the one-dimensional subspace s aremed by n, i.e.
£, = (& e(n)e(n). Let ©, C [ and ©% C I be the sets defined in (%T?) We always
assume that

r > 19, where rq is such that 0 contains d linearly independent lattice vectors.

We say that a subspace U C R? is a lattice r-subspace if 9 is spanned by some linearly
independent lattice vectors from the set ©%. A one dimensional lattice subspace spanned
by a vector 8 € O, is denoted by U(80). The set of all lattice r-subspaces of dimension
n is denoted by V(n) = V(r,n), n=0,1,...,d, and W = W(r) = U¢_,V(r,n). We have
included in this list the zero dimensional subspace X = {0}. For any vector & € R? we
denote by &4 its orthogonal projection on U € V(r,n). In particular, &, = 0.

The notation w,, is used for the volume of the unit ball in R™.

5.1. Elementary geometrical estimates. We begin with estimates for distances be-
tween lattice subspaces and lattice points.

cassels:lem| Lemma 5.1. (1) For any U € V( d — 1) there exists a vector v € T such that
Yo =0, and |y| < 2d(T) w, !, wt-drd=1,
(2) For any W € V(r,n),n <d—1, and any v ¢ W, v € ", one has

dist(v, 20) > d(1) ™ wy_y 72
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Proof. Denote by e € R? a unit vector, orthogonal to 0. For ¢t > 1, let A, C R? be the
cylindrical set

A= {8 €RY: [€g| <27 €| <t}

which is obviously convex and symmetric about the origin. Moreover,
vol(Ay) = t(2m) 4 tr=  wwy

By h%a% §I11.2.2 Theorem II, under the condition vol(A;) > d(I")2? the set A; contains at
least two points =y € I'. The above condition is satisfied if t = d(I') w ', 2¢(27) ~4rd-L.
By definition of A;, for any m € 6, NY we have |y - e(m)| < 27r~!, and hence
|v-m| < 27~} m| < 27. Since v € I and m € ', the latter inequality implies that
~v-m =0, 50 vy = 0. It is also clear that |y| <t =2d() w,' ml-drd-L.
To prove the second statement, we find a subspace U € V(r,d — 1) such that v ¢ U
and 20 C *U, and denote by v € I the vector orthogonal to U, found at the first step of

the proof. Since

1 2
dist(v, 20) > dist (v, ) = —|v -] > —,
] ]
the required inequality follows from the first part of the Lemma. O

ections:lem| Lemma 5.2. Let U € V(r,m), m <d — 1.
(1) If 0 € ©, and 0 ¢ B, then for any & € U +V(O) we have

€] < 1(|€q] + [€x])-
(2) For any subspace 2 € V(r,n), n <d—1,
[€aran] < 7" (|€x] + [€apl)-
1s:1
Proof. Let 0 ¢ 0, and let £ € U + Y(0). By Lemma E.asl ,Se S
(5.1) 0| = dist(8,0) > ',
where e € U + () is a unit vector orthogonal to B. We have:
(5:2) E—¢, +Ey
so that
€0 0=E-0=6,0,+ &y Ou
Since €, - Oe| = |€| |Oe], using (Eﬁe'?we obtain
1
€l < m(’fm‘ +€6])10] < 7(|€x] + [€6l)-

Together with (E?{Z: e$ this implies the required bound.
To prove the second statement we may assume that & € U+ 20. Let 61,0,,...,0, €
©, N2V be a linearly independent set of lattice vectors. Denote by 20¢), j =1,2,....n
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the subspace spanned by 64,05, ...,0;. Applying the first part of the Lemma repeatedly,
we get

€] < r*(1€o,| + [€aptn— 4s0l)

< 1910, |+ (0, |+ |Eaprn ) < - < 1 (Z € + rw).
j=1

Noticing that |€g] < |€gy| for any € € 20, we get the proclaimed estimate. O

5.2. Congruent vectors. For a non-zero vector 8 we define the resonant layer corre-
sponding to @ by

(5.3) A(B) = {€ e RY, [¢-0] < p 6]},

Here and below, a; € (0,1) is a fixed number which will be specified later, and p > 1.
For the sake of uniformity of the notation, in case @ = 0 we denote A(0) = R¢.

bility:defn| Definition 5.3. Let 8,60,,0,,...,0,, be some vectors from ©%, which are not necessarily
distinct.

(1) We say that two vectors &, m € R? are @-resonant congruent if both € and n are
inside A(@) and (§ —m) = (0 with [ € Z. In this case we write £ < 1 mod 6.
In particular, each & € R? is O-resonant congruent to itself.

(2) For each & € R? we denote by Yg(€) the set of all points which are @-resonant
congruent to &. For 6 # 0 we say that Yo(€) = @ if £ ¢ A(0).

(3) We say that n is 61,05, . .., 0,,-resonant congruent to &, if there exists a sequence
€ € R? j = 0,1,...,m such that & = &, &, = m, and £ € Yo,(§_,) for
i=1,2....m.

(4) We say that n and £ are resonant congruent, if i is 61,6, ..., 0,,-resonant con-
gruent to & with some 6,60,,....0,, € ©O,. The set of all points, resonant
congruent to &, is denoted by Y (£). We use the notation N(¢) = {m € I :
€+me Y(€)},ie N =7Y(€)—¢& C T For points n € Y (&) we write n « &.

ability:rem| Remark 5.4. (1) Note that according to the above definition every point in R? is
resonant congruent to some point. In particular, every vector £ is 0O-resonant
congruent to itself, i.e. To(&) = {&}.
(2) Tt is clear that the resonant congruence defines an equivalence relation, so that if
n < £ then we have Y (&) = T(n).
(3) Note also that if nis 81, 0,,...,8,,-resonant congruent to &, then £is 6,,,,60,,,_1, . ..
resonant congruent tom, and £is 01,05,...,0,, 1,0,,,0,,_1,...,0-resonant con-
gruent to itself.

Let us establish some immediate properties of congruent points:

Lemma 5.5. For any vectors £ € R?, 0 € ©,, and any v 1 0 we have Yo(&) + v C
T9(€ + I/).
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As a consequence, if N(§) C U, then for any vector v € U+ we have Y (€) +v C
Y(&+v) and N(§) CN(E +v).

Proof. If Y¢(&) is empty, the result is obvioqgéa]é‘ggbal Plotr%]—%gpnty Yo (&) the first statement

is an immediate consequence of Definition b.3 1n view of the orthogonality of 8 and v.
Under the conditions N(&) C U, v € U+, this leads to the inclusion N(&) C N(é+v). O

The next Lemma is the first of many results, establishing some inequalities for con-
gruent points and/or lattice subspaces. To avoid unnecessary repetitions in their formu-
lations, we adopt the following convention.

Convention 5.6. (1) Each inequality (e.g. <, > or x), involving points of the
Euclidean space and/or lattice subspace(s), is assumed to be uniform in those
objects.

(2) The constants in the inequalities are allowed to depend on the dimension d and
the lattice ' only.

(3) We say that a certain statement, involving points of the Euclidean space and/or
lattice subspace(s), holds for sufficiently large p, if there is a number py > 0,
independent of the points and/or subspace(s) at hand, such that the statement
holds for all p > py.

Lemma 5.7. If n € Y (&), then

In particular,
(5:5) max | < pMrD, N (€) 1= card N(§) < p" Y,

uniformly in &.

The proof of this Lemma relies on the following result:

chabilityll| Lemma 5.8. (i) Let n € Y (&) be 01,05, ...,0,,-resonant congruent to €, and let

couplelO:eq

couplel:eq

span(6y,0s,...,0,,) =0 C V(n)
with some n < d. Then
(5.6 Gl < I,

(i1) Suppose that
span N(&) =0 € V(n),
with some n < d. Then

(57) el << pr
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[Lem:reachabilityl . . lem:reachabilityll
Proof of Lemma [5.7. As the relation £ < n is symmetric, Lemma 5.8 Tmplies that [€y| +

Iyl < p*1r@=Vd As € —n € Y, we have

trisie €=l = 1€ — M| < [€a] + ] << o201,

co e.e Sn.e

which is (5.4). ¢ first estimate in (BS} %ollows from the inequality
max |m| < sup |€— 7|

meN(€) neY ()
le:
and from (Eoﬂ *The bound for N (&) is simply an estimate for the number of lattice
points in the ball of radius < p*r#d=1, O

[Lem:reachabilityll . . .
Proof of Lemma 15.8. The proof of tThe first part is by induction. Clf)or 5.k the statement

is an immediate consequence of the definitions. Assume that (%ﬁ; holds Tor all n <k,
(5.6 for s

k > 1, and let us prove orn==Fk+1.

Let n € Y (&) bg Ql, %éé@égmi{%s;%%%m congruent to &, and let.EO, &,..., &, be the
vectors from Definition h.3(B). Let I > k,l < m, be a number, uniquely defined by the
following conditions: span(@y,...,0,11) =0 C V(k+ 1), and 0 := spa@égﬁa{bﬂ,i@y:ﬁfn
U. Clearly, dim20 = k. Since &, < § mod 6;,, by Definition 5.3(I) we have
|(£l).gl+1| < Pt At thg same time, since §, < &, we icxlso have \(Sl)%o%&‘i’%(skffgg by
the induction assumption, as 20 € V(k). Thus, according to Lemma b.2(1),

(5-8) (&)l < (&) o] + [(&)or.]) < p1rt.
Noticing that £ — &, € 20, we infer from the induction assumption again that

€ — &l = (€ — &)l < [Eanl + (&) ] < prr*D1,

couplelO:e

eq:1
Together with (%gj this lg.ads to |€q] < pirhd. 'Thus by ipduction, Qréa Seoved
In order to prove part (ii), we use the observation made in Remark 5.4 (3] to conclude
that under the assumption span N(§) = U there are vectors 01, ...,8,, such that £ is
01, ...,0,,resonant congruent to itself and span(81,...,0,,) = V. It remains to use the

first part of the Lemma. [

. . [Lem:reachabilityl
One important conclusion of Lemma 5.7 is that the numbers card Y (§) are bounded

uniformly in &€ € R%.
We need further notions related to congruency:

Definition 5.9. We say that a point & € R? is @-non-critical, if for a sufficiently small
€ > 0 we have Yo(& + p) = Yo(&) + p for all p: || < €. Otherwise we call € @-critical.
If £ is @-non-critical for all @ € ©,, we call it non-critical.
We say that the set Y'(£) is non-critical, if it consists of non-critical points. In other
words, for a sufficiently small € > 0, we have Y (& + p) = Y (&) + p if || < €. Otherwise
Y (&) is said to be critical.

