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Abstract. We consider a two-dimensional periodic Schrödinger operator H = −∆+W
with Γ being the lattice of periods. We investigate the structure of the edges of open gaps
in the spectrum of H. We show that under arbitrary small perturbation V periodic with
respect to NΓ where N = N(W ) is some integer, all edges of the gaps in the spectrum
of H + V which are perturbation of the gaps of H become non-degenerate, i.e. are
attained at finitely many points by one band function only and have non-degenerate
quadratic minimum/maximum. We also discuss this problem in the discrete setting
and show that changing the lattice of periods may indeed be unavoidable to achieve the
non-degeneracy.

1. Introduction

Let

(1.1) H = −∆ +W

be a Schrödinger operator in Rd, d ≥ 2, with a smooth periodic potential W = W (x).
Let Γ be its lattice of periods and Γ† be the dual lattice. We put T := Rd/Γ and
T† := Rd/Γ†. It is known [10] that the spectrum of H is

(1.2) σ(H) = [λ0,+∞) \ (tnm=1(µm,−, µm,+)),

where the non-intersecting intervals (µm,−, µm,+) are called the gaps. There are finitely
many of them, and for small V there are no gaps at all, [12, 8]. We are interested in the
behaviour of the spectrum of H near the spectral edges µm,± = µm,±(H). More precisely,
consider the Floquet-Bloch decomposition of H into the direct integral:

(1.3) H =

∫ ⊕
T†
H(k)dk

(see Section 2 for more details) and denote by {λj(k)}∞j=0 the collection of eigenvalues of
H(k) (in non-decreasing order, taking multiplicities into account). Then each function
λj (called the Bloch function) is smooth, at least outside the values of k where the values
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of two such functions coincide. Then

(1.4) σ(H) = ∪k ∪j λj(k).

Therefore, for any spectral edge µ+ = µm,+ for some m there is a point k0 and an index
j = j(µ+) such that λj(k0) = µ+, and k0 is a point of local (even global) minimum of
λj (similarly, for any edge µ− there is a Bloch function λj, j = j(µ−), for which µ− is a
maximal value). We are interested in the behaviour of the function λj in a neighbourhood
of k0. One may expect that for each spectral edge µ± the following properties hold, at
least generically:

A. No other Bloch function takes value µ±, meaning that if for some l and k ∈ T† we
have λl(k) = µ±, then l = j.

B. The set of points

(1.5) S = S(µ±) := {k0 ∈ T†, λj(k0) = µ±}

is finite.
C. The quadratic form of λj around each critical point k0 ∈ S is non-degenerate,

meaning that

(1.6) λj(k) = µ± ± [A(k− k0)](k− k0) + o(|k− k0|2)

with positive definite matrix A.
If these properties hold, we say that the spectral edge µ± is non-degenerate. In

the physical papers it is often assumed that generic Schrödinger operators have non-
degenerate spectral edges. For example, in solid state physics, the tensor of effective
masses is essentially defined as the inverse of the matrix A from (1.6) (see e.g. [1]).
This definition makes sense only if all three conditions are satisfied. In one-dimensional
situation the spectral edges are always non-degenerate, see e.g. [10]. The bottom of
the spectrum is known to be non-degenerate in all dimensions, see [4] (but the same
cannot be said about a magnetic Schrödinger operator, see [11], where an example of a
magnetic operator the bottom of whose spectrum does not satisfy Condition C is given).
It is commonly believed that in multidimensional case (d ≥ 2) the spectral gap edges
are non-degenerate for generic potentials, see, for example, [7] and [6], where additional
references are given.

Property A has been established to hold generically in [5]. In a recent paper [2]
Property B has been proved for all (not just generic) operators if d = 2. It is not known
whether Property B holds even generically in higher dimensions. The remarkable simple
example discovered recently by N.Filonov [2] shows that for discrete periodic Schrödinger
operators Property B does not hold, not even generically: there is a discrete periodic
Schrödinger operator Ĥ for which the set S corresponding to a spectral edge consists of
two intervals, and the same holds for all operators close to Ĥ. It turns out, however, that
this feature of Ĥ is generically destroyed if we perturb Ĥ by a potential with a smaller
lattice Γ̃ ⊂ Γ, where Γ is the initial lattice of periods of Ĥ. We discuss this and related
results in Section 4.
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The main result of our paper concerns Property C in the two-dimensional case. We
will prove that all spectral edges of H can be made non-degenerate by perturbing it with
arbitrarily small periodic potential V , with a smaller lattice of periods Γ̃ ⊂ Γ. Namely,
we will prove the following result:

Theorem 1.1. Let W = W (x), x ∈ R2, be a smooth function periodic with respect to
some lattice Γ. Then for every ε > 0 there exist N = N(W, ε) ∈ N and a potential V (W, ε)
periodic with respect to Γ̃ := NΓ and satisfying ‖V ‖∞ < ε such that the following property
holds. Suppose, (µm,−(H1), µm,+(H1)) is a spectral gap of the operator H1 := −∆+W+V
with µm,+(H1)− µm,−(H1) > ε. Then the edges µm,± are non-degenerate.

Remark 1.2. 1. As previous paragraph (and Section 4) show, decreasing the lattice
of periods to achieve non-degeneracy may be necessary in the discrete case; we do not
know whether it is possible to make spectral edges non-degenerate by perturbing H
with a small potential with the same lattice of periods Γ, nor do we know whether this
result holds in higher dimension (a substantial part of our proof is based on the fact that
Property B holds for all, not just generic operators, and there are no high-dimensional
analogues of [2] known so far).

2. There are two problems we have to deal with when increasing the lattice of periods.
The first one is that the perturbed operator H1 can have more spectral gaps than H. If
the lattice of periods of V is Γ, the number of new gaps has an upper bound depending
only on H and ||V ||∞. If the lattice of periods of V is NΓ, then the number of new gaps
may also depend on N , and our construction of the perturbation W has no control on
the size of N . Therefore, what can happen in principle is the following. We introduce
a perturbation V1 periodic with respect to N1Γ so that H + V1 has edges of ‘old’ gaps
non-degenerate, but some ‘new’ gaps (of very small length) may appear. Then we may
deal with these gaps by adding another, even smaller perturbation V2 with lattice of
periods N2Γ, but a further set of ‘new new’ gaps may be opened, etc. We do not have
control over whether this process can last indefinitely long. Therefore, in our theorem
we can guarantee only that all the edges of ‘old’ gaps (i.e. gaps the length of which is
not small) become non-degenerate.

3. Another problem of dealing with the perturbations with increasing lattice of periods
is the stability issue. It follows from the standard perturbation theory that the non-
degeneracy of the spectral edges is stable under further perturbations with the same
lattice of periods. More precisely, let ε, N, V be as in Theorem 1.1 then the conclusion
of the theorem holds for operator H2 = −∆ +W + V +Q with any smooth potential Q
periodic with respect to NΓ, provided ‖Q‖∞ ≤ δ with δ = δ(W,V,N, ε) being sufficiently
small. We, however, cannot guarantee the same result if the lattice of periods of Q can
increase further and become NMΓ with M ∈ N (we can probably achieve this stability
only at the edges of the ‘old’ gaps by introducing an extremely weird-looking norm in
the class of all periodic operators with lattices being a sub-lattice of Γ, but the proof of
corresponding statement is rather long and unhelpful, so we do not include it here).
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4. As can be seen from the construction, the potential V is a finite trigonometric
polynomial. As a result, we can choose our perturbation satisfying ‖V ‖s < ε, where s is
a fixed real number and || · ||s is a Sobolev norm.

5. The intuition behind the behaviour of the Bloch functions by the perturbations
with increasing lattices of periods comes from studying the almost-periodic Schrödinger
operators.

6. The same conclusions will hold if we consider a more general class of unperturbed
operators, say the periodic magnetic Schrödinger operators (or even periodic second
order coefficients); effectively, the only property we need from a class of operators we
consider is the finiteness of the set S, see [2].

The rest of the paper is constructed in the following way. In section 2, we introduce the
necessary notation and discuss how the decomposition (1.3) changes when we increase
the lattice of periods Γ. In Section 3 we prove Theorem 1.1 and also give a simple proof
of Property A (proved originally in [5]). Finally, in Section 4, we discuss the discrete
situation when Property B is violated.

