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Abstract. Let Γ be a discrete group of isometries of the d-dimensional hyperbolic space H,
such that Γ\H has finite volume. For points q,p ∈ H, we study the number Nρ(q,p) of
points of the lattice Γp in a ball of radius ρ, centered at q. This counting function depends
only on the images of q and p in Γ\H. We shall regard Nρ(q,p) as a function of q ∈ Γ\H
and estimate its variance.

1. INTRODUCTION

The problem of estimating the number of points of a lattice that lie in a ball, is often called the
circle problem. In the case of lattices in Euclidean space, this question goes back at least as far as
Gauss. If we call Nρ the number of points of Z2 inside the ball B(0, ρ), then one easily sees that
the leading term of Nρ is the area, πρ2, of B(0, ρ). It is not difficult to show that the error term in
this estimate is bounded by circumference of B(0, ρ) and is therefore O(ρ). The first improvement
was due to Sierpiński (1906) who used the Poisson summation formula to show that the error term
is O(ρ2/3). It is conjectured that this error term is in fact O(ρ1/2+ε). This conjecture has been
extensively studied (see, for example, [18, 25, 5, 12, 13]) but is not proved. The best estimate of
which we are aware is Nρ = πρ2 + O(ρ46/73) (see [12]).

More generally, given an arbitrary lattice L is Rd and an arbitrary ball B(v, ρ) in Rd, we let Nρ(v)
denote the number of points of L in the ball. Again if we fix v and L, then for large ρ, we have

Nρ(v) ∼ vol(B(0, ρ))/vol(Rd/L). (1)
The easy bound on the error term here is O(ρd−1) and this has been improved by a number of
authors (see [15, 3], and [7]).

It is obvious that the left-hand side of (1) depends on the center v of the ball, whereas the right-
hand side depends only on its volume. The extent of this dependence is measured by the variance:

Var(Nρ) = (1/vol(Rd/L))
∫

Rd/L

(
Nρ(v)− vol(B(0, ρ))

vol(Rd/L)

)2

dv.

In [20], this variance was estimated in connection with the Bethe–Sommerfeld Conjecture. In par-
ticular, it was shown that Var(Nρ) ³ ρd−1, d 6≡ 1 mod 4. However if d is congruent to 1 modulo 4,
it is shown that Var(Nρ) is not comparable to ρd−1, and instead one has for positive ε

ρd−1−ε ¿ Var(Nρ) ¿ ρd−1, d ≡ 1 mod 4. (2)
These results are saying that, after averaging over v, the size of the error term in the circle problem
is O(ρ(d−1)/2). A similar result was obtained for the L1-norm of Nρ − vol(B(0, ρ))/vol(Rd/L).
The first estimate in (2) was later improved in [14].

Now let Γ be a discrete group of isometries of the d-dimensional real hyperbolic space H. For a
point p ∈ H, we shall write Γp for the Γ-orbit of p. Again one may estimate the number of points
of Γp in a ball B(q, ρ) in H: Nρ(q,p) = # (Γp ∩B(q, ρ)). One easily sees that Nρ(q,p) depends
only on the images of q and p in Γ\H, and we also have Nρ(q,p) = Nρ(p,q).

For d = 2, the numbers Nρ(q,p) were estimated by Huber [10, 11] for the case of co-compact Γ.
Huber’s results were extended by Patterson [21] to the case in which Γ\H has finite hyperbolic
area, but may have cusps. Patterson’s result was generalized to arbitrary dimensions by Lax and
Phillips [16] and Levitan [17]. In fact, Lax and Phillips obtained results which continue to hold when
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Γ is geometrically finite, but does not necessarily have finite co-volume. In this context, we remark
that the circle problem has more recently been studied on other symmetric spaces, including those
of higher rank (see [8, 2] and [4]).

To establish some notation, we describe the result of [16] for the case in which Γ\H has finite
volume. By an eigenfunction we shall always mean a nonzero, smooth, square-integrable function
φ : Γ\H → C such that −∆φ = λφ. Here ∆ is the Laplace–Beltrami operator on H (see (12) below).
There are at most countable many linearly independent eigenfunctions; we shall call them φ0, φ1, . . .
We shall assume that these are chosen to be orthonormal, i.e.,∫

Γ\H
φj(p)φ̄k(p)dµ(p) = δjk,

where µ is the invariant measure on H, see (11). The corresponding eigenvalues λj are all nonneg-
ative real numbers, and we shall order them so that 0 = λ0 < λ1 6 λ2 6 · · · The constant function
has eigenvalue 0; if there are infinitely many φj , then λj →∞. For convenience, we shall often use
the notation D = d−1

2 , where d is the dimension of H. We shall also choose complex numbers sj

such that λj = sj(d− 1− sj). If λj > D2, then sj is on the line Re s = D; we shall refer to this line
as the critical line. However if λj < D2, we have si ∈ [0, 2D], and we shall choose sj ∈ (D, 2D]. We
shall call λ an exceptional eigenvalue if λ = s(d− 1− s) with real D < s < 2D (i.e., 0 < λ < D2).
There are only finitely many exceptional eigenvalues 0 < λ1 6 λ2 6 · · · 6 λN < D2.