If Y(£) is non-critical, then the set N(-) remains constant in a neighbourhood of &.
It is clear that if @ # 0, then the set

{€eR: € e(0) £ £p™ mod |0]},
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consists of @-non-critical points. Each & € R? is obviously 0-non-critical. Thus, the set
of £ € R? for which Y(£) is non-critical, is open and of full measure.

ant :subsect

5.3. Resonant sets and their properties. Our aim is to construct a collection of sets
Z(°) C R? parametrised by subspaces U € V(r,n) for n =0, 1,...,d, and depending on
the parameter p > 0, satisfying the following properties:

59 ®= | =)

VeW(r)
disjoint:eq| (5.10) Z(0)NE(Yy) =2 for Uy # Vs,
(5.11) For each & € Z(U),one has Y (&) C Z(V) and N(&) C V.

The required sets will depend on the arbitrarily chosen real parameters ag, aq, ..., aq
and sz, satisfying the conditions 0 = ap < a3 < as < --- < ag < 1 and

"< p”
:conditionl| (5.12)

Qg1 > +22d*, n=0,1,...,d— 1.

From now onsrtlhgse conditions are always assumed to hold. Under these conditions the
inequalities (5.5) give for sufficiently large p:

m| < ™3 m e N(g):
card:eq| (5.13)

a1 tag
2 d)

card Y (&) <p

uniformly in . The next Lemma is a straightforward consequence of the above inequal-
ities:

bups:lem| Lemma 5.10. Let |€| > p/2. Then

max |1| < min [n| < |&|,
max |n| < min |n| < |¢]

uniformly in &.
For each lattice subspace U € V(n), n =0,1,...,d we introduce the (open) sets
(5.14) Z1(T) = {€ € B, Jegl < o™}, (W)= | (&)
£€EL1 (D)

and

@\ U U (@), n<d

(5.15) 2(0) = m=n+120€V(m)
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The set Z(0), BV # X, is referred to as the resonant set, associated with the lattice
subspace 0. By definition of Z5(%0), we have & € Z5(*U) if and only if Y (&) C Z2(V), so
that

(5.16) £ € Z(Y) if and only if Y (&) C Z(T).

This observation immediately leads to the natural representation of Z(0) as a union of
non-intersecting equivalence classes:

(5.17) 5w = J T©.

£€E(V) /<
Note that =;(0(0)) = A(0) for each 6 € ©,. For U = X we have Z;(X) = Z,(X) = R<.
The sets

(5.18) B=2(X) =R\ |J U and D=R?\B

m>1 90eV(m)

are called the non-resonant set and resonant set of R respectively. The sets introduced
above obviously depend on the parameter p. Whenever necessary, the dependence on p
is reflected in the notation, e.g. Z(T; p), B(p), D(p).

Remark 5.11. To illustrate the difference between the sets =1 () and Z(*0) assume for
simplicity that the set ©% contains two non-zero vectors only, which we denote 6, 1. Away
from the intersection with A(n), the set Z5(0) coincides with =;(0) = A(8). However,
near A(6) N A(n) the set =5(0) acquires some extra points. Namely, along with each
point & € A(0) the set Z5(0) contains the points from A(n) obtained by translating &
by £n,£2n, ... etc

. . .. Xi:e [Lem:reachabilityl
Note an immediate consequence of the definition (5.15) and Lemma b.7:

eq:conditionl _
Lemma 5.12. Assume (%.IQ). Let3 T € V(n),n=1,2,...,d, and & € Z5,(B). Then for

sufficiently large p we have:

(5.19) €| <
200", n=2,...,d.

d:
Proof. By definition (% ZI) £ € Y(n) for some n € =,(Y). Thus, by (%c?rl Bi,e
a1 tog

|| < Nyl + max |m| < p* +p
meN(n)

roj:e
In view of monotonicity of a;’s, this proves (b.19). O

The previous Lemma shows that the resonant sets Z(U), U # X, are “small” relative
to the non-resonant set B = Z(X). More precisely, we show that the resonant set D has
a small angular measure. To this end for each 8 € ©, define

R(6) = {€ e R : € - o(6)] < 201,
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layer:e lem:properties3
cf. (6:3). By Lemma 512, for any U € V(n),n < d — 1 we have

=Ewc |J Aw®)

0cVNO,

so that

D\ B(p/3) C | AO)\ Blo/9).
06@7‘
An elementary calculation shows that

AO)\ B(p/3) € S(8: ) x [p/8,00), S(8;p) i= {2 € ST |- e(8)] < 16711},

for all sufficiently large p. Let

(5.20) S(p) = | S(6:p), T(p)=5""\35(p).
0co,

surface:lem| Lemma 5.13. Let the sets S(p) C S, T(p) C S ! be as defined above. Then
@ (5.21) volga—1 S(p) < p™~ !, volgar T(p) < 1,

for sufficiently large p.

Proof. The elementary bound

volga-1.5(0; p) = / / sin? wdwdQ < pP—t,
S4-2 J| cosw|<16p¥d—171

together with the observation that the number of the sets A(6) is bounded above by
card ©, < r¢, gives the estimate
volga-1 S(p) < rdp¥i-171 « prat,

eq:conditionl
Here we have used (b.

surfacel:e surface:e
The second bound in ( 5 immediately follows from the first one by definition (L‘SPZU ).
O

In what follows, apart from the non-resonant set B(p), the set

(5.22) B(p) = T(p) x [p/8,00)

will play,ap, important role. Since (D\ B(p/8)) C S(p) x [p/8,00), and B = R\ D (see
(5.13)7), we have

B(p) € B(p).

Let us now proceed with our study of the resonant sets Z(0). Introduce a new notion:

strdis:defn| Definition 5.14. Two subspaces Uy, U, are said to be strongly distinct, if they are
distinct, and neither of Ui, U, is a subspace of the other.
An equivalent definition of this property is that dim(0, +22) > max(dim U, dim V).

Here is a simple relation between the sets =;, Zs:
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: ditionl
Lemma 5.15. Assume (E. IZCOi.n Then for any strongly distinct lattice subspaces U and
2 we have
strongly:eq| (5.23) () N E3(2W) C =4(V + 20),
for sufficiently large p.
Proof. Let U € V(n), W € V(m), and asgume Wlthggut loss of generality that m > n.
Suppose first that m > 2. By Lemma b.12, for any & € Z(U) N E5(20) we have

1€l < 2%, &gy < 207

projections:lem
Therefore, by Lemma 5.2 for The projection onto the subspace 2 = U + 2 we have

|§a < p™

dit 1
Since U and 20 are strongly distinct, we have p := dim 2 > m, and hence, by (% IZCOFn Leion
for sufficiently large p the right hand side is bonnded above by p®, which 1mphes the
proclaimed inclusion in view of the definition (ﬁ [4)

em?’properties3

Suppose that n = m = 1, so that by Lemma 5.12

1Exl, |€anl < 2P
projections:lem eg:conditionl

Lemma b.2"gives again that [y < p 52 Since p = dimA = 2, by (bI12] for -

sufficiently large p the right hand side is bounded above by p®2, which implies (b.
again. O

xil2:lem
Lemma )10 has a number of very useful consequences. First of all note that in the
definition (b.I5) we could have written U C 20 without changing the set Z(0). Precisely,
we have the following lemma.

Lemma 5.16. Let
(5.24) ZW) =@\ J | .

m>n QeV(m), VW
Then for sufficiently large p, we have E(‘B) =Z'(Y) for all Ve V(n),n<d—-1.

Proof. Let 0 € V(r,n) earl (]0). Let us prove the opposite inclusion. On
the r.h.s. of the formula 1(5a§ replace E5(20) by Z5(20) N Z2(W). For strongly
distinct 20 and ‘U, from Lemma we obtaln that

For m > n this entails the inclusion

U EZ(meEQ(m)c( U EQ(QBJr‘U))U( U Eg(am)

WeV(m) WeV(m), Vg W WeV(m), BCW

- U U Z(20),

p>m eV (p), BCA
so that Z(U) D ='(V), as required. O
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The next lemma shows that all resonant sets Z(0) are non-empty. It is given here for
the sake of completeness, and it will not be used in the subsequent argument.

Lemma 5.17. Let U € V(n),n < d. For any R>> p and sufficiently large p, we have

nonempty:eq| (5.25) vol(2(U) N B(R)) > pren R
xil:e
Proof. Let us fix a subspace U € V(n). By definition (% [4),
Vo(p, R) := vol(Z2(D) N B(R)) > vol(Z1(V) N B(R)) > p"*"R*".
For n = d we have U = R? and Z,(U) = To! ({g bertthe3above lower bound yields (5. i) —

Suppose that n < d — 1. By Lemma 5.12; for any U € V(n) and any 20 € V(m), m =
n+1,...,d, such that U C 20, we have

vol (Z,(20) N Z2(V) N B(0, R)) < pren plm—mem p=m.
xi:e
If n =d — 1, then definition (% [5} ensures that
vol(2(W) N B(R)) > Vy(p, R) — CpltHea-1tea

> p(dfl)adflR(l _ Cpadfl) > p(dfl)adflR_

For n < d — 2 we recall that the number of lattice subspaces 20 € V(m),m < d —1, is
less than Cr? with a universal constant C. This leads to the estimate

V(p,R)==vol | [J ( NEZ2(V) N B(R))

m>n+1 BeV(m)
BCW

—1
,r,d2 Z pnanp(m—n)ade—m +pnanp(d—n)ozd

m=n+1

d—1
pnaann|: Z 7ad2p(mfn)o¢mRn7m + p(dfn)ozanfd )

m=n+1

. . eq:conditionl |
Therefore, under the condition R > p, using d5 [2], we obfain that
d
V(p, R) Z (m—n)(ag—1)
Y & p m—n)(ag N ij — 00,

. . nonempty:e equiv:lem
Now the required estimate (%.25; )fo ows from Lemma % [6. 0J

erties2:lem| Lemma 5.18. Let U € V(n) and 20 € V(m) be two strongly distinct lattice subspaces.
Then for sufficiently large p we have Z(B) N Z3(W) = &. In particular, if @ ¢ B, then
=Z(W)NAO) =

i12:1
Proof. By Lemma %.ll 5, for sufficiently large p,
E(%) N EQ(%) C EQ(%) N EQ(QU) C Eg(u), U=0+92.
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rtition:thm

lem:upsilon

silon:iteml

silon:item?2
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Since dim 4 > n, by definition (%.II:5€§, the left hand side is empty, as required.
As A(0) = =1(0(0)) C =2(V(O)), the second statement follows immediately. O

Corollary 5.19. Let U € V(n). If & € Z(V), then Y (&) C =(V), and for sufficiently
large p also N(&) C U.

xi2:e

Proof. The inclusion Y (£) C Z(*¥) immediately follows from (% [6).
To prove the second statement, it suffices to show that if n € Y(&) with some 6 € O,
then 0 € 2. The assumption 7 € Yo(&) means, in particular, that & € A(@). By Lemma

mroper
H.13 tThe latter “Inclusion is possible only if 8 € Q. O

‘e}glaus‘mgg%g% in, gosmon to prove that the constructed sets =(Q) satisfy the conditions

(6.9), (b.10) and (b.I1):

) ) eq:conditionl
Theorem 5.20. Let ag, a, ..., a4 and 3 be some numbers satisfying (% [2). Then for

uﬁicze tlly large p the collectzon of Setﬁx“ﬁgm%ilec_101ﬁg7e ;grlq defined by the equalities
, satisfies the properties (b 9), (b.10) and %’5 IT).