Acknowledgments. We are grateful to Nikolay Filonov, Ilya Kachkovskiy and Peter
Kuchment for useful discussions and to the referee for several important suggestions. We
also would like to thank the Isaac Newton Institute for Mathematical Sciences for its
hospitality during the programme ‘Periodic and Ergodic Spectral Problems’ supported
by EPSRC grant EP/K032208/1. The visit of LP to the Newton Institute was partially
supported by the Simons Foundation. The research of LP was partially supported by
the EPSRC grant EP/J016829/1; RS was partially supported by the NSF grant CCF-
1527822.

2. General facts

Suppose,

(2.1) H = −∆ +W

is a Schrödinger operator with periodic potential W acting in Rd. For simplicity we
assume W to be smooth, but in fact we do not require this assumption for our results.
Let Γ be its lattice of periods and Γ† be the dual lattice. We put T := Rd/Γ and
T† := Rd/Γ†. For each quasi-momentum k ∈ T† we denote by H(k) the fibre operator
of H corresponding to k so that

(2.2) H =

∫ ⊕
T†
H(k)dk.

The domain of H(k) consists of functions from H2(T) satisfying k-quasi-periodic
boundary conditions; let us denote this space by H2(T; k). The action of H(k) (consid-
ered as an unbounded operator acting in L2(T)) is given by the formula
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(2.3) H(k)f = −∆f +Wf, f ∈ H2(T; k).

The other, more convenient way of defining these operators is the following. First, we
put

(2.4) eξ(x) := eiξx, ξ,x ∈ Rd.

We then denote by Hs(Rd; Γ; k) the space of all infinite Fourier series of the form

(2.5) f =
∑
θ∈Γ†

aθeθ+k,

where aθ = 〈f, eθ+k〉L2(T)|T|−1 ∈ C satisfy

(2.6)
∑
θ∈Γ†

|aθ|2(|θ + k|2 + 1)s < +∞.

Finally, we say that Hs(T; k) is the restriction of Hs(Rd; Γ; k) to the torus T, and the
LHS of (2.6) multiplied by |T| defines the square of the norm of f in Hs(T; k). It will
be convenient to define L2(Rd; Γ; k) as the collection of functions of the form (2.5) with

(2.7)
∑
θ∈Γ†

|aθ|2 < +∞

and L2(T; k) as the restriction of L2(Rd; Γ; k) to the torus T. Note that when we change
k, the space L2(Rd; Γ; k) does not change as the collection of elements (but the form in
which we write these elements does change), whereas H2(Rd; Γ; k) changes with k.

Given another function

(2.8) g =
∑
θ∈Γ†

gθeθ+k

from L2(T; k), we obviously have

(2.9) 〈f, g〉L2(T) = |T|
∑
θ∈Γ†

aθbθ.

Suppose, the Fourier decomposition of W has the following form:

(2.10) W =
∑
θ∈Γ†

wθeθ.

Then the action of H(k) on the function f is given by:
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(2.11) H(k)f =
∑
θ∈Γ†

aθ|θ + k|2 +
∑
θ1∈Γ†

aθ1wθ−θ1

 eθ+k.

We denote by {λj(k)} (j = 0, 1, . . . ) the collection of eigenvalues of H(k) (counted
with multiplicities; it will be convenient from now on to stop assuming that λj(k) are
listed in the increasing order) and by ψj = ψj(k) = ψj(k; x) corresponding orthonormal
eigenfunctions. We will also assume (as we can without loss of generality) that λj are
piecewise continuous. We also denote

(2.12) 〈ψj(k), eθ+k〉L2(T)/|T| =: ψ̂j(θ; k),

so that

(2.13) ψj(k) =
∑
θ∈Γ†

ψ̂j(θ; k)eθ+k

and

(2.14) eθ+k = |T|
∑
j

ψ̂j(θ; k)ψj(k).

These formulas also show that

(2.15) |T|
∑
θ∈Γ†

ψ̂j(θ; k)ψ̂m(θ; k) = δjm

and

(2.16) |T|
∑
j

ψ̂j(θ1; k)ψ̂j(θ2; k) = δθ1θ2 .

Now we discuss how this decomposition changes when we increase the lattice (in the
sense that we increase the size of a cell of the lattice). Let N be a natural number and

put Γ̃ := NΓ. Then (Γ̃)† = Γ†/N . We also put T̃ := Rd/Γ̃ and T̃† := Rd/Γ̃†. The
quotient group (Γ̃)†/Γ† consists of M := Nd elements; let us denote by {p1 = 0, . . . ,pM}
representatives of the elements of this group in Γ̃†. Then each element of Γ̃† has a unique
representation in the form pl + θ, θ ∈ Γ†. Moreover, every element k ∈ T† can be

uniquely written as pl + κ, l = 1, . . .M and κ ∈ T̃†. In this case we say that κ = κ(k)

and l = L(k). This defines a mapping L : T† → {1, . . . ,M} and a mapping κ : T† → T̃†;
each point κ ∈ T̃† will have exactly M pre-images under mapping κ. Sometimes we will
call coordinate k the old quasimomentum and κ the new quasimomentum.

Suppose, κ ∈ T̃†. Then the space L2(T̃;κ) consists of all the expansions of the form

(2.17) f =
∑
θ̃∈Γ̃†

aθ̃eθ̃+κ =
M∑
l=1

∑
θ∈Γ†

apl+θepl+θ+κ.
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Obviously, we can treat the RHS of (2.17) as a sum of functions from L2(Rd; Γ; kl), where
kl runs over all the pre-images of κ under the mapping κ.

Suppose, f ∈ L2(T; k). Then expansion (2.5) can be looked upon as the element from

the space L2(T̃;κ) with κ = κ(k). This defines a mapping F : L2(T; k) → L2(T̃;κ(k));

obviously, this mapping maps also Hs(T; k) to Hs(T̃;κ(k)).

Lemma 2.1. Suppose, κ is fixed and k1 and k2 are two different pre-images of κ under
the mapping κ. Suppose, fj ∈ L2(T; kj), j = 1, 2. Then F (f1) is orthogonal to F (f2)

(obviously, we talk about L2(T̃)-inner product here).

Proof. The proof is straightforward. We have:

(2.18) fj =
∑
θ∈Γ†

ajθeθ+kj
,

so

〈F (f1), F (f2)〉L2(T̃) =

∫
T̃

∑
θ1∈Γ†

a1
θ1

eθ1+k1(x)
∑
θ2∈Γ†

a2
θ2

e−θ2−k2(x)dx

=
∑
θ1∈Γ†

∑
θ2∈Γ†

a1
θ1
a2
θ2

∫
T̃

eθ1−θ2+(k1−k2)(x)dx = 0,

(2.19)

since θ1 − θ2 + (k1 − k2) 6= 0(mod Γ̃†). �

Corollary 2.2. Suppose, f ∈ L2(T; k) and l = 2, . . . ,M . Then epl
F (f) is orthogonal

to F (f) in L2(T̃).

These considerations have the following implications to the spectral decomposition of

operator H considered as periodic operator with lattice of periods Γ̃. Suppose, κ ∈ T̃†.
Then functions {F (ψj(κ+ pl; ·))/

√
M}, j = 0, 1, . . . ; l = 1, . . . ,M form an orthonormal

basis in L2(T̃;κ). The matrix of H(κ) (considered as an operator acting in L2(T̃;κ(k)) )
in this basis is diagonal with {λj(κ + pl)} standing on the diagonal. We denote

(2.20) φj,l(κ) := F (ψj(κ + pl; ·))/
√
M.