With this notation, the estimate of [16] is as follows:
Nρ(q,p) = vol(B(p, ρ))/vol(Γ\H) +

∑

j : d−1− d−1
d+1 <sj<d−1

w(sj)φj(q)φ̄j(p)esjρ + O
(
ρ

3
d+1 e(d−1− d−1

d+1 )ρ
)

, (3)

where the coefficients w(s) are given by
w(s) = πDΓ(s−D)/Γ(s + 1). (4)

(We hope it will not cause too much confusion to use the symbol Γ to refer to both a discrete group
and to the Euler gamma function.)

If one averages the numbers Nρ(q,p) in some way, then one can hope to obtain a better bound
on the error term in (3). For example, Phillips and Rudnick [22] have studied the average of the
numbers Nρ(q,p) as ρ ranges over an interval. In another direction, for co-compact Γ in the 2-
dimensional case, Wolfe estimated the variance of Nρ(q,p) as a function of q and p:∫

Γ\H

∫

Γ\H

(
Nρ(q,p)− vol(B(p, ρ))

vol(Γ\H)

)2

dµ(q)dµ(p).

A similar result is outlined in the 3-dimensional case in [23]. As Wolfe points out, this question
only makes sense for co-compact Γ, since otherwise Nρ fails to be square-integrable on Γ\H×Γ\H.
One can however fix p and study the variance of Nρ(q,p) as a function of q; this is the subject of
the present paper. Thus we shall study the quantity

Var(Nρ(·,p)) =
1

vol(Γ\H)

∫

Γ\H

(
Nρ(q,p)− vol(B(p, ρ))

vol(Γ\H)

)2

dµ(q).

This number describes to what extent the number of lattice points in a ball depends on the center
of the ball.

1.1. Statements

To make matters simpler, we assume throughout that Γ is torsion-free. We first describe our result
for the case in which Γ is co-compact. Again we shall write λ1, . . . , λN for the exceptional eigen-
values; φ1, . . . φN will denote the corresponding normalized eigenfunctions, and λj = sj(d− 1− sj)
with D < sj < d− 1. For an exceptional eigenvalue λ = s(d− 1− s), we define a polynomial

fs(x) = w(s)(1− x)d
∑

06n<s−D

(d− s)n(D + 1)n

(D − s + 1)n

xn

n!
. (5)

Here, w(s) is the same constant (4) as in the Lax-Phillips theorem. We are using the notation
(x)n = x(x + 1) · · · (x + n− 1). We also define a constant clog(s) by

clog(s) =

{
2(−1)s−Dπd−1

(s−D)Γ(s+1)Γ(d−s) if s−D ∈ Z,

0 otherwise.
(6)
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Finally, we define a constant hd, depending only on the dimension d, by

hd =

{
−∑(d−1)/2

k=1 1/k if d is odd,
log 4−∑(d−2)/2

k=0 2/(2k + 1) if d is even.
(7)

Theorem 1. If Γ is co-compact, then for large ρ, we have

vol(Γ\H)Var(Nρ(·,p)) =
∑

j:0<λj<D2

fsj

(
e−2ρ

)2 |φj(p)|2e2sjρ +
∑

j:0<λj<D2

clog(sj)|φj(p)|2ρe(d−1)ρ

+
4πd−1

Γ(D + 1)2
∑

j:λj=D2

|φj(p)|2(hd + ρ)2e(d−1)ρ + O(e(d−1)ρ).

Here fs, clog and hd are as defined in (5), (6), and (7). The implied constant in the error term
depends on Γ.

One could obtain a result with a much weaker error term by integrating the Lax-Phillips esti-
mate (3) with respect to q. Such a result would however only involve a subset of the exceptional
eigenvalues; it would only involve the constant term of each polynomial fs, and it would not contain
the clog terms. As far as we are aware, these extra terms have not been observed before.