Proof. Proof of (%s prove that
(5.26) == U == U =0 =z,

m>n BeV(m) m>n PeV(m)

for all n = 0,1,2,...,d. If n = d_then 2@ = Z(R?) = Z,(R?) = =5, Suppose that
0 <n <d-—1. By definition (% 5i and backward induction,

='- U =oU="- U =myU="- U

BeV(n) BeV(n) BeV(n)

(1]

Therefore RY = Zo(X) € = 2 = 20 as claimed.

Proof of (% Il‘i Lef 311 and U, be distinct lattice sutEslpaces dimY; =p;, j =1,2. If

U, C Vs, then p; < po, and it follows from Definition (b. that
=(Th) C Z2(T1) \ E(T2),

so that Z(0;) N %grope tlI and U, are strongly distinct, then the required result
follows from Lemma H.I8. broperties2:cor
Proof of ()5] [ See Corollary b.19. O

5.4. Scaling properties of the sets Y (§).
Lemma 5.21. Suppose that € € =(0) and € + v € Z(V) with some v € L. Then for
sufficiently large p,

(1) N(§) =N +v),

(2) For & € Z(V) the set N(&) depends only on the vector Ey;.

roperties?: upsilon:iteml trans:lem
Proof. By oro%lal"Qy f/ so Part [T follows from Lemma %.5. State-
u em upsilo 1tem1

ment 271s a rephrased statement Il
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dicular:lem| Lemma 5.22. Suppose that & € Z(0) with some B € V(n),n < d, and §, = E+1lv,v =
€y with t > 0. Then for sufficiently large p the vector &, € Z(B) for all t > 0.

We precede the proof with another Lemma:

Lemma 5.23. Suppose that & € =(0) with some BV C V(n),n < d, and &, = E+tv,v =
€y witht > 0. Then for sufficiently large p we have N(&) = N(&,) for allt > 0, and, in

particular, N(§,) C 0.

Proof. For n = d the result is trivial, so we assume that n < d — 1. We consider the case

n > 0; the case n = 0 is similar, a drgv%}gageﬁtcct)l@ the reader. e Tem
Let us fix at > 0. By Corollaryﬂ%ﬂ'&%ﬂ so that N(&) C N(&,) by Lemma W
In order to prove the opposite inclusion, it suffices to prove that Yg(&,) —tv C Yo(&)

for each @ € ©Y such that Ye(&,) # @. If @ = 0, then the above assertion is obvious.

Suppose that 8 # 0. Let p, € Yo(&,), so we need to show that p := p, —tr C Ye(&).

First, we prove that @ € . Suppose the converse, i.e. that 8 ¢ U, and define

2 =0 +U(O) € V(n+1). We may assume that |€gy| > p* 1. Indeed, otherwise we

would have [€gy| < p®**, which would imply that & € Z,(20) C Z5(20), but the latter

is impossible in view of the condition & € Z(0). Since

antan4q

(5.27) €l <2075,

[Lem:properties3 . . projections:lem leq:conditionl
see Lemma 5.12; we can claim by virtue of Lemma 5.2 and condifions (b.12) that

&gl = 17 €] — |&] > pOtir

Consequently,
|V9| = |£Q]l . 8(0)| > |€9| — |E‘B| > pa”“T‘_d.

Therefore,
[(&1)el = € +tre| = [(€x)e + (t + 1)v4
> (t+1)|ve| — [€g| = p™+ir™? > p™, >0,

so that &, ¢ A(@),t > 0, which contradicts the fact that §, < p, mod 6, Thus 0 € U.

As v € U+, the inclusion p, € Yo(&,) implies p € Y(€) by Lemma mefore,
Yo(&,) = Yo(€) + tv, which in turn implies Y(&,) = Y (&) + tv and N(&,) = N(&). The
inclusion N(&,) C U follows from N(&) C 0. O

perpendicular:lem .
Proof of Lemma 15.22. As in the previous proof assume that n < d — 1. Let us fix a

t > 0. Since § € E(T) C E2(V), one can find a vector g € Zy(T) NY(§). Asv € Tt
this implies that n, ;=.n + tv € E;(U) and by Lemma @ST&tTT(nt) C Z2(Y). Thus,
in view of Lemma %mains to prove that &, & Z5(20) for any 20 2 U. Suppose
the contrary, i.e. for some 20 € V(m), m > n, W D Y, we have §, € Z2(2). We show
that under this condition we have & € Z5(20), which would contradict the assumption

£ € Z(D).
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. L. xil:e
Denote U := WYV (U does not have to be a lattice T-subspace).CIOB Definition (% [4)
there is a vector pu, € =;(20), resonant congruent to §,. By Lemma %ﬁ%, Iﬂiét) =N(¢) C

¥, so that (u,)y = (&;)u. Therefore, for the vector p = p, — tv we also have py = &,
This implies that

(1) a0l® = [tgn + tranl® = |y + t€y|* = gy + tpayl®
= |pg + (t+ Dpyl* = gl + (¢ +1)*[pyl* > [pgl*,t > 0.

By definition (%%)?Kuﬁ@ < pm anddience [pgy| < p®m,ie. p € Z1(20). On the other
hand, since p, € Y(&,), Lemma b?gmils that g € Y (&), and thus g € Z(0). This
contradicts the inclusion g € Z1(20), by definition of Z(*¥). Consequently, &, ¢ =2(20)
for any 20 D U, and the proof of the Lemma is complete. O

6. INVARIANT SUBSPACES FOR THE “GAUGED” OPERATOR

The resonant sets Z(°0) are designed to describe the invariant subspaces of the periodic
PDO’s having the form

(6.1) A= Hy+ B°+ B
With\dte}%%ys%%lb\(s%%c}f%l(éz = |€*™ and b € S, (w), where a € R, w(€) = (€)°, 3 € (0,1).
By (2.3) and (3.22),
(62)  [Dgh(6.&)| + Dgh(6,€)| + DE™(6,6) < [bl;2) (&) (8) ",
alml:e .
for all s. We always assume that (b [5) 1S satisfied, so that
(6.3) 2m > af, 2m—1> Bla—1),2m —2 > fla — 2).

This guarantees that the symbol b and its first two derivatives grow slower than the
principal symbol hg and its corresponding derivatives respectively.
In order to use the resonant sets =Z(0) constructed previously, set

ap =f3
’ flat:e

L eq:conditionl .
and assume that the condition (%.IZF 15 satisfied. In addition to the symbol (B.16), for
any lattice subspace U € V(n), n =1,2,...,d we define

(6.4) B, Ep) = S 0(0,€ )Gl ) eo(€)e.

(M) oco

It is clear that the above symbol retains from b® only the Fourier coefficients with 8 € 2.
I%g?e)g:uéze also the notation for the appropriate reduced version of the model operator

Ay = Hy + B° + By, By = Op(by).

fibre:subgect
Recall (see Subsect. b.Bi that for any set € C R? we denote by P(€) the operator y(D; C),
where x( - ;C) is the characteristic function of the set €. Accordingly, for the operators

in the Floquet decomposition acting on the torus, we define P(k; C) to be x(D + k; €C).
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. . niform:conv .
In what follows we still apply Convention 5.6, and add to it one more rule: the

estimates which we obtain are also uniform in the symbol b, satisfying the condition
[b] @ < 1.

Lemma 6.1. Let b be as above. Then for sufficiently large p, and any B € V(n) we have

(6.5) B*P(Z(1)) = B3P (2(V)) = P(E(V)) BxP(2()),
and
(6.6) B¥(k)P(k; Y (1)) = P(k; X () Bi(k)P(k; Y (1)),

for any k € OF and any p € Z(V) with {u} = k.

Proof. Assume without loss of generality that b® has only one non-zero Fourier coefficient,
ie.

1
d(r)

floquet:
so that b = 0 if @ ¢ Y. According to (b § iu)e .

(6.7) bR (x, & p) = b(6,&; p)Col(&; p7)ea(€)e™®,

(BR)(x) = g5 3 B0.m + 19 iom),
68 (BP0 = 7 Y FOm e i m),
m:m+keY ()

hizeta:
for any u € L*(T¢). Observe that by virtue of (E%.le) or gny £ :=m+k € supp (o -;p%

we have

€01 < |0(¢+0/2)] +16°/2 < (0°/2+1/2)|6] < p°|6)],

tha el §e€2Al<eO and a similar calculation shows that.§ + 0 € A(@) as well. By Lemma
;6 8; At

.13, (;J,)OA(O) @, if 8 ¢ U, so it follows from (

BXI)P(k: Y (1)) = BYWP(G T () =0, if 6 ¢ .
freachability:defn
In the case 8 € ‘U, by Definition 5.3, the pomts E=m+keT(p \/%J’e_ 0 are
0-resona; L congruent SO tha + 0 € Y(p). This Completes the proof of I(TFG)J
Using ( we get from (

BX(k)P(k; 2(T)) = P(k; Z(0)) B P(k: (V).