3. Description of the approach: main tools

Suppose that d = 2 and our operator H has a gap (µ−, µ+) in its spectrum.
Definition. We say that µ+ (resp. µ−) is a non-degenerate end of the spectral

gap, if there are finitely many points k0,k1, . . . ,kn ∈ T such that λj(kl) = µ+ (resp.
λj(kl) = µ−) for some j (not depending on l), for any m 6= j the equation λm(k) = µ+

(resp. λm(k) = µ−) has no solutions k ∈ T, and in the neighbourhood of each kl the
function λj behaves quadratically:

(3.1) λj(k) = µ± ± [A(k− kl)](k− kl) + o(|k− kl|2)

as k→ kl for some positive definite matrix A = Al.
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We want to prove that, generically, each end of the gap is non-degenerate. For the
sake of definiteness, we will be working with the top end of the gap, but the proof will
easily extend to the bottom end of the gap and similar results will hold for µ−. Denote

(3.2) S = S(H) := {k : ∃j, λj(k) = µ+}.

A recent result of Filonov and Kachkovskiy [2] shows that the set S is finite.
Suppose, ν is arbitrary non-zero vector from Rd. We denote δ := |ν|, n := νδ−1, and

v := eν + e−ν . The perturbations we consider will be of type Hε := H + εV, where
V is the operator of multiplication by v and ε > 0 a small parameter. We will always
assume that that δ is smaller than the distances between different points in S and that
the perturbed operator Hε is still periodic with, possibly, a new lattice of periods Γ̃ ⊂ Γ,
i.e. that ν is a rational multiple of a vector from Γ†: ν ∈ QΓ†. After adding εV to our
initial operator H, the new operator becomes periodic with respect to a new lattice of

periods Γ̃; we define this lattice as the lattice dual to Γ̃† – the lattice generated by Γ† and

ν. Note that the new lattice Γ̃† contains more elements than the old one and therefore
it may happen that some points from S (different modulo old lattice Γ†) become ‘glued
together’ after introducing the shift by ν, i.e. there may be two points k1,k2 ∈ S so
that k1 + nν = k2 ( mod Γ†) for some integer n. We impose an additional condition
that such ‘gluing’ does not occur. Later, we will explain why such a choice of ν is always
possible (see Subsection 3.4).

For sufficiently small ε the operator Hε will have a gap (µε−, µε+), where |µε±−µ±| =
o(1) as ε → 0. The set Sε := S(Hε) of quasimomenta where one of eigenvalues of Hε

equals µε+ lies in a small neighbourhood of S. From now on we will always assume for
simplicity that µ+ = 0, but we will nevertheless often write µ+ to emphasise that we are
at the upper edge of the spectral gap.

Remark 3.1. In this section, as well as in the rest of the paper, we will work only with
the dual space – the space where the quasimomentum k is located. We, thus, no longer
need letters x or y to denote the original spacial variables. Therefore, we sometimes will
be using this fact and introduce new coordinates denoted by x or y, etc. in the dual
space (the space where the quasimomenta live).

We will also need the following simple result which easily follows from the analytical
perturbation theory, see e.g. [3]. Suppose, λn(k0) is a simple eigenvalue of H(k0). Then
for k near k0 there exists a unique eigenvalue of H(k) close to λn(k0); denote it λn(k).
We also can find a neighbourhood of k0 (denoted by O(k0)) such that λn(k) is a simple
eigenvalue of H(k) whenever k is inside the closure of O(k0). Obviously, the same will
hold for H ′(k) := H(k) + V , where ||V || – the L∞-norm of V is sufficiently small; we
denote the corresponding eigenvalue by λ′n(k). In these notations we have:

Lemma 3.2. Suppose that x, y are some orthogonal coordinates around k0, l,m ≥ 0 are
integers and ε > 0 is given. Then there exist a real number η = η(ε,O(k0)) > 0 such
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that if ||V || < η and k ∈ O(k0), then we have

(3.3) |∂
l+m(λ′n − λn)

∂lx∂my
(k)| < ε.

Proof. Indeed, (3.3) with l = m = 0 is an immediate consequence of analytic perturbation
theory and holds in a slightly bigger neighbourhood than O(k0). This together with
analyticity of (λ′n − λn) implies (3.3) for arbitrary l,m. �

This lemma shows that in order to prove our main result, it is enough to prove the
following statement:

Theorem 3.3. Suppose, H is a periodic operator with [µ−, µ+] being its spectral gap.
Suppose, ε ∈ (0, (µ+ − µ−)/2) and s are two fixed real numbers. Then there exists a
periodic potential V with Hs-norm smaller than ε such that H + V is periodic with a
spectral gap [µ′−, µ

′
+] with |µ′±− µ±| < ε and both spectral ends µ′± being non-degenerate.

Indeed, if the spectrum of H has several gaps in it, we first make the edges of the first
gap non-degenerate with the help of sufficiently small perturbation V1. Then, we deal
with the edges of the second gap by introducing a (even smaller) second perturbation
V2. Note that Lemma 3.2 implies that if V2 is small enough, then the edges of the first
gap remain non-degenerate. Of course, while we are doing this, we may open ‘new’ gaps,
but their length will be smaller than the sum of the norms of our perturbations Vj. It
remains to notice that the number of gaps of H is finite, see [9] or [8].

3.1. Description of the approach: The main idea. Let us for now assume for
simplicity that there is a unique point k0 such that

(3.4) λj(k0) = µ+

for some j, but (3.1) does not hold. Results of [5] show that (3.4) generically can hold
only for one value of j (in the next subsection we will give a short proof of this); we
will assume WLOG that j = 0, so that λ0(k0) = µ+ (remember that the labelling of
eigenvalues is not necessarily done in increasing order, but λ0(k) continuously depends
on k in some neighbourhood of k0). We will never use this specific labelling and have
chosen it only for convenience. We also assume that there is a vector n of unit length
such that ∂2λ0

∂n2 (k0) = 0 (otherwise there is nothing left to do). This means that

(3.5) λ0(k0 + δn)− λ0(k0) = C0δ
α +O(δα+1)

as δ → 0 with even α ≥ 4 and C0 > 0. We denote n⊥ to be any of the two unit vectors

orthogonal to n. Let ν be a vector that belongs to Γ̃† with some choice of sufficiently
large N , but does not belong to Γ†/2 (so that κ0 + ν and κ0 − ν are different points
modulo Γ†). We denote l0 := L(k0) so that k0 = κ0 + pl0 . Denote v := eν + e−ν
and Hε := H + εV, where V is the operator of multiplication by v. Whenever κ lies
outside of a small neighbourhood of κ0 := κ(k0), all eigenvalues of Hε(κ) are located
far away from µ+, therefore we are interested only in quasimomenta κ located in an
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o(1)-neighbourhood of κ0 as ε→ 0. Therefore, we have to study the perturbation of the
eigenvalues of the fibre operators Hε(κ) when κ is close to κ0. We will write down the
action of this operator in the orthonormal basis

(3.6) {φj,l(κ)}, j = 0, 1, . . . ; l = 1, . . . ,M.

The matrix of H in this basis is diagonal, as we have established above. Let us compute
the matrix of V (κ) (the fibre operator corresponding to V at the point κ). We denote by

l+0 the unique index satisfying pl+0 = pl0 +ν(mod Γ̃†); similarly, we define l−0 by requiring

pl−0 = pl0 − ν(mod Γ̃†). We will assume, as we can without loss of generality, that in

fact we have

(3.7) pl±0 = pl0 ± ν

(in order to achieve this we need to choose proper representatives pl from corresponding
classes of equivalence). Then we obviously have

(3.8) V : ek 7→ ek+ν + ek−ν .

Using (2.13) and (2.14), this implies

V : ψj(k) 7→|T|
∑
θ∈Γ†

ψ̂j(θ; k)
∑
m

ψ̂m(θ; k + ν)ψm(k + ν)

+|T|
∑
θ∈Γ†

ψ̂j(θ; k)
∑
m

ψ̂m(θ; k− ν)ψm(k− ν).
(3.9)

This means that if we denote by

(3.10) Vj1,l1;j2,l2(κ) := 〈V φj1,l1(κ), φj2,l2(κ)〉L2(T̃)

the matrix element of operator V in the basis (3.6) then we have:

(3.11) V0,l0;m,l(κ) =

{
|T|
∑

θ∈Γ† ψ̂0(θ;κ + pl0)ψ̂m(θ;κ + pl±0 ), if l = l±0
0, otherwise.

Suppose, κ is close to κ0 so that the eigenvalue λ0(κ + pl0) is a simple eigenvalue of
H(κ). Then for small ε the operator Hε(κ) will have a single eigenvalue τ = τε(κ) which
is inside 2ε-neighbourhood of λ0(κ). Let us write a perturbation theory expansion of τ .
Let P0 be the projection onto φ0,l0 and P ′ := I − P0. Using P0V P0 = 0 (see Corollary
2.2 or (3.11)) we obtain:

(3.12) τε(κ + pl0) = λ0(κ + pl0) + Zε2 + Y (ε)

as ε→ 0. Here,

(3.13) Z := −TrP0V P
′(H0(κ + pl0)− λ0(κ + pl0))

−1P ′V P0
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and Y (ε) = O(ε3) is analytic in κ in some neighbourhood of κ0. Next, let P1 be the
orthogonal projection onto the two-dimensional subspace generated by φ0,l±0

; we also put

P ′1 := P ′ − P1. Then we can rewrite Z as follows.

(3.14) Z = −TrP0V P1(H0(κ + pl0)− λ0(κ + pl0))
−1P1V P0 +R0,

where R0 := −TrP0V P
′
1(H0(κ+pl0)−λ0(κ+pl0))

−1P ′1V P0 is analytic in κ in sufficiently
small neighbourhood of κ0 (see also (3.16) below). Using (3.11) we get

(3.15) Z =
∑
±

| |T|
∑

θ∈Γ† ψ̂0(θ; k)ψ̂0(θ; k± ν)|2

λ0(k)− λ0(k± ν)
+R0,

and
(3.16)

R0 =
∑
m 6=0

| |T|
∑

θ∈Γ† ψ̂0(θ; k)ψ̂m(θ; k + ν)|2

λ0(k)− λm(k + ν)
+
∑
m6=0

| |T|
∑

θ∈Γ† ψ̂0(θ; k)ψ̂m(θ; k− ν)|2

λ0(k)− λm(k− ν)
.

Note that expressions (3.15) and (3.16) depend only on k and ν and do not depend on

N and Γ̃†.

Lemma 3.4. There exists a vector ν of arbitrarily small positive length such that

(3.17)
∂2Z

∂n2
(k0,ν) 6= 0.

Proof. We will consider vectors ν := δn with small δ and write the expansion of
∂2Z
∂n2 (k0,ν) in terms of δ when δ → 0. We will transform the formula for Z in the
following way:

Z =
| |T|

∑
θ∈Γ† ψ̂0(θ; k)ψ̂0(θ; k)|2

λ0(k)− λ0(k + ν)
+
| |T|

∑
θ∈Γ† ψ̂0(θ; k)ψ̂0(θ; k)|2

λ0(k)− λ0(k− ν)
+R +R0

=
1

λ0(k)− λ0(k + ν)
+

1

λ0(k)− λ0(k− ν)
+R +R0.

(3.18)

The second equality in (3.18) is due to (2.15). Note that λ0(k± ν), ψ̂0(θ; k± ν), and
R0 are analytic in δ near 0 and in k near k0. It is a straightforward calculation that R =
R(δ) = R(δ; k,ν) satisfies R(δ) = O(δ−α+1), R′(δ) = O(δ−α), and R′′(δ) = O(δ−α−1)
as δ → 0 (compare with calculations (3.19) and (3.20) and the proof of Lemma 3.5
below; recall that α is defined in (3.5)). Let us calculate now the second derivative of
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the principle term in (3.18). We have (here, by f ′ we denote ∂f
∂n

):

∂2

∂n2

(
1

λ0(k)− λ0(k + ν)

)
=− ∂

∂n

(
λ′0(k)− λ′0(k + ν)

(λ0(k)− λ0(k + ν))2

)
= 2

(λ′0(k)− λ′0(k + ν))2

(λ0(k)− λ0(k + ν))3
− λ′′0(k)− λ′′0(k + ν)

(λ0(k)− λ0(k + ν))2
.

(3.19)

Therefore,

∂2

∂n2

(
1

λ0(k)− λ0(k + ν)

) ∣∣∣
k=k0

=
2λ′0(k0 + ν)2 + λ′′0(k + ν)(λ0(k)− λ0(k + ν))

(λ0(k)− λ0(k + ν))3

∼2C2
0α

2δ2α−2 − α(α− 1)C2
0δ

2α−2

−C3
0δ

3α
= −C−1

0 α(α + 1)δ−α−2.

(3.20)

It is easy to check that the contribution from the derivative of the second term in (3.18)
is the same. Therefore, as δ → 0, we have

(3.21)
∂2Z

∂n2
(k0,ν) = −2C−1

0 α(α + 1)δ−α−2 + o(δ−α−2),

which shows that for some ν this second derivative is non-zero. �

Now, we are going to make the formula for Z more specific by introducing the proper
coordinates.

Lemma 3.5. Let us denote the coordinates of k around k0 by (x, y) so that x := 〈k −
k0,n〉 is the coordinate along n, and y := 〈(k−k0),n⊥〉 is the coordinate along n⊥. Then
we have:

(3.22) Z = O(δ−α) +O(δ−α−1)x− C1δ
−α−2(1 +O(δ))x2 + C(δ)x3 + yf(x, y), C1 > 0,

where f is a real analytic function in a neighbourhood of the origin. Function f(x, y)
also depends on δ but actual dependence is not important.

Proof. In our new coordinates formula (3.18) looks as follows

Z =
1

λ0(x, y)− λ0(x+ δ, y)
+

1

λ0(x, y)− λ0(x− δ, y)
+R +R0,
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where R0 is analytic in (x, y, δ) near zero and

R =
| |T|

∑
θ∈Γ† ψ̂0(θ;x, y)ψ̂0(θ;x+ δ, y)|2 − | |T|

∑
θ∈Γ† ψ̂0(θ;x, y)ψ̂0(θ;x, y)|2

λ0(x, y)− λ0(x+ δ, y)

+
| |T|

∑
θ∈Γ† ψ̂0(θ;x, y)ψ̂0(θ;x− δ, y)|2 − | |T|

∑
θ∈Γ† ψ̂0(θ;x, y)ψ̂0(θ;x, y)|2

λ0(x, y)− λ0(x− δ, y)
.

(3.23)

We recall that ψ̂0 and λ0 are real-analytic in (x, y) near zero. Equation (3.5) has the
form

λ0(δ, 0) = C0δ
α +O(δα+1)

or, in other words,

λ0(x, y) = C0x
α +O(xα+1) +O(y).

Now, the direct calculations similar to the ones from the proof of Lemma 3.4 complete
the proof of (3.22) which is just the Taylor series for Z in x and y near zero with δ being
a parameter. We emphasize that while δ is going to be small (for example, to ensure
that the coefficient in front of x2 is negative and the eigenvalue λ0 is still simple after
the shift of the argument by δ) it will be fixed; then x and y are considered to be in a
small neighborhood (depending on δ) of the origin which ensures the convergence of the
Taylor series (3.22). �

Remark 3.6. Since formula (3.22) is an identity of analytic in x, y functions (for every
sufficiently small δ > 0), we can differentiate this identity with respect to x and y
arbitrary many times.

Now we discuss the broad strategy of our approach. Suppose, H =: H0 is our initial
operator with a degenerate minimum of the spectral edge (meaning that S consists of
several isolated points, but the quadratic form of the Bloch function λ(k) at one of
them is degenerate). We then start perturbing H by adding potentials of the form
εj(eνj

+ e−νj
), so that Hj = Hj−1 + εj(eνj

+ e−νj
). Each Hj is a periodic operator with

the lattice of periods Γj, where each Γj is a sub-lattice of Γj−1. At each step we will
achieve that a certain partial derivative (or a certain combination of partial derivatives)
of a perturbed Bloch function at the new extremal point (or points) becomes non-zero.
Lemma 3.2 shows that, once some combination of the partial derivatives on the Bloch
function is non-zero for the operator Hj, we can choose εn, n > j so small that the same
combination is non-zero for all operators Hn, n ≥ j (notice that the choice of how small
we require each εn to be depends also on the lattice Γn). At the end our objective is
to achieve that at all local minima of the Bloch functions λ(κ) of Hn located near µ+

we had ∂xxλ 6= 0, ∂yyλ 6= 0, and ∂xxλ∂yyλ − (∂xyλ)2 6= 0 in some coordinate system
(x, y); then, all minima will be non-degenerate. Of course, we will also make sure that
εj are so small that

∑
j εj < µ+ − µ−, so we have not closed the spectral gap. We will

also assume that the perturbed operator is still periodic with, possibly, a new lattice
of periods Γ̃ ⊂ Γ. In order to achieve this, it is enough to require that each vector νj
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belongs to the set QΓ†. This set is dense and the objective of our perturbation will
always be making certain quantities (like combinations of partial derivatives) non-zero.
Since these quantities will always depend continuously on ν, once we have found any
vector ν for which these quantities are non-zero, we can always find a vector inside QΓ†

with these quantities still being non-zero. For example, in Lemma 3.4 we can always find
ν satisfying the requirements of that Lemma such that, additionally, we have ν ∈ QΓ†.
Therefore, we will always assume that our choice of νj will be rational multiples of a
vector from Γ, without specifying it explicitly.