Taking the direct integral in k yields (%TIBVF'.e [
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lexhaust:edlisjoint:eq
6.1. Operator A i dh tl}e 161var1ant subspaces. Due to the properties (5.9) and (b.10],

the formulas (\b b) and (\b 0) 1mply the following orthogonal decomposition for the Floquet

fibres A(k):
rhogonal:eq| (6.9) @ Ak; Z( = @ @ Ag(k; Y(p)).
BeW(r) BeW(r) y.e{E(}Q?)léH
“:

d.:
Since card Y (p) < oo, see (%cérl 3i,e%or each p € Z(U) the operator Ag(k; Y (p)) is finite
dimensional. In the basis

E[u]+m<x>7 m € N(:“’)

(see definition (bexl ) i, of the subspace $)(k; Y (u)), the operator A(k; X (p)) reduces to
the matrix A(u) with the entries

1
: 6.10 Amn = am—n,pu+mn;p), mmnée N(u).
(6.10) n(p) ) ( p+mn;p) ()

Denote by \;(A(w)), 7 =1,2,..., N(u) = card N(p) the eigenvalues of the matrix A(pu),
arranged in descending order. It is easy to check that the matrices A(u) and A(u') with
p' € Y (), are unitarily equivalent, so that the eigenvalues do not depend on the choice
of p, but only on the set Y (p).

wosided:lem| Lemma 6.2. Let \;j(A(w)) be the eigenvalues introduced above. Then for sufficiently
large p, for all || > p, and for all j =1,2,..., N(u) one has

= |p|*™,

i (A = m 2m
i(A(w)) Hg{l)|n| rengx)lnl

uniformly in .

o@oﬂg) . sl operator A has the form Hy+ B*® and since a3 < 2m (see ( &T%‘)ﬁby Lemma
%_Z_t‘mrbatlon BoRig infinitesimally HO bounded, so that cHO—C’ <AL CH0+C
with some positive constants C,¢,C. Therefore, the same bounds hold for the fibers
Hy(k) and A(k). As a consequence, the restriction of both operators to the subspace
H(k, Y (p)) satisfy the same inequalities:

cHo(k; Y () — C < A(k; Y(p)) < CHy(k; X () + C.
ups:lem
Now the claimed inequalities follows from Lemma % i O

If Y'(w) is non-critical (see Definition %&%ﬁ%et N(p) remains constant in a neigh-
bourhood of p. Since the entries of the matrix A depend continuously on p, we conclude
that the eigenvalues \;( 1are confinuous in a nelghbourhood of such a point .
Moreover, by virtue of Lemma or any p € =(*U) the set N(pu) remains constant if
Mo 18 kept constant, and hence 1t makes sense to study the eigenvalues as functions of
the component v = pg;1. Define the matrix

A(t) = Alpg +te(v)), e(v) = —,

14
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. ca:e . . .
with a real-valued parameter ¢t > ¢y := |v|. By (% [0} the entries of this matrix are
y 1
cb:eq| (6.11) Amn(t) = ma(m —n, pg; +n+te(v);p), mn € N(p).
fperpendicular:lem . .
By Lemma b.22 the matrix A is well-defined on the interval [tg, co).

Im:
Lemma 6.3. Let (%.Zgi Be satisfied. Suppose that p € Z(0) and |pu| < p. Then

radiall:eq (612) )v(./i(tg)) — )\](J‘i(tl)) = p2m_1(t2 — tl),
for any ty,ta < tg, to < t1 < ty, uniformly in j =1,2,... N(u), p and .

[Lem:properties3
Proof. By Lemma b.12, [y < 2p%, so that tg = |v| < |u| < p. By the elementary

perturbation theory, it would suffice to establish for the matrix

.A(tl, tg) - .A(tg) - .A(tl)

the relation
(Aty, to)u, u) < p?™ Yty — ty)|Jul|?, t1,ty < p,ty >t > 1o,
for all u € $. The entries of this matrix are

d -~
/t1 ym,n@)dt? ym,n@) - E-Am,n(t)

to
We show that the matrix Y(t) satisfies

(613 (e ) = g ul, < p,
for all u € §, uniformly in @, U, and the symbol b. Denote
B = by +te(V), v = pog.
properties?:cor

Corollary b.T9 mmplies that N(u) C 8. Therefore, Y(t) is the sum of the matrix with
diagonal entries

d _
—ho(p, +m) = 2m|p, + m*" "%, m € N(p),

dt
and the matrix Z(¢) with the entries
1 N
Zmnt:—Vbo’Rm—n, ip)-e(v )
o) = o VS ki) ew)|

d:
By (}’SCérl 3),6 m| < p* and hence
(6.14) p<t<|pu+m|<p, meNp).

Thus
d
619 o)<
Also, by ( I.n:e,

[Zmn(1)] < (m = 1) |, + |7 < (m — )TV,
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for any [ > 0. Assuming that [ > d, from here we get:

12()]] < max ) |Zma(t)]

< Cpplo= P sup max(m —n)! < CplaB

radial caly diall
This, together with (b d) and (E)algjl lga?ds to (6 ld), “which implies (%al 21a$ aserequired. O]

7. GLOBAL DESCRIPTION OF THE EIGENVALUES OF OPERATOR A(k)

In this section we continue the study of the discrete spectrum of the fibres A(k). Our
aim is to construct a function ¢ : R — R, which establishes a one-to-one correspondence
between the points of R? and the eigenvalues of A(k). More precisely, we seek a function
g such that

(1) for every &€ € R? the value g(£) is an eigenvalue of the operator A(k), k = {¢},
and
(2) for every j € N there exists a uniquely defined point € with {£€} = k such that
9(&) = A;(A(k)).
In other words, we intend to label the eigenvalues of A(k) by the points of the lattice
[, shifted by ko he ccflstructlon of the convenient function g is conducted using the
decomposition (% gi 1n61v16(ua11y in the invariant subspaces generated by the sets =Z(J).
We begin with the non-resonant set B = =Z(X), X = {0}. On the subspace H(Z(X)) the
symbol of the operator A is x-independent, and it is a®(&) = ho(&) +0°(€). Therefore the
eigenvalues of the operator A(k) are given by a®(p + k), € I, u +k € Z(X). Clearly,
it is natural to label the eigenvalues by lattice points. Let us define

g(&) =a’(§), £ € E(X) = B.

bm:e

According to (6.
o2
o|gf?

(7.1) (&) = ho(&) +1°(8), ]%b"(é)‘ C (&) 17, ‘

b”(&)‘ < gyl

for all £ € B.

oSupposg, now that § € =(Y) with some non-trivial lattice subspace . In view of
(% %; it suifices to define the function g on the sets Y(&). Let us label all numbers
n € Y(£), € € Z(Y) in the increasing order of their length |n| by natural numbers from
the set {1,2,..., N(&)}; if there are two different vectors i, 7 € Y(&) with |n| = ||, we
label them in the lexicographic order of their coordinates, i.e. we put n = (71,72, .. .,74)
before = (71,72, - . ., Nq) if either n; < 71, or 1 = 71 and 7y < 7o, etc. Such a labeling
associates in a natural way with each point n € Y (§) a positive integer £ = {(n) < N(&).
Clearly, this number does not depend on the choice of the point £ as long as £ remains
within the same «»-equivalence class. In particular,

(7.2) 0™ = Negy (Ho (k; X (m))).
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Now for every 7 € R? we define

9(n) = Ae (A(m)),
: ided:1
where A( - ) is the matrix defined in (%%8’31. Note that in view of Lemma %V.JZOSI—G <

(7.3) g(n) < 0", |n| > p,

for sufficiently large p.

In order to analyse the continuity of g( - ), we assume that n is a none%g%cz%le%(l)int, ie.
the set N( - ) remains constant in a neighbourhood of 7, see Definition mlfﬂiarmore,
in the non-critical set, {(n) remains constant, if the point 0 stays away from the Voronoi
hyper-planes associated with pairs of points from the set Y(n). Recall that the Voronoi
hyper-plane for a pair n,,n, € R? is the set of all points z € R? such that |n, — z| =
|7y — z|. Thus, the function g( - ) is continuous on an open set of full measure in R%.

In each set Z() the labeling function ¢ possesses the following important property.

Lemma 7.1. Let n,n € Z(V) satisfy v :=n —mn L B. Then (7)) = {(n).

lem:upsilon _
Proof. Recall that by L%rlpo%lear b, 21, i!pi +v="7Y(n). Le*F N < M, SO that (n +v) <
(n + v). By Corollary 519, fig;r = nge, and hence the inequality |p| < |n| holds or
does not hold simultaneously with |u + v| < | + v|. The same property is true for the
coordinates of the vectors involved. Therefore, {(n) = {(n + v). O

The next lemma allows us to establish smoothness of the function g with respect to
the variable mg;. .

alm:e
Lemma 7.2. Let U € V(n),1 < n < d—1 and let (%%) be satisfied. Suppose that
n € Z(V) and |n| < p, and let v = ng.. Then for sufficiently large p, on the interval
[to, 00), to := |v|, the function g(t;m) = g(ny + te(v)) satisfies
(7.4) g(t2,m) — gltr,m) < p*" " (ta — 1),

for any t1,ts € [tg,00) such that t; <ty and t1,ty < to, uniformly in n € Z(V) and V.

perpendicular:lem

Proof. Recall that in view of Lemma 5.22, 0y + te(v) € E(D) for all ¢ > ;. Thus by
Lemma 7.1, 7(n) = {(ny + te(v)) =: { for t € [ty,00). Therefore,

9(t;m) = M(A(ng + te(v))).

dial:1
It remains to apply Lemma R R— O

In order to study the global properties of g, note that by the above construction there
is a bijection J : [T 4+ k — N such that

9(m) = A (AK)), k= {n},

for all n € 1ds' +&or the following Lemma recall that the distance on the torus | - [r is
defined in (3.28).
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partialofs2| Lemma 7.3. Let a,b € R? be such that |a| < p. Then there exists a vector n € T such
that

(75) (b + 1) — g(a)] < /b~ al,

for sufficiently large p.
Suppose in addition, that m € [T, m # 0, is a vector such that |a+ m| =< p. Then
there exists an € [T, such that n # n and

(7.6) lg(b+11) — g(a+m)| < o™ |b - alr,

for sufficiently large p.