3.2. Several band functions have the same minimum at the same point. In
this section, we will get rid of a situation when a point k0 is a minimum of two or
more different band functions simultaneously. It was proved in [5] that (generically) this
cannot happen; here, we will give (an outline of) a different proof, which seems to us
to be rather shorter. We will need the following Lemma, sometimes known as the Shur
complement Lemma.

Lemma 3.7. Suppose, P1 and P2 are two orthogonal projections in a Hilbert space H
with P1 + P2 = I, and H is the self-adjoint operator which has the following block form
with respect to P1 and P2.

(3.24) H =

(
U11 U12

U21 U22

)
.

This means that Ujl = PjHPl. We put Hj := Pj(H) and assume that λ 6∈ σ(U22).
1. Suppose, ψ ∈ H1 is a vector lying in the kernel of (U11 − λ) − U12(U22 − λ)−1U21.

Then φ̃ :=

(
ψ
φ

)
, where φ := −(U22 − λ)−1U21ψ, is an eigenvector of H corresponding

to λ.
2. Suppose, λ is an eigenvalue of H. Then the kernel of (U11−λ)−U12(U22−λ)−1U21

(considered as an operator in H1) is non-trivial.

Proof. This is a straightforward computation. �

To begin with, let us assume that µ+ is the minimum of two band functions reached
at the same point, say λ1(k0) = λ2(k0) = µ+. In this case we will not be taking vector

ν from a finer lattice Γ̃†, instead we will assume that ν ∈ Γ† \ {0}. We also take slightly
more complicated potential than before, namely we put v = aeν + āe−ν and denote by V
the operator of multiplication by v. Let us check what will happen with the eigenvalues at
k0 after this perturbation. We apply the Shur complement Lemma to study eigenvalues
of Hε(k) with k close to k0. We denote by P1 the orthogonal projection onto H(k) –
the two-dimensional subspace generated by ψ1(k; ·) and ψ2(k; ·) and P2 = I − P1. Then
the Shur complement Lemma shows that the perturbed eigenvalues coincide with the
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eigenvalues of the 2× 2 matrix A = A(ε,k) = (amn)2
m,n=1 with the coefficients given by

amm = λm(k)

+ ε[a
∑
θ∈Γ†

ψ̂m(θ; k)ψ̂m(θ; k + ν) + ā
∑
θ∈Γ†

ψ̂m(θ; k)ψ̂m(θ; k− ν)] +O(ε2)(3.25)

and

(3.26) amn = ε[a
∑
θ∈Γ†

ψ̂m(θ; k)ψ̂n(θ; k + ν) + ā
∑
θ∈Γ†

ψ̂m(θ; k)ψ̂n(θ; k− ν)] +O(ε2)

if m 6= n. We notice that the choice of the basis in H(k0) is not uniquely determined;
we just fix some orthonormal basis φ := (ψ1(k0; ·), ψ2(k0; ·)) of H(k0).

Lemma 3.8. For some a ∈ C and ν ∈ Γ† \ {0} we have

(3.27) a
∑
θ∈Γ†

ψ̂1(θ; k0)ψ̂2(θ; k0 + ν) + ā
∑
θ∈Γ†

ψ̂1(θ; k0)ψ̂2(θ; k0 − ν) 6= 0.

Proof. Suppose not. Then for each ν ∈ Γ† we have
∑

θ∈Γ† ψ̂1(θ; k0)ψ̂2(θ; k0 + ν) = 0
(this sum is zero if ν = 0 due to (2.15) anyway). Notice that

(3.28)
∑
θ∈Γ†

ψ̂1(θ; k0)ψ̂2(θ; k0 + ν) =
∑
θ∈Γ†

ψ̂1(θ; k0)ψ̂2(θ + ν; k0),

and these numbers are Fourier coefficients of the product ψ1(k0,x)ψ2(k0,x). This prod-
uct, however, cannot be identically equal to zero for all x due to the unique continua-
tion. �

This lemma shows that off-diagonal elements of A(ε,k0) are non-zero for a certain
choice of a and ν 6= 0. Therefore, its eigenvalues are different and we have achieved the
required splitting. This simple argument is already sufficient to prove that Condition A
is generic if eigenfunctions ψj are continuous in k, since then off-diagonal elements of A
will be non-zero for all k in a neighbourhood of k0.

In general situation we proceed as follows. We denote by {vmn(k)}2
m,n=1 the matrix of

V in the basis ψj(k), j = 1, 2, and for any choice φ = (φ1, φ2) of an orthonormal basis
of H(k0) we denote by {vmn(k0;φ)}2

m,n=1 the matrix of operator V in this basis. Let
us fix a and ν so that the left-hand side of (3.27) is equal to one, i.e. v12(k0;ψ) = 1.
This means that for any other choice of the basis φ we either have |v12(k0;φ)| ≥ 1/4 or
|v11(k0;φ) − v22(k0;φ)| ≥ 1. Since the projection onto H(k) is analytic in k, for every
η > 0 there exists δ > 0 such that whenever |k− k0| ≤ δ the matrix {vmn(k)}2

m,n=1 is η-

close to the matrix {vmn(k0;φ)}2
m,n=1 with some choice of the basis φ. As a consequence,

taking η = 1/8 we obtain the following statement. For every k in some neighbourhood M
of k0 the elements of the matrix {vmn(k)}2

m,n=1 satisfy either |v12(k)| ≥ 1/8 or |v11(k)−
v22(k)| ≥ 3/4.
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Now, we consider the matrix of A(ε,k) in the basis ψj(k), j = 1, 2. We have

ajj(k) = λj(k) + εvjj(k) +O(ε2), a12(k) = εv12(k) +O(ε2).

Here, O(ε2) is uniform in k ∈M . If k is such that |v12(k)| ≥ 1/8 then we obviously don’t
have a multiple eigenvalue for ε small enough to dominate O(ε2). Assume the second
alternative, i.e. |v12(k)| ≤ 1/8 but |v11(k) − v22(k)| ≥ 3/4. Assume for definiteness
v11(k) > v22(k) + 3/4 and λ1(k0) = λ2(k0) = 0, and 0 is the minimal value of these
functions. We also have |vjj(k) − vjj(k0;φ)| ≤ 1/8 for some choice of the basis φ. The
matrix of A(ε,k0) in this basis has the form

ajj(k0;φ) = εvjj(k0;φ) +O(ε2), a12(k0;φ) = εv12(k0;φ) +O(ε2).

Now, assume that we have a multiple eigenvalue at k ∈M . Then a22(k) = a11(k), which,
together with the observation that λj(k) ≥ 0, implies λ2(k) ≥ 3ε/4 +O(ε2) and thus

a22(k) ≥ ε(3/4 + v22(k)) +O(ε2) ≥ ε(5/8 + v22(k0;φ)) +O(ε2) > a22(k0;φ).

this means that k is not a point of minimum. Thus we proved that in some neighbourhood
of k0 we cannot have the edge of the spectrum attained by more than one band function.

Suppose now that µ+ is the minimum of t band functions reached at the same point,
λ1(k0) = λ2(k0) = · · · = λt(k0) = µ+. Then we proceed as above and our perturbation
will be described by a t × t matrix the off-diagonal elements of which are non-zero for
some choice of parameters. Arguments similar to those above imply that after this per-
turbation, the resulting operator will have an eigenvalue of multiplicity at most t − 1.
Repeating this procedure t − 1 times if necessary, we will achieve that no two different
bands can have a minimum at the same point. The arguments which justify the sub-
sequent elimination of the multiple minima at different points or/and at different edges
are standard. This proves the following Theorem (originally due to Klopp-Ralston, [5]):

Theorem 3.9. Condition A is generic for two-dimensional periodic potentials.

3.3. Minimum is a minimum of only one band function. First, we choose coordi-
nates around k0 so that x goes along ν. In this section we will change these coordinates
many times; in order to avoid cumbersome notation, we will call both old and new set
of coordinates by the same letters (x, y) (sometimes writing xold and xnew to avoid con-
fusion). Each time we perform a change of coordinates, we will have to check that the
perturbation Z in the new coordinates still satisfies (3.22) (or, at least, (3.17)).

Step 1. Obtaining a quadratic term in one direction.
Let k0 be a point of local minimum of λ0; we will introduce the orthogonal coordinates

(x, y) around k0 so that the Taylor expansion of λ0 at k0 in these coordinates has a form

(3.29) λ0(x, y) = x2n +
∑
α,β

dαβx
αyβ

and the sum is over all (α, β) with α+ β ≥ 2n with the exception of (α, β) = (2n, 0). If
n = 1, we move to the next step, so now we assume that n ≥ 2. We apply the Weierstrass
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Preparation Theorem and obtain that λ0 has the following form:

λ0(x, y) = (x2n +
2n−1∑
j=0

aj(y)xj)c(x, y),

where aj are analytic functions such that aj(y) = O(y2n−j) and c(0, 0) = 1. Making
a change of variables xnew = xold − a2n−1(y)/(2n), we can assume that a2n−1 = 0. We
notice that this change of variables does not affect the representation (3.22). So, for
simplicity we will use the same notation (x, y) for the new variables. Then the Bloch
function after the perturbation has a form

τε(x, y) = λ0(x, y) + ε2Z(x, y) + ε3b(x, y, ε)

= c(x, y)

(
x2n +

2n−2∑
j=0

aj(y)xj + ε2Z(x, y)/c(x, y) + ε3b(x, y, ε)/c(x, y)

)
.

(3.30)

Here, b is analytic function in all variables. Each aj is analytic function of one variable
and therefore has a simple form aj(y) = cjy

kj(1 + O(y)), cj 6= 0 (either this, or aj ≡ 0,
in which case we put kj := ∞). Obviously, kj ≥ 2n − j. Let (x∗, y∗) be a point where
the minimum of τε is attained in a small neighbourhood of the origin, i.e. x∗, y∗ = o(1)
as ε→ 0. We prove that there is an improvement after the perturbation, namely:

Lemma 3.10. There is a partial derivative of τε of order smaller than 2n that does not
vanish at (x∗, y∗).

Proof. Assume that it is not so. Then all partial derivatives of τε of order smaller than
2n are equal to zero at (x∗, y∗). It is easy to see that τε(x∗, y∗) = O(ε2). Indeed, in any
case τε(0, 0) = O(ε2) and τε(x∗, y∗) ≥ −Cε2 (as a sum of a non-negative function λ0 and
O(ε2)). Thus, either τε(x∗, y∗) = O(ε2), or τε(x∗, y∗) > τε(0, 0), in which case (x∗, y∗)
cannot possibly be a minimum of τ .

Thus, all partial derivatives of τ̃ := τε/c(x, y) of order smaller than 2n are O(ε2) at
(x∗, y∗). We get

O(ε2) =
∂2n−1τ̃

∂x2n−1
= (2n)!x∗ +O(ε2),

which gives x∗ = O(ε2). Next, for j = 0, . . . , 2n− 2,

O(ε2) =
∂2n−1τ̃

∂xj∂y2n−1−j = cj
j!kj!

(kj − 2n+ 1 + j)!
y
kj−2n+1+j
∗ (1 + o(1)) +O(ε2),

and this implies y∗ = O(ε2/(kj−2n+1+j)) for j = 0, . . . , 2n− 2.
Now we notice that formula (3.22) implies that

(3.31) Z(x, y) = b0 + b1x− b2x
2 +O(x3) +O(y),
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where bj are functions of δ and b2 > 0 for small δ. Then our assumption that all
derivatives of τε of order smaller than 2n disappear implies

0 =
∂2τε
∂x2

= 2c2y
k2
∗ (1 + o(1))c(x∗, y∗) + 2c1y

k1
∗ (1 + o(1))c′x(x∗, y∗) + c0y

k0
∗ (1 + o(1))c′′xx(x∗, y∗)

− 2b2ε
2 + o(ε2),

assuming kj, j = 0, 1, 2, are finite. But since kj > kj − 2n+ 1 + j, j = 0, 1, 2, for 2n ≥ 4,
this is the contradiction. The case when one or more kj =∞ is even simpler and can be
considered in the same way. �

This lemma shows that after the perturbation we get a non-zero derivative of order
smaller than 2n in the new (and therefore in the old) variables. Repeating this procedure,
we obtain a new Bloch function for which the second derivative in one direction does not
vanish. Now we move to the next step.

Step 2. Obtaining a nondegenerate quadratic form.
Suppose now that the second derivative at our minimum in one direction is non-

degenerate, i.e.

(3.32) (λ0)′′yy(0, 0) 6= 0.

If second derivatives in all directions are non-degenerate, we have nothing else to do, so
we also assume that

(3.33) (λ0)′′xx(0, 0) = 0.

By Weisstrass Preparation Theorem λ0 = (y2+2f1(x)y+f2(x))p(x, y) with some analytic
functions f1, f2, p, such that p(0, 0) > 0. We immediately notice that f1(x) = O(x2).
Indeed, if f1(x) has a non-trivial linear term in its Taylor expansion, then, since (0, 0)
is a minimum, f2(x) must have a non-trivial quadratic term, which contradicts (3.33).
Changing variables xnew = xold, ynew = yold + f1(xold) we get

λ0 = (y2 + f(x))p1(x, y), p1(0, 0) > 0.

Since we have an isolated minimum, f(x) = bx2n(1 +O(x)) with some b > 0 and n ≥ 2.
Now, rescaling we obtain that λ0 has the form λ0 = (x2n(1 + O(x)) + y2)c(x, y) with
c(0, 0) > 0. Finally, we make another change of variables x2n

new = x2n
old(1+O(xold))c(xold, yold)

and y2
new = y2

oldc(xold, yold) so that in the new coordinates we have

(3.34) τ̃ = x2n + y2 + ε2Z +O(ε3),

where we have denoted τ̃(xnew, ynew) = τ(xold, yold). Below (see Lemma 3.11) we will
show that Z from (3.22) still admits similar representation in new variables:

(3.35) Z(x, y) = b0 + b1x− b2x
2 +O(x3) +O(y), b2 > 0.

As before, we assume that (x∗, y∗) is a point of a local minimum for τ̃ε near point (0, 0)
(in particular, x∗, y∗ = o(1)). We consider three cases.
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Case 1. Suppose, b1 6= 0. Then from ∇τ̃(x∗, y∗) = 0 we get y∗ = O(ε2), x∗ =(−b1
2n
ε2
) 1

2n−1 (1 + o(1)). This implies

(τ̃)′′yy(x∗, y∗) = 2 +O(ε2), (τ̃)′′xy(x∗, y∗) = O(ε2),

(τ̃)′′xx(x∗, y∗) = 2n(2n− 1)

(
−b1

2n
ε2

) 2n−2
2n−1

(1 + o(1)) +O(ε2).

Thus, we have a nondegenerate minimum at (x∗, y∗).
Case 2. Suppose, b1 = 0 and n ≥ 3. We notice that if x∗ = O(ε) then (τ̃)′′xx(x∗, y∗) < 0

which leads to a contradiction. So, |x∗/ε| → ∞ as ε→ 0. Then, similar to the previous

case one gets y∗ = O(ε2), x∗ =
(
b2
n
ε2
) 1

2n−2 (1 + o(1)) and

(τ̃)′′yy(x∗, y∗) = 2 +O(ε2), (τ̃)′′xy(x∗, y∗) = O(ε2),

(τ̃)′′xx(x∗, y∗) = 2n(2n− 1)

(
b2

n
ε2

)
(1 + o(1))− 2b2ε

2.