Proof. As As)(A(k)) = g(a), by (%%ve

A (A(k))] =< p™" . )
eta.e a .e
Denote k = {laéérl%hrbeé o Recall that the condition (&3.29) is satisfied due to (%.Z%), SO
by Theorem 3.6
(07 Pam(AK) = A (k)] < o ke~ | = pzmﬂb alr.
et P R? be a vector such that {p} = k; and g(p) = Ay (A(ky)). Now 7.;) mplies
(373

with n =p — I1115_31.@,9 1ip2:e '

In order to prove (I7.6); we use (7.7) with a+ m instead of a. Then, as above, one can
find a vector p such that {p} = ky and g(p) = Ajat+m)(A(ky)). Since J is one-to-one,
we have J(a +m) Z J(a), and h 1cq P # P. As a consequence, n = p — b # n, as
required, and (I7.7) again leads to (I7.6)- O

8. ESTIMATES OF VOLUMES

: : . . . odel:e
In this section we continue the investigation of the operator of the form (%i ), Wa%{n a,
symbol b € S, (w), w(&) = (£)7, with parameters «, 3, satisfying the conditions (%% ]
Let g : R? — R be the function defined in the previous section, and let B(p), D(p) and

\ non resona%)mge ar:eq
B( ) be the sets introduced in (5.13] and (b.22) respectively.
Let § € (0, \/4], A = p*™, and let
Alp,8) = Alg; p,0) := g ([A = 6, A+ 4)),
B(p,0) = Blg; p,0) := Alp,0) N B(p),
1)
D(p,0) = D(g; p,0) := A(p,9) N D(p),

| B(p,8) = B(g; p,8) := Alp,8) N B(p).
The estimates for the volumes of the above sets are very important for our argument.

1: Im:
em:volumeCA| Lemma 8.1. Let A be the operator (%oi e), and let a, B satisfy the conditions (%.I%S.e Then

for any 6 € (0, p>™ /4] and for all sufficiently large p, the following estimates hold

_tildeCB:eq| (8.2) vol B(p, 0) = 6p?=2m,
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and
@ (8.3) vol(D(p,d)) < dp*t-2mted,
erorcllfﬁned together with aq, s, ..., aq_1 at the beginning of

Here oy € &Oe,slo)naigtgheinum1 bes
Subsection 15.3(see (b.12)].

Before proving the above lemma we find a convenient representation of the set @(p 6)D

Since B(p, ) C B(p), for all & € B(p,d) the function g is defi ed by the formula (glﬁﬂ
(£5 20) 1o )

and in particular, it is continuous. For all © € T'(p) (see (b. or definition), we
introduce the subsets of the real line defined as follows:

iomd:eq| (8.4) I(;p,0) = {t > 0: p™™ — 6 < g(tQ) < p*™ + 4}

inb: ~
By (;li ), Tor t € I($2%p,6) we haye p/2 <t < 2p, and hence 12 € B(p,d). If pis
sufficiently large, by virtue of (7.1), for these values of ¢ the flz%c%ipgl g(t€2) is strictly

increasing, and hence 1(£2; p, d) is a closed interval. Moreover, (7.T) implies the relation
(8.5) 11(€; p,0)| =< 5p* 2"
for its length, uniformly in €2. By construction,

tildecb:eq| (8.6) @(p, 9) = U I1(€2p,6)82.

QeT(p)

lem:volumeCA surface:lem iomdl:e
@Qci%égg,éemma 8.1. In view of Lemma % [3 and of the bound (R:5), we obtain from

86):
vol B(p, §) = / / t37dtdQ = §ptm,
T(p) + 1(€2p,0)
tvolume_tildeCB:eg

This proves Qﬁéé%lumeCD L [(non)resonant:eq |exhaust:eq
Proof of (%LBF By definition (5.I8) and relation (b.9),

D= U EDo.

BCV(n),1<n<d

. . . —_ . [Lem:properties3
Let us estimate the volume of each intersection Z(U; p) N A(p,d). Since Lemma b5.12

implies that Z(R%) N.A(p, ) = &, we assume that n < d — 1.
For all x € U and Q € U+, || = 1 denote

SO, p) ={t 20: x +1Q2 € Z(V;p)}-

fperpendicular:lem

According to Lemma b.22, this sef 1s either empy K0T dt is a half-line of the form [tg, 00) or
(to, 00) with some ty > 0. Due to the estimate (E léi, %(x, Q; p) is empty if | x| > 2p*-1.
From now on we assume that S(x, €2; p) # &, so that |x| < 2p®¢-1. Consider the subset

(8.7) S(x: 5 p,0) = {t € S(x, X p) : p*™ = 0 < g(x + 1) < p™™ + 6},




volumeCB2a

nokiss:eq

sobranie:eq

BETHE-SOMMERFELD CONJECTURE 45

\tw051ded eq radial2
In view of (73], T < p. By (7:4), the function g(t) = g(x + 1) is sfrictly increasing and
continuous, and hence, S(x, ; p,d) is an interval. The bound (I7.4) also guarantees the

upper bound
1S(x, Qi p,0)| < p' ",

for the length of this interval, uniformly in x and €2. Now we can estimate the volume
of the intersection:

vol(Z(T; p) N A(p,§ / / / t =L dtdQ dx

Ix|<2p%d—1 sd=n—1  S(x,£2;p,0)

d-n-1 1S(x 5)|d2 d

p 7 1p7 X
|x|<2p%d—1 §d—n-1

< 5p1—2mpd—n—1 (pad_l )n < 5pd—1—2m+ad_1 )

Recall that the number of distinct subspaces B C W(r) does not exceed Cr* with some
universal constant C', so that

VOlD(p, (S) < 5pd—1—2m+ad71rd2 < 5pd—l—2m—&-040g7

leq:conditionfeqg:volumeCD
where we have used the conditions (\b 12). Now (8.3) 1s proved. 0J

The next estimate is more subtle:

ABD:
Theorem 8.2. Let B(g; p,d), 6 € (0, p*™/4], be as defined in (%l et e >0 be a fized
number. If §p*>~2™%2¢ — 0 as p — oo, then

(8.8) vol (B(g; p,0) N (B(g; p,0) + b)> & §Fprramtdite | 5p1_2m_5(d_1),

uniformly in b, |b| > 1.

This Theorem will be proved in the next section. As an immediate consequence, we
can write the following estimate:

(8.9)  wvol U (B(g;p7 5N (B(g;p, 5)+n)> & §2ptmRdkee |5 1-2mbd—e(d—1).
nert\{0}

|sobranie:egnokiss:eq

valid under the condition dp — 0, p — oo. Indeed, to get (B 9) Irom (B.8) one
notices that the union in the above estimate does not extend to the lattice points n such
that |n| > 3p.

Another important ingredient is the following estimate on the volumes:

2—2m—+2e



46 L. PARNOVSKI & A.V. SOBOLEV

ABD:
Lemma 8.3. Let B(g;p,d), D(g;p,0), d € (0,p*" /4], be as defined in (%l i.e Lete >0
be some number. If 6p*~2"t% — 0 as p — oo, then

U (B(g; p,85)N (D(g; p, ) + n))

nert\{0}
(810) < 52p4—4m+2d+66 + 5p1—2m+d—s(d—1) + 6pd—1—2m+o<d'
Proof. Let us split D(p, ) in three disjoint sets:
DO(p, 5) = {5 S 'D(p7 5) : € +n ¢ B<p7 5)a for all n € I'T \ {0}}7

91(pa 5) = {5 € ®(p7 5) :
there exists a unique n =n(¢) € I\ {0} such that £ +n € B(p,4)},

Ds(p,8) = Dip, ) \ (Dolp.0) [ Di(p,)).

The definition of Dy(p,d) immediately implies that

(8.11) B(p,o ﬂ( U (Dolp, o )) =g.

nelf\{o}

For the set Dy(p, §) we have the inclusion

(8.12) U Dap,6)+n)c |J (B(p,d)+n).

neri\{o} nelf\{o}
Indeed,for each & € Dy(p, §) there are at least two distinct lattice vectors ny, ny # 0 such
that € + n; € B(p,d) and &€ + ny € B(p, d), so that any lattice vector m # 0 is distinct
either from n; or from ny. Thus, assuming for definiteness that m # n;, we get

E4m=¢&+n+(m-mny) € (B(p,d) +m—mn;) C U (B(p,0) + ).

nelt\{o}
' CD2: e
This proves (K.

Now observe that by definition of D (p, §) the sets Dy(p,d) N (B(p,d) +n) are disjoint
for different n € '™\ {0}. Therefore

vol [ J ((Dl(p,5)+n)m93(p,5)): 3 Vol(ﬂ)l(p,é)ﬂ(ﬁ(p,é)—i—n))

neri\{o} nelt\{0}

< vol Dy (p,d) < volD(p, ).
CDO : CD2:
Together with (%I [} hnd (%.1265 this produces the bound

U (B(p, 5)n (D(p, 5)+n)) < volD(p,8) +vol | J (B(p, 5)N (B(p, 5)—|—n)>.
nernio) |sobranie:égeq: volumeC];erT\{O}

BD:
The estimate (% [ follows from (8.9) and (8.3)- O]
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. . volumeCB2a
The next section is devoted to the proof of Theorem %.2.

9. ESTIMATES OF VOLUMES: PART TWO

9.1. Results and preliminary estimates for the intersection volume. Consider
two continuous functions g; : R? — R such that g;(€§) — oo, || — o0, j = 1,2. Our
objective is to establish upper bounds for the measure of the set

X(g1, g2; p; 03 b1, ba) := (A(g1; p;6) + b1) N (A(g2; p; ) + ba),
for arbitrary vectors by, by € R? such that |b; — by| > 1, and § € (0, p?™/4]. Clearly,
vol(X(g1, g2; ;05 b1, ba)) = vol(X(g1, ga; p; 6; 0, by — b)),
so that it suffices to study the set
(9.1) X = X(g1, g2; 5 9; 0, b)

with some b € R? 1 < |b| < p. Note that the condition |b| < p does not restrict
generality, since for |b| > 3p the set X is empty.
Let us make more precise assumptions about the functions g;, go. Suppose that

(9.2) 9;(€) = €™ + G;(€), G; € C(R), j=1,2.
Further conditions are imposed for the following range of values of &:
(9:3) €l =p, [€—=D[=p.

The functions G’s are assumed to satisfy the following conditions:
(9.4 GO <0,

(9.5 VG (&) < p7,

)
)
)
)

(9.6 V2G(8)] < o,

(9.7 |G1(§) — G2(§ — b)| < |b|p”,
and

(9.8) IVG1(§) — VG2(€ —b)| < |b|p*,

f(]):r alé.lg 1 < |b| < p, with some 7 < 2m, 0 <2m — 1, w < 2m — 2, for all £ satisf}/in o
(b 3 E [ ﬁe constants in these estimates are allowed to depend on the constant C'in (b%%

. . small:e o
%Qfﬁr%%dg'}cbnégt\ct% Junct%goﬂsdgl,gg bg as in (E.%?, and suppose thgt tézicogdztwns
(9:4), (95), (9:6), (9.7) and (9.8) are satisfied. Then for any e > 0, if 6p*~2"T* — 0,
p — 00, then

(9.9) Vol X(g1, ga; p, 65 0, b) < 6ty pl=2mmeld=),
uniformly in b,1 < |b| < p.