Thus, we again have nondegenerate minimum at (x∗, y∗).
Case 3. Finally, we consider the case b1 = 0 and n = 2. It is convenient to rescale

xold = εxnew, yold = ε2ynew and divide by ε4. Then we have to consider

(3.36) τ̂ = x4 + y2 +Ox,y(1)ε− b2x
2 +O(1)x+O(1)y +O(1)ε−2.

Here we have used the fact that Y (ε) from (3.12) is analytic in (x, y). We are using the
following convention: O(1) is a bounded function of ε only, and Ox,y(1) is a bounded
analytic function of ε, x, y. Calculating the derivatives at point (x∗, y∗) we get

τ̂ = (1 +O(ε))(x− x∗)4 + (1 +O(ε))(y − y∗)2+

(4x∗ +O(ε))(x− x∗)3 + (6x2
∗ − b2 +O(ε))(x− x∗)2 + const+Ox,y(1)ε.

(3.37)

Since we have a minimum, the worst scenario is when our quadratic form is degenerate.
This means that

6x2
∗ − b2 = O(ε)

and corresponding form becomes zero in the direction (y − y∗) = O(ε)(x − x∗). In this
direction the cubic term becomes (4x∗ + O(ε))(x − x∗)3 which contradicts to minimum
condition since x2

∗ ∼ b2/6.
Now, let us show that the change of variables we use above does not destroy our

achievements, i.e. that (3.35) holds in the new variables.

Lemma 3.11. All changes of the variables described above do not change the represen-
tation (3.22) for sufficiently small δ. In particular, (3.35) holds.

Proof. First, we discuss the change of variables

(3.38) xnew = xold, ynew = yold + f1(xold).

If f1(x) = O(x3) then the statement immediately follows from (3.22). So, we assume
that f1(x) = sx2(1 + O(x)), s 6= 0. Then, since we have a minimum at point (0, 0) we
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have f2(x) = as2x4(1 + O(x)), a ≥ 1. Using this explicit form for λ0 = (y2 + 2f1(x)y +
f2(x))p(x, y) and repeating the calculations similar to (3.19), (3.20), it is not difficult to
obtain more detailed version of (3.22). Namely,

Zp(0, 0) = O(δ−4) +O(δ−5)x− 20δ−6

as2
(1 +O(δ))x2 +

4δ−6

a2s3
(1 +O(δ))y +O(x3) +O(y2)

= O(δ−4) +O(δ−5)x̃−
(

20

as2
+

4

a2s2

)
δ−6(1 +O(δ))x̃2 +O(x̃3) +O(ỹ).

(3.39)

This proves the statement for the substitution (3.38).
Finally, the change of variables of the form xnew = xold(s1 + O(xold) + O(yold)) and

ynew = yold(s2 +O(xold) +O(yold)), s1s2 6= 0, does not affect the representation (3.22) for
sufficiently small δ because the coefficient in front of x have smaller order in δ than the
one in front of x2. �

3.4. Several minima. All the results of this Section obtained so far prove our main
Theorem under assumptions that on each step of the procedure we have |S| = 1 (i.e. the
minimum of the band function is attained at one point). Let us discuss the changes we
need to make if S consists of several points. Then we have to be slightly more careful
with the choice of ν. The properties we need are summarised in the following statement:

Lemma 3.12. Suppose S is finite and arbitrarily sufficiently small δ > 0 is fixed. Then
we can find a vector ν ∈ QΓ† arbitrarily close to a given direction with the length |ν| ∈
(δ/2, δ) and such that there are no two different points k1,k2 ∈ S satisfying k1 + nν =
k2 + θ, where n ∈ Z and θ ∈ Γ†.

Let us first discuss why these properties are sufficient for our purposes (and where
exactly in our procedure these properties are required). We need to be able to choose ν
close to any direction to be able to perform Step 2. Here it is important to have uniform
control of the length of ν so that all the estimates from Step 2 still hold for sufficiently
close direction. Since δ is arbitrarily small we can also ensure that, e.g., C1 > 0 in

(3.22). Let us denote by Γ̃† the lattice generated by Γ† and ν (this lattice is discrete
due to the assumption ν ∈ QΓ†). Our last assumption means that all points kj ∈ S

are different modulo this new lattice Γ̃† (i.e. κj are different). This guarantees that
(3.12) holds. Indeed, without this assumption Y is infinite and with this assumption Y ,
although depending on ν in an uncontrolled way, is still O(ε3) and analytic in κ in a
neighbourhood of κ0.

Proof. We assume that δ is smaller than 1
100

min{|γ|, 0 6= γ ∈ Γ†}. Let us start by

choosing any vector µ̃ from QΓ† with direction close to a given one. Let µ be the
smallest vector in Γ† having the same direction as µ̃. We put ν := p̃µ

p
, where p̃ and p

are natural numbers defined as follows. Suppose, kj,ks ∈ S are two points such that
kj − ks =

mjs

njs
µ + θ, where njs > 1 and mjs are co-prime integers and θ ∈ Γ†; note
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that njs is uniquely determined by kj and ks and does not depend on θ ∈ Γ†. If there
are no such points kj,ks, we just define p̃ := 1 and choose p to be any natural number
such that |ν| ∈ (δ/2, δ). Otherwise, we first choose p to be any large prime number
(namely, p > 100|µ|/δ) co-prime with all njs. Then we choose p̃ such that |ν| ∈ (δ/2, δ).
Obviously, p̃ is smaller than p and thus it is co-prime with p. We claim that this choice
of ν satisfies all the required conditions. Indeed, assume that k1 + nν = k2 + θ, where
n ∈ Z and θ ∈ Γ†. This means that m12+qn12

n12
µ + np̃

p
µ = 0 for integer n, q with |n| < p,

n 6= 0. However, this implies that np̃n12 = −(qn12 + m12)p, which is a contradiction
since n12 and p̃ are co-prime with p, and 0 < |n| < p.

�

4. Counter-examples

First of all, in Subsection 4.1, we will give several examples of discrete periodic
Schrödinger operators for which property B is violated on an open set of potentials.
This obviously shows that property B cannot possibly be generic in the discrete setting.
Then, in Subsection 4.2, we will discuss how property B can be forced to hold by a
small perturbation of our example if this perturbation is periodic with a sublattice of
our original lattice of periods (of index two).

4.1. Counter-example. The following examle is due to N. Filonov (see [2]). We define
the discrete Schrödinger operator in l2(Z2) as H = ∆ + V , where

(∆u)(n1,n2) = u(n1+1,n2) + u(n1−1,n2) + u(n1,n2+1) + u(n1,n2−1),

and (V u)(n1,n2) = V0u(n1,n2) for n1 +n2 being even and (V u)(n1,n2) = V1u(n1,n2) for n1 +n2

being odd.
Then H can be represented as the direct integral

H =

⊕∫
Ω̃

H(k) dk, Ω̃ = {k ∈ R2 : |k1 + k2| ≤ π},

where H(k) acts in C2 and is represented by the following matrix

H(k) :=

(
V0 2 cos k1 + 2 cos k2

2 cos k1 + 2 cos k2 V1

)
.

Then it is easy to see that the spectrum of H consists of two bands

(4.1)

[
V0 + V1

2
−
√

(V0 − V1)2

4
+ 16, min{V0, V1}

]
and

(4.2)

[
max{V0, V1},

V0 + V1

2
+

√
(V0 − V1)2

4
+ 16

]
,
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and these intervals are disjoint unless V0 = V1. Moreover, the upper edge of the first band
and the lower edge of the second band both are attained on the boundary of Ω̃. Thus,
we have degenerate edges of the gaps with the corresponding degeneracy undestroyable
with any small perturbation of the potential.

Of course, for the continuous Schrödinger operator the degeneracy on the lines is
impossible by Thomas construction, moreover, as recently was proved in [2], even degen-
eracy on the curves is impossible for 2-dimensional continuous Schrödinger operators.
However, this example is important as it shows that the question is not as obvious as
it may look. Here we would also like to mention [11] where the magnetic Schrödinger
operator was constructed with degenerate lower edge of the spectrum (still attained at
one point) while the proof from [2] excludes degeneracy on the curves for 2D magnetic
operators too.

Remark 4.1. The example described above can be adjusted to obtain degeneracy even
if the number of parameters is very large. For example, assume that n ≥ 3 and consider
the periodic operator with the lattice of periods generated by (n, 0) and (1, 1) and the
potential (V0, V1, . . . , Vn−1) satisfying V0 < Vj−2. Then, if we put s := eik1 and t := eik2 ,
the matrix of the fibre operator has the following form:

H(k) :=


V0 s+ t 0 . . . 0 s+ t
s+ t V1 s+ t 0 . . . 0

...
...

...
...

...
...

s+ t 0 . . . 0 s+ t Vn−1

 .

Note that the quadratic form of H(k) equals V0 on the vector (1, 0, . . . , 0), which shows
that the point V0 is the right edge of the first spectral zone, attained at {s + t = 0}.
Thus the degeneracy of the spectral edge is an interval (not the union of two intervals
as in the case n = 2).

4.2. How to destroy the degeneracy by changing the lattice of periods. Now we
discuss how the degeneracy in the example from the previous subsection will be destroyed
using our approach. We consider the initial operator with doubled period (in vertical
direction); we also assume (as we can without loss of generality) that V0 = V > 0,
V1 = −V . Then we have

H =

⊕∫
Ω̂

H(k) dk, Ω̂ := {k ∈ R2 : 0 ≤ kj ≤ π, j = 1, 2},

where H(k) acts in C4 and is represented by the following matrix

H(k) :=


V 2 cos k1 0 2 cos k2

2 cos k1 −V 2 cos k2 0
0 2 cos k2 V 2 cos k1

2 cos k2 0 2 cos k1 −V

 .
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We denote a := 2 cos k1 and b := 2 cos k2. The spectrum of the operator H consists
of two bands [−

√
V 2 + 16,−V ] and [V,

√
V 2 + 16]. The edges ±V are attained when

a = ±b, i.e. on the diagonals of the square Ω̂.
We will show that now the small perturbation of the potential destroys the degeneracy

of the edges. We consider in details the lower edge of the second band, the construction
for the upper edge of the first band is similar. Our perturbation has the form B :=
diag{2ε, 0, 0, 0}, ε > 0. Equation det(H(k) +B − λ) = 0 reads as follows

[(λ2 − V 2)− (a2 + b2)]2 − 2ε(λ+ V )[(λ2 − V 2)− (a2 + b2)]− 4a2b2 = 0.

We put t := [(λ2 − V 2)− (a2 + b2)] and solve the quadratic equation for t. We get

(4.3) t = ε(λ+ V )±
√
ε2(λ+ V )2 + 4a2b2.

First, let us show that the minimum of the second band is situated near the center of
the square a = b = 0. Indeed, obviously it must be near the diagonals a = ±b. In a
neighborhood of any point on the diagonals which is not the center of the square we have
|ab| � 1. Then (4.3) gives

(λ2 − V 2)− (a2 + b2) = t = ε(λ+ V )± 2ab
(
1 +O(ε2)

)
and thus

λ2 − ελ− (a± b)2 − V 2 − εV +O(ε2) = 0.

The eigenvalue corresponding to the second band is

λ = ε/2 +
√
V 2 + εV + (a± b)2 +O(ε2) ≥ V + ε+O(ε2).

At the same time, for a = b = 0 there is the solution t = 0 for (4.3) which corresponds
to λ = V , and thus, the lower edge of the second band occurs near the point a = b = 0,
i.e. k1 = k2 = π/2.

For the unperturbed operator we have λ2 = V 2 + (a± b)2. This leads to

λ± = V +
1

2V
(a± b)2 +O((a2 + b2)2).

We consider the two-dimensional subspace of the eigenvectors corresponding to the per-
turbed eigenvalues when ε ≥ 0. Let P be the orthogonal projection onto this subspace.
We notice that while the eigenvectors, generally, are not analytic in a, b and ε, the pro-
jection P is analytic and can be represented by the convergent series P = P0+

∑∞
n=1 ε

nPn
with Pn = Pn(a, b) being analytic in the small neighborhood of (0, 0). Moreover, it is not
hard to see that one can choose the analytic orthonormal basis f1(a, b, ε), f2(a, b, ε) in the
range of P such that fj(0, 0, 0) = (1, 0,±1, 0)/

√
2. Indeed, first we notice that the unper-

turbed matrix has analytic eigenvectors fj(a, b, 0) with fj(0, 0, 0) = (1, 0,±1, 0)/
√

2 and
then one should just apply Gram-Schmidt orthogonalization to Pfj(a, b, 0). Since the
range of P is, obviously, an invariant subspace of H(k) +B, it is enough to consider the
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restriction of H(k) +B to this space. The matrix of this restriction in the orthonormal
basis constructed above has the following form:

M :=

(
λ+ + ε(1 + g1(a, b, ε)) ε(1 + g3(a, b, ε))
ε(1 + g3(a, b, ε)) λ− + ε(1 + g2(a, b, ε))

)
,

with gj(0, 0, 0) = 0.
Put x = a+b

2
√
V

and y = a−b
2
√
V

. Then in these new coordinates the matrix M − V I has

the following form:

(4.4) M̃ :=

(
2µ1 σε
σε 2µ2

)
,

where µ1 = x2 + O((x2 + y2)2) + εf1(x, y, ε), µ2 = y2 + O((x2 + y2)2) + εf2(x, y, ε),
σ = 1+f3(x, y, ε). Functions fj are analytic in all variables and f3(0, 0, 0) = 0. Obviously,

we are interested in the smallest eigenvalue of M̃ , i.e.

τ := µ1 + µ2 −
√

(µ1 − µ2)2 + ε2σ2.

Let (x∗, y∗) be a point of local minimum for τ in a small neighbourhood of zero, i.e.
|x∗|+ |y∗| = o(1) as ε→ 0. Without loss of generality we also assume x2

∗ ≥ y2
∗. We also

notice that since the point (0, 0) was the minimum for the unperturbed eigenvalue, we
also have µj(x∗, y∗) > −|o(ε)|.

Case 1. First, we assume that µ1 − µ2 ≥ 2ε at (x∗, y∗). Then we notice that

τ(x∗, y∗) ≥ (µ1 − µ2)

(
1−

√
1 +

ε2σ2

(µ1 − µ2)2

)
+ o(ε)

≥ − ε2σ2

2(µ1 − µ2)
+ o(ε) > −εσ = τ(0, 0).

(4.5)

Thus, the lower edge of the zone is not attained at point (x∗, y∗) and we can ignore this
point.

Case 2. Let µ1 − µ2 ≤ 2ε at (x∗, y∗). Then

1− µ1 − µ2√
(µ1 − µ2)2 + ε2σ2

≥ 1

20
.

Now, direct calculation shows that

0 = τ ′x(x∗, y∗) =

(
1− µ1 − µ2√

(µ1 − µ2)2 + ε2σ2

)
(µ1)′x

+

(
1 +

µ1 − µ2√
(µ1 − µ2)2 + ε2σ2

)
(µ2)′x +

O(ε2)√
(µ1 − µ2)2 + ε2σ2

=

(
1− µ1 − µ2√

(µ1 − µ2)2 + ε2σ2

)
(2x∗(1 + o(1))) +O(ε) +

O(ε2)√
(µ1 − µ2)2 + ε2σ2

(4.6)
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and therefore

(4.7) x∗ = O(ε) +
O(ε2)√

(µ1 − µ2)2 + ε2σ2
= O(ε).

Thus, we proved that
x∗ = O(ε), y∗ = O(ε).

Now direct calculation of the derivatives of τ gives

(4.8)
∂2τ

∂x2
(x∗, y∗) = 2 +O(ε),

∂2τ

∂y2
(x∗, y∗) = 2 +O(ε),

∂2τ

∂x∂y
(x∗, y∗) = O(ε).

Thus, we have obtained the non-degenerate minimum.
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