. volumeCB2a [volumeCB2
Let us show how to derive Theorem K.2 from Theorem b [
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Proof of Theorem %%e function g from the non-resonant set 13% ,te}ée ep inl{gaeq
space R? by the formula ( and denote the new fpncgllo%on&gko Iﬁg ‘Qéan% aFn(%IL de.d),
the functions g, and ¢g» = ¢y satisfy the conditions (B 1), (9.5), (9.6), (9.7), (U.Zﬁ) with
y=af <2m,0=(a—1)f<2m—1l,w=(a—2)3 < 2m — 2 for £ in the range (b‘gf_q
Then, clearly,

(B(g;p; ) N (B(g; p;8) + b)) C (A(gl;p; 8) N (A(gr: p:6) + b))~

. volumeCB2
It remains to use Theorem 9.T with g; = g». [
. volumeCB2 . . .
Let us concentrate on proving Theorem 9.T.” Our first observation is that it suffices to

do it for m = 1. Indeed, introducing functions

31() = (9:(6) ™. (&) = 5,(&) — I€P,
we note that under the condition (E%?)g%hieq functions éj satisfy the bounds (EJ%%)%E??)@
with the parameters
F=~v4+2-2m <2, § =max(c+2—2m,y+1—2m) <1,
W =max(w+2—2m,0+1—2m,y —2m) < 0.
One checks directly that
X(g1, g2 6;0,b) C X(d1, J2; p,6;0,b), & =2m™~"'6p> ",

2—2m+-2¢

for sufficiently large p. Moreover, the condition dp — 0 becomes 6p* — 0.

Thus, from now on until the end of this section we assume that m = 1.

condil
Due to the condition dp* — 0, we may assume that ¢ € (0,1]. Now, in view of (9.4 we

have

(9.10) ap < €] < Cip, ap < |€—Db| < Cip.

Here, the constants ¢,C,¢; < 1 < C can be chosen arbitrarily close to 1, assuming
that p is sufficiently large.

Below, we denote by ¢(&,1m) € [0, 7] the angle betwee larbiécrary non-zero vectors
€,m € R% A central role in the study of the set X (see E%_Fﬁ—lcs{ played by the angle
(e, p — b) for the points pu € X. Let us establish some general facts about this angle.
It is convenient to introduce new orthogonal coordinates in R? in the following way:

€= (&,8) with & =& -e(b) and € = &1, so that £ = {e(b) + &.
C%rra{ng 2. Let m =1, and suppose that the functions Gj,j = 1,2 satisfy conditions

( (9.7), and that 6 € (0,1], 1 < |b| < p. Then ¢(&,€ —b) > |b|p~! uniformly in

£EecX.
Proof. Denote for brevity ¢ = ¢(&,€ — ) pnd X = X(p; 9, g1, 92;0,b). For our purposes
we assume that the constants ¢1, C; in (9. satisfy the bound

(9.11) 5ci/4 > CF.
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We consider separately two cases: || < (v/3/2)c1p and |&| > (V3/2)eip.
Case 1: |¢&| < V/3/2c1p. Denote ¢ = ¢(b,&). Since [&] > c1p and |&| < V/3/2¢1p, we
have ¢ € (7/6,57/6), and hence sin ¢ > 1/2. By the sine rule

sing singzNS

bl [§—Db|’

which implies that
b

Sinqﬁzﬁsin&ZCfl .
2p

€ — bl
Thus ¢ > |b|p~!, as claimed.
Case 2: [&1] > (v/3/2)c1p. Let us show first that

(9.12) & >0
and
(9.13) & — bl <.

Assume, on the contrary, that & < 0, so that

€ —b|* — [¢]* = (& — |b])* — & = —2&[b].
Then
€ —b) —0i(6) > ~26,]b] ~ [G1(€) — Gl — )
By condition (9.7,
|G1(§) — G2(§ — b)| < |b|p”.
Together with the assumption |¢;] > (v/3/2)cip this implies that

92(§ —b) — g1(§) > plb].
news*
This contradicts the condition g2(§ —b) — ¢1(§) < 26, and hence (b [2) is satisfied.
Assume now that £ — |b| > 0, Then, similarly to the above argument,
€ — 1€ = b[* = & — (& — [b])? = 261 [b| — [b]* > & [b].

Thus, as above,

91(8) — 026 D) = & [b| —[G1(€) — Ga(€ — b)|
By condition (Co ,
|G1(€) — G2(§ —b)| < |bp”.

Together with the assumption |, > (v/3/2)cip this implies that

91(§) — g2(& —b) > plb|. N

This contradicts the condition g1(§) — g2(§ —b) < 20, and hence (137 is satisfied.
The next step is to show that |b| > p. Indeed, it follows from (9.10) that

N 3
e = ler - ¢t < (of - 24
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which implies that
Ib> = |€]* + |€ —b|* — 26 - (€ —b) > |€ + |€ — b|* — 2/¢

3 7
> 2(0? - C? + ZC%> p? = 2(1—103 — C’f)pQ > cip?.
cl:e newx* ewk*
Here we have used (bl I} as well as (b [2) and (E [3). On the other hand,
b = [£[* + 1€ — bJ* — 2cos d[¢] |€ — D]

= (€] — € = b])” +2(1 — cos 9)[¢] |€ — b]
< (Cr—a)?p +4CF sm2<§>p2.

Using this, together with the lower bound |b| > ¢;p, we arrive at

1
4C? sinQ(g) > — (O — 1) =C1(2¢, — Cy) > 50101.

This means that sin(¢/2) > 1> |b|p~!, which means that ¢ > |b|p™!, as claimed.
The proof of the Lemma is complete. OJ

The next result is proved for those pu € X which satisfy the relations

emma 9.3. Let m = 1, and let the functwns G1,Gy € C*(RY) satisfy the conditions
(9.4), (E_é&r and let § € (0 1], 1 < |b] < p. Supposi > that_there exists a point p € X

such that m — ¢(p, pu—b) < lp™' with0 <1 <1, and ( is satisfied. Then under the
condition 617 — 0, p — oo, we have

1. X C {& eR?: €] < 4C2¢71Y, and
2. vol X < 141 p~1

Proof. First note some useful inequalities for p,b. Denote ¢y := ¢(u, 0 — b), ¢y :=
¢(p,b). Singe m — ¢ < Ip~!, we have ¢y > /2, so that cos gy < 0 and cos ¢; > 0.
Recalling (9.10), we conclude that

[b|* = |u|” + [ — b|* — 2 cos go|p| [ —b| > 2¢7p?

This also gives || < |b| and | — b| < |b|. Furthermore, it follows from the sine rule

that

!bl p ap  ap

sin ¢ = sin ¢g
This leads to the bounds

Al = ulsings < eal, ¢ = C2;t, i = [l cosy > 0.
Similarly, by considering ¢, := ¢( — b, b) we can prove that |b| — p; > 0.
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Now let & be an arbitrary element of X and let us prove that ]é| < 4eol. Suppose that,
on the contrary, |€| > 4cyl, and let n = & — p. Clearly, |7)| > 3cal > 3|f1], and hence

(9.15) &~ = 1af? + 27 > fal(al — 2i) > 1

Let us now assume that n; > 0. Then, combining (E%th the identity
(9.16) & — pi =15 + 2,

we obtain

€12 — |p)? > = |nl

muli:eqg lcond3
At the same time, due to (9. 14) and (9.0),

1G1(€) — Gi(p)| < |nl?p

Wl

so that .
(€)= ou(h) = |67 = P~ Ciny = (5 = € > .

and hence gl(f) > g1(p) +CI12 > p* — 5+ CI2. Since 6172 — 0 as p — oo, it follows that
gl(f) > p® + ¢ for large p. This means that & ¢ A(gy; p;9), so that, by contradiction,
€] < deal. o
Consider now the case 17; < 0. Then instead of (b lg) we use
& = [b||* — [ — [b||* = - ﬁlﬁ + 2(p1 = [b])m
new e
Since gy — |b| < 0, combining this with (b lSi we obtain
1
Je=bf —u b > g
nul lcond3
At the same time, due to (9. 14) “and (9.9),

|G2(§ —b) — Ga(p —b)| < |nf°p

so that
92(6 =b) — go(p —b) = [§ = b[* — | — b = Cnl*p* > 17,
and hence g2(€ —b) > go(pe — b) + CI? > p?> — § + CI?. Since 51" — 0 as p — oo, it
follows that go(€ — b) > p? + § for large p. This means that & ¢ (A(ge; p;0) + b), so
that, by contradiction, ]é\ < 4cpl. This completes the proof of Part 1.
Let us fix € : |€] < ¢1p/2. For all £ = (&,€), |€] > ¢1p we have

. 1 3

& =16 — 1€ = &p* — 160" = Tl
ond3 mhuli:eq

By conditions (H i) ) and (9.14),

IVGi(8)] = [VG1(€) — VGi(p)| < |nlp” < p't

so that R R
|aflgl(§17€)| = |2§1 + 8§1G1(£17€>| > p-
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In particular, the function g( -, £) is strictly monotone, and the set

I ={& : |g1(&.8) — p*| < 6}
is a closed interval of length |I;| < dp~". By Part 1,

|Ig|dg < 51 p,

|€|<4eal

VOl(x(gla g2, p, 57 b)) S /

as claimed. O

Let us now consider the case when ¢y = ¢(u, o — b) is separated away from 7. The
following elementary observation will be useful:

Lemma 9.4. Letn;,ny, € R? be two unit vectors. Then for any other unit vector n € R?

one has

n-ni?+ n-nyl? > 1—|n; - nyl.

Proof. The result follows from the following elementary trigonometric calculation for
arbitrary ¢, ¢ € R:

cos? ) + cos* (¢ — @) = 1+ %(COS(QW + cos(2(¢) — ¢)>>

=14 cos(2¢) — ¢p)cosp > 1 — | cos ¢|.
0J

volumeCB2.2| Lemma 9.5. Let m = 1 and § € (0, %1 K blisS 3 Assume that two functions
2 od . . ondI " |cond3 condbs ]
G1,Go € C(R?) satisfy the. conditions (9.4], (9.06), (9.7)." Suppose that there exists a

point p € X such that (E.IZU frolds and 7 — o > lp~t ¢y = ¢(, u — b), with some
0<(<1. Then for any s >0

52
(9.17) vol(X () B, lp2)) < 1122 20 o
sin“ ¢
lozh:1
Proof. First of all, notice that assumptions of this Lemma together with Lemma B(T)Zu
imply

newhat | (9.18) sin gy > Ip ™t

muli:eq lcond3
Let & € B(p,lp2), so that |£| > p. Due to (9.14) and (9.6) we have

IVG1(8)] = [VG1(€) — VGi(p)] < 1p7=2,

[VG2(€ —b)| = [VGa(§ = b) = VGy(p —b)| < lp” 7,
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for all € € B(p,lp~c2), and hence, by elementary trigonometric argument, we have the
following upper bounds:

(0(&, 1) = O(1p™' =),

P& —b,u—b) =O0(lp~'7=2),

D(&,Vgi(€)) = p(&,26 + VG1(§)) = O(lp~1He=2),

(#(§ —b,Vga(§ — b)) = d(§ — b,2(§ — b) + VGa(§ — b)) = O(lp~7=2).
Since Vg1 () = 2p, Vgo(pr —b) = 2( — b) and w < 0, it follows that

¢(Vg1(u), Vgl(é)) = O(llfl—sz)7 ¢(ng(u _ b), ng(ﬁ _ b)) _ O(lpfl*EQ).
The above bounds imply that

|6(€,€ —b) — do| < 1p™' 77, V€ € B(p,1p™™).
hat
Since [ < 1, together with ( *I8J this means that

sin¢(€,& —b) > singy > Ip*

Thus, the vectors &, b span a two-dimensional space. jFrom now on we represent every

vector € € B(u,lp==2) as follows: € = (2,0, 0), where z = |£|, ©; € [0, 7] is the angle

between & and b, and © = £|€|~! € S¥2. We denote the plane spanned by & and b by

V-
A lem: lel

Let £ € Ug with some © € S*2. By Lemma b?zlm, for a?ny unit vector e € Yg we have

(9.19)

(€) - eff + Je(€ — b) - ef > 1~ [cos 6(£,€ — b)| 2 1 sin? 6(6,€ — b) > sin’ gy,

which implies that at least one of the following estimates hold:

(i) |e-e(&)] > sin gy,
or
(ii) |e-e(& —b)| > sin ¢y.
eq:angle2
Since sin gy > lp~!, in view of (bgTQ'ﬁl,g% also have that at least one of the following
estimates hold for all £ € B(u,lp™*2) N Vg:

le - e(Vgi1(£))| > singg, for case (i);
{\e -e(Vgo(€ —b))| > singy, for case (ii).
Let us fix another vector § € B(,lp™°?) N Vg and use (i) or (ii) for
e=e(n—§) =e((n—b)—({—Db)).
If the condition (i) holds, then
(9.20) 191(n) = 91(€)] > |n — €] infle - Vgi(x) > [n — &lpsin o,
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where the infimum is taken over x € B(u,lp™**) N V. Here we have used that
IVg1(x)| > p. Analogously, if the condition (ii) holds, then

(9.21) |g2(n —b) — g2(§ — b)| > [n — &[psin ¢y.

Suppose in additio th({a(tg n € XNB(pu,lp~=2). Then, if condition (i) holds, by definition
of X we get from (% 20):

1 1

n— & < |g:(n) _91(€)|psin¢0 < 6psm¢0.

d
Similarly, if condition (ii) holds, then (benl () 11)phes

L s !
psingg — psingg

7 —&| < [g2(n —b) — g2(§ — b)|

Therefore, for any & € XNB(p, lp~=2)NVg we have XNB(u, lp~2)NVg C B(&, CH(psin ggy) ™

and hence

9.22 L(XNB(p,lp~2) N V) < 62—,
(9.22) voly( (1, lp™*) N V) i’ o
where vol, denotes the area on the plane Ug.

Integrating in the coordinates (z, ©1, @), introduced previously, we can estimate:

vol(X N B(p, Ip~*2)) < 1772p~= ) sup voly(X N B(p, 1p™) N V),

e
2dimarea:e
which completes the proof upon using (b.ZZ ). [
volumeCB2

9.2. Proof of Theorem 9.1 for m = 1. Iy the previous Lemmas the volume of X
was estimated under the assumptions that (B [4) rolds. Although this con lition cannot
be expected to hold for arbitrary functions g;, g2, one can always satisfy (9. ocally,

by ”adjusting” the functions g¢;, go appropriately. Afterwards, Lsagpise the above
Lemmas. This strategy is implemented in the proof of Theorem g L.

1 CB2
Proof of Theorem 9.7 for m = 1. Pick g vector p € X, and denote vy := $(VGi(p)) and
2= 3(VGy(p —b)). In view of (9.3),

(9.23) |vi — va| < |b|p”.
Define g,(€) := g;(€ — v;) and G;(£) := §;(§) — [€]?, so that
Gi(&) = 1€ = viI> — [€P + Gj(€ —vj) = =26 - v; + v, + Gi(€ — vy),
VG;(€) = —2v; + VG,(€ —v;)).

lcond1 |cond2 lco
It is easily checked that the functions G satisfy the conditions (9.4), (9.5) and (9. b) Wlth

new parameters ¥ = max(y,1 + o), & = max(l + w,0), @ = w. We also introduce

a=b+v;—vy

)7
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1v2:
and notice that in view of (bv.ZVB),e we have |a|] < |b|. Now, writing

G1(€) —Ga(&—a) = —2€-(vi —vy) —2a- Vo + Vi [ = [va + G1 (€ = v1) = G2 (€ —vi = D),
. lcond5 lcond4 [viv2:eqg . .
and using (9.7) and (9.8), (9.23), we make the following estimate:

1G1(&) — G2(€ — a)| < [b|p™™ + |a]p” + [bp”™ + b|p” < |alp’.

condb
Thl}S, the condition (b ;i is also satisfied with b replaced by a. Moreover, by definition
of Gj,

VGi(v) =0, VGy(v—a)=0, v=p+ vy,
nuli:e
so that (b [4)1s fulfilled. By definition of g, go,
X(p; 65, 91, 9230, b) = X(p; 63 1, §o; —v1, —V2 + b),
and consequently,
vol(X(p; &; g1, g2; 0, b)) = vol(X(p; & G, Ga; 0, @) ).
Denote :k = x(p? (57 gla §2; 07 a)'

kiss:lem volumeCB2.2
Now, depending on the value of ¢(v,v — a) we use Lemma b.B or Lemma b.B with
[=pc,e>0and e =ey =c. Note that Lemma %.3 can be used since 0172 = §p* — 0

as p — 00.

kiss:1l
If T — ¢(v,v —a) < pc' then by Lemma b‘l??u

(9.24) vol X < dp~t=sld=b),

Assume now that for all points g € X we have the bound © — ¢(v,v —a) > p=L. It
follows again from definition of g; that

vol(X(p; 6; g1, 925 0,b) N Bp, p~*)) = vol (X(p; ; 1, §2; 0,2) N B(v, p~*)).
Since 7 — ¢p(v,v —a) > p~=~1, according to Lemma V?l:umeCBQ.Q
VOl(X 1 Bls, ) = vol (X1 Blw, 7)) < o770
As X C B(0,3p), one needs < p»1*2%) balls of radius p=2¢ to cover X. Thus,
vol X « §2p2e(d=3) pd(1+2¢) — 52 jd+6e

kiss: issl:
Adding this bound with (b.IZSZIS)eproduces (bno§ o O

1 CB2
As explained earlier, Theorem bv?l Torm = 1 implies itself for all m > 0.

10. PROOF OF THE BETHE-SOMMERFELD CONJECTURE

ain:thm
In this section, we prove the Main Theor g}ETWE do it in a gew steps. First we
prove it for the model operator, A defined ?%J&)Wt% conditions (6.3) satisfied. After that
we invoke Theorem EI.B, which sfates that the original operator H can be reduced to the
model operator up to controllable error terms. At the second step we show that these
errors do not destroy the spectral band overlap, obtained for the model operator.
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ain:thm 1:
10.1. Theorem 2.1 for the model operator (%oi e) Ot proof of the spectral band
overlap for the operator A relies on the following el mentary | Ir%termedlate Value Theorem
type result for the function g(&) defined in Section 7AS bofore we assume that A — p*m

Lemma 10.1. Let € = £(t) C B,t € [t1,ts],t1 < ta, be a continuous path. Suppose
that g(&(t1)) < A —96, g(&(t2)) > A+ with some 6 € (0,\/4), and for each t € [ty,1s]
the number g(&(t)) is a simple eigenvalue of A(k),k = {&(t)}. Then there ezists a
to € (t1,t2) such that X = g(&(to)), so that A € o(A). Moreover, ((\; A) > 0.

inb:e
Proof. Recall that on the set B the function g(£) is defined by (ﬁﬁ that g(&(t)) =
|E(E)|*™ + b°(&(t)). Since g(&(t)) is a simple eigenvalue of A(k),{&(t)} = k for each
t € [t1,t2], we have g(&(t)) = A\;(A(k)) with j independent of the choice of ¢. Since g is
continuous on B, the function ¢g(&(¢)) is a continuous function of t € [t1, t5], and hence the

intermediate Value theorem implies that there is a o € ({1, L), such that A\;(A({&(t0)})) =
A. The bound ¢((A; A) > § follows from the definition (2.13) of ((A; A). O

Y

1o mOurmne)e(f step is to prove that there is a path with the properties required in Lemma
[0. fh fact we shall proye, that the required properties will hold for an interval
[(Q;p, J) C (0,00) (see (%ﬁ;; with some 2 € T(p).

Lemma 10.2. There exists a constant Z > 1 with the following property. Suppose that
for some Q € T(p) and some t € 1(Q;p,0),6 € (0,p* /4], the number g(n), n =t is
a multiple eigenvalue of A(k),k = {n}. Then for any T € 1(€; p,d) there exists a vector
n €M\ {0} such that 72 +n € A(p, Z9).

Proof. Since the number ¢g(n),n = tQ is a multiple eigenvalue, by definition of the

function gé ), there is a vector p € [ §uch that g(n) = g(n + p). In view of
ed:

(% 35, n+ p| = p. Thus by Lemma ?Br for any 7 € I(€2; p,0) there exist two vectors

m;, m, € ['", m; # mj, such that, with £ = 7,

{\g(n) —g(&+my)| < p*Hn — € <6,

l9(n +Pp) — g(§ + my)| < p"7Hn — £ < 0.
iomdl:e
Here we have used the bound |t — 7| < §p' 2™, which follows from %gi AS m; # mg,
one of these Elel’l(;cthoerstIllSe not zero. Denote this vector by n. Since g(n) =g(n+p), i

follows from (ITO. a

(10.1)

9(€ +n) — g(n)] <9,
so that & +n € A(p, Z9) with some constant Z independent of £ and p, as required. O

The next Lemma is the cornerstone of our argument: it shows that at least for one
Q € T(p) the interval I1(€2;p,0) consists entirely of the points ¢ such that g(tQ2) is a
simple eigenvalue.

Lemma 10.3. There exists a vector & € T(p) and a number c3 > 0 such that for
§ = cgpPm—4—d=12d-1"" gnq eqch t 6 I(Q;p,0) the number g(€), € = tQ is a simple
eigenvalue of A({€}). Moreover, {(p*™; A) > 4.
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Proof. Suppose the contrary, i.e. if p is sufficiently large, then for any Q € T'(p) there is
%tll% (p (5?1 Suc lm})]iat3 g(t?) is a multiple eigenvalue of A(¢€2). Then due to formula
(R.6), Femina 0.2 implies that

(10.2) B(po)c |J (Alp,d1)+n)
nert\{0}
with 0, := Z§. Since B(p,d) C B(p,d;), we can re-write (W&s
(103
Bp.0) < |J ((Alp.01) +m) () Blp.on))

nert\{o}
- U (@@ +n)NBen)UJ U ((D00)+n)(B.60)).
nert\{o} nerf\{o}

Let us estimate the volumes of sets on both sides of this inclusion. For a fixed ¢ > 0,
whosg value is;chosen a few lines down, assume that dp?~2m+2 0, p — 0o, we can
L}SSE]_](_ESH U)t aﬂ% AR} 1for the volume of the right hand side. For the left hand 31de we use
(B 2), so that (TU.3) results in the estimate

d—2m < 52p4—4m+2d+65 + 5p1—2m+d—a(d—1) +45 d—1—2m+ad7

op
which simplifies to

p

1< 5p4—2m+d+65 +p1—6(d—1) —I—p_Had.
Choose € = 2(d — 1)7! and § = c3p?™ 47976 with a suitably small c3. Then for large p
the right hand side is less than the left hand side, which produces a contradiction, thus
proving the Lemma. O

. L ain:thm
10.2. Proof of the Main Theorem. We assume that the conditions of Theorem E [ are

r%gi&ﬁﬁ%h The proof uses the reduction of the operator H to A;, established in Theorem
EI 3. The first step i tg show that the spectrum of A; is well approximated by that of

the model operator B replaced with X, i.e.

A= Hy+ X°+ X™.
. resonant : subsect
Let numbers o; < 1,7 =1,2,...,d be as defined in Subsectlon b 3.

Lemma (1aq.:4e. Suppose that the conditions of Theorem %.7 are gaéz&sﬁl%.tildgti Ay be the

operator and let v = p* with a number » > 0, satisfying (b. e 1nequality
(10.4) d*» < (2m — af)ay.
reduction:thm
Then for any L > 0 there exists an M (i.e. the number of steps in Theorem b‘)’j such
that
(10.5) N(p—p" Ak)) < N(p, A1 (k) < N(u+p~", A(k))

Jor all p € ((1 = ca)®™p®™, (1 + c4)®™p*™) with any ¢y < 1/32.
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reduction:t . . sigmaeps:e
Proof. By Theorem h.ZS, Ry € ffgflﬂé uniformly in b : [b](®) < 1 (see (& or
definition of €j41). The condition ()2.I5i is equivalent to o0 < 1, so that ¢; — —oo
as j — oo. Thus for sufficiently large M = M (L) we have |Ry1]] < p7%/2. As a

consequence,
N(p—p"/2,A1(k)) < N(u, Ai(k) < N(p+p7"/2, Ai(K)),

(105) A= s xomcees

1:
for all u € R. Due to (%orﬁ oi t’oﬁng o;e)erator A; can be represented in the block-matrix form:
@ PED)APED) + P PE®)XEHETP(Z(2m)).

BEW(r B,90€W(r),

Since the number of distinct subspaces 20 € W(r) is bounded above by Cr* with some
universal constant C' > 0, the second term satisfies the two-sided estimate

—Cor® @ P(E(V))| X|SELELTP(Z()) < EB P(Z(T)) X SELELTP(= (7))

BVeW(r) 2,20 W(r

<o @ PE(D)) [ X[F5E59D(()).
BeW(r)

Here we have denoted |X|56%847 = | X8€| 4+ | X©¢| + | X5 see %jr,_sﬁlhapter 8, p. 183
for definition of the modulus and polar decomposition of a closed operator. Note that in
the above estimate the left- and rightmost terms contain only single orthogonal sums in
contrast to the double sum in the middle term. This bound follows from the following
inequality for the quadratic form of an arbitrary self-adjoint bounded operator K and
any two orthogonal projections Py, P:

2|(K Piu, Pyu)| < (Py|K|Piu,u) + (Po| K| Pou, u).
This follows from the polar representation of K upon applying the elementary inequality
2ab < a® + b? for a,b > 0.
Now it follows that ) ) )
A< A <A,
with
@ P(E(V)) (Ag + OrF| X SELELT) P(Z(T)).
VeW(r

Since Ai~are orthogonal sums, the problem is reduced to estimating the counting func-
tions of A4 (k) on each invariant subspace $(k; Z(%)). From now on we assume that U

is fixed and omit it from the notation.
. d _ o [Lem:properties3d
It € V(r,d),ie. =R then = = Z(T) C B(0,2p"), see Lemma b.12. Clearly,

IHoP ()| <p2m0‘d Also by (EfzzH

221 + 1256 + [259]) 4 |57 < o],
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formbound:lem
and hence, by Lemma &3.2,

[XPE) |+ [P(E)|X[FEETPE) | < 1 oo

k. ~
In view of (va( X ),e the right hand side does not exceed p*"*¢. Consequently, A+ P(Z)|| <
p*™¢, which implies that N(u, As(k);Z) and N(u, Ag(k); =) are independent of p,k
for all 1> (p/2)7™, and N, Ax(K);Z) = N, Aw(k);Z) it 4 > (/2™

Now, let us fix U € V(r,n),n < d — 1, and prove the bounds
(10.7) N(p—p~"/2, Ag(k);Z) < N(p, Ar(k);E) < N(u+p /2, An(k); 2),

for sufficiently large p. Split = into three disjoint sets:

E :e< U e() U e>,

€y ={€ € Z: 7p/8 < |€.| < 17p/16},
Cc={£ €= : [€xi| < Tp/8), € ={EE€Z:17p/16 < [€xu|}.

. flatv:e
Note that by de%llg:l;gps%gggtoperator Ag (see (%415 Fall three subspaces H Q‘E&)ﬂ g;(gg&)c,iﬂe{sg@)

(see Subsection 2.3) are mvariant for Ag. Since |€g| < 2p%-! (see Lemma b.12], we have

=N B(0,7p/8) C C. C B(0,29p/32),
=N B(17p/16) C (C. U Cy) C B(0,9p/8).

lsmallorthog:lem
Therefore, by Lemma 3.5,
P(E)X5|P(E) = P(C)|X*|P(CL), P(E)XEIP(E) = P(C)| X 4|P(Cs).
Thus ALP(Z) can be rewritten as

ALP(E) = Fe + Cr" (PE)|X[*P(E) — P(C.)| X [7P(C)),

with
Fi = P(€.)(Ag + Or¥ | X)) P(CL) @ P(Co) AP (Co)
© P(C.) (Ap + Cr¥[X|*7EE) P(e,).
By (E?Za%‘):,iq
[ P(C U o) X + r [ X HTP(Co U Cy) || < ! pfmax(en0),

for any p > d and [ > p uniformly in b satisfying |b]® < 1. As r = p*, » > 0, by
choosing a sufficiently large [, we can guarantee that the right hand side is bounded by
p~ L /2. This leads to the bounds

(108)  Nu—p /2 Pa(l);=) < N, (k)i 2) < Nt p/2, Fa (k) D),
local:e .
for all 4 € R. Consequently, (I10.7) will be proved if we show that
15 33

2m 2m
(10.9) Niu Fg) = N3, (TF) <ns (Gr)
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To this end note first that the definition of C. and €. implies

(10.10) HyP(CL) < (29p/32)*™P(CL), HoP(Cs) > (17p/16)*P(Cs).

|smallorthog:lem

Also, by Lemma 3.5,

X + 1XG ] + Cr | XS] < pPmex(@0),

k:
Under the condition (VI 0.4) the right hﬁ&%‘t side_of this estimate is bounded by o(p*™),

p — oo uniformly in b. Together with ( , this entails that
o 15 2m
(011) N A £ CrPPE XD €2) = N Ami), o> (T2)
i i |subord:eq |formboundl:eq
Furthermore, in view of (8:22) and (B.2),
o

P(C)(1X°| + | XG] + Cre | X|FFEP(Cs) < (Hy + 1)P(€s), 7 = o .
k: ial:
Using again (vl 0.4} and remembering (ia(ll.‘tl (l)i, we conclude that the right hand side is
estimated above by o(1)HyP(C), p — oo, uniformly in b. Together with (%U.IU; this
implies that
33p 2m

c>:eq| (10.12) N(p, Ay + CrdQ?(e>)|X|L?’LSiP(G>)§ C.)=0, p< (3_2

<: > locag3: locad:
Putting toget gléad"lctg._el_?) and (c T )05, arrive at ( i:c _.ee n combination with ( 08)
this leads to (II0.7). Together with (0. ey yield (T0.5). O

. reduction:thm
Proof of the Main Theorem. By Theorem m to prpye g?nﬁmtlgipm, Ay > cp®
with some S for sufficiently large p. It follows from Le _&%W(pm; A) > cp®
with S = 2m —4 —d —12(d — 1)~'. Using the bounds (I0.9] with L > —S, we get the
required estimate tﬁrme’ Ay) > p° from the definition (b._ﬂf)._”%his completes the proof
of Theorem 2.T. O
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