The reader wishing for slightly less information might be happier with the constant term of fi:
fs(e−2ρ) = w(s)+O(e−2ρ), where w(s) is as in the Lax–Phillips theorem (4). Indeed, in dimensions 2
and 3, the other terms of the polynomial fs may be absorbed into the error term, and we have the
following corollary.

Corollary 1. Let Γ be as in Theorem 1 and assume in addition that d = 2 or d = 3. Then

vol(Γ\H)Var(Nρ(·,p)) =
∑

j : 0<λj<D2

w(sj)2|φj(p)|2e2sjρ

+
4πd−1

Γ(D + 1)2
∑

j : λj=D2

|φj(p)|2(hd + ρ)2e(d−1)ρ + O(e(d−1)ρ). (8)

The implied constant in the error term depends on Γ.

Remark 1. Integrating (8) with respect to p, we improve Wolfe’s estimate from [26].
Now suppose that Γ\H has finite volume, but has a finite number of cusps κ1, . . . , κM . For each

cusp κ, we let Eκ(q, s) denote the corresponding Eisenstein series; to make matters more precise,
we now describe the normalization of Eκ(q, s). We represent H in the usual way as the upper
half-space: H = {(x, y) : x ∈ Rd−1, y > 0}. For p ∈ H, we shall write y(p) for the y-coordinate of
p. We let N denote the group of translations of H in the x-coordinate. We identify N with Rd−1

and equip it with the Lebesgue measure from Rd−1. Each cusp κi is a point on the boundary of H,
i.e., Rd−1 ∪ {∞}. We shall write Γκ for the stabilizer of κ in Γ. We choose an isometry gκ of H so
that

(1) gκ(κ) = ∞;
(2) vol(N/(gκΓκg−1

κ )) = 1.
(Since we are assuming that Γ is torsion-free, it follows that gκΓκg−1

κ is a lattice in N .) Then for
Re s > d− 1, we define the Eisenstein series by

Eκ(q, s) =
∑

γ∈Γκ\Γ
y(gκγq)s. (9)

Each Eκ(q, s) converges absolutely and uniformly on compact subsets of the half plane Re s > d−1.
It is therefore analytic in s in this region. Furthermore, Eκ has a meromorphic continuation to
all s ∈ C. Each function Eκ(·, s) is automorphic with respect to Γ, so we may regard it as a
function on Γ\H. For convenience, we shall write E(q, s) for the column vector of Eisenstein series:
Ej(q, s) = Eκj (q, s), j = 1, . . . , M . This vector of Eisenstein series satisfies a functional equation
of the form E(q, d− 1− s) = Φ(s)E(q, s), (10)
where Φ(s) is an M ×M matrix of meromorphic functions, called the scattering matrix. The scat-
tering matrix Φ(s) is unitary for s on the critical line Re s = D. Thus s = D is the center of
symmetry of the functional equation.
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Theorem 2. If Γ is co-finite, then for large ρ we have

vol(Γ\H)Var(Nρ(·,p)) =
∑

j:0<λj<D2

fsj

(
e−2ρ

)2 |φj(p)|2e2sjρ +
( ∑

j:0<λj<D2

clog(sj)|φj(p)|2

+
πd−1

Γ(D + 1)2
|E(p,D)|2

)
ρe(d−1)ρ +

4πd−1

Γ(D + 1)2
∑

j:λj=D2

|φj(p)|2(hd + ρ)2e(d−1)ρ + O(e(d−1)ρ).

Here, |E(p,D)| is the usual Euclidean norm of the vector of Eisenstein series. The implied constant
in the error term depends on both Γ and p.

Suppose that φ is one of the exceptional eigenfunctions. After multiplying φ by a constant of
absolute value 1 if necessary, we may assume that φ is real valued. Since φ is orthogonal to the
constant function, we know that its integral is zero. Hence φ takes both positive and negative
values, so it follows that φ vanishes on a subset of H of codimension 1. Similarly, one can show that
Eκ(D,p) is zero on such a subset. Thus there are points p ∈ H for which some of the terms of the
estimates of Theorems 1 and 2 vanish. For these points p, the variance of Nρ(·,p) is significantly
smaller than for other points, so the corresponding lattices Γp are more evenly distributed in balls.

2. BACKGROUND MATERIAL
2.1. The Plancherel Formula for Γ

We recall that the standard metric on the upper half space model of H is given by
y−2

(
dx2

1 + · · ·+ dx2
d−1 + dy2

)
.

The measure invariant under isometries is
dµ(x, y) = y−ddx1 . . . dxd−1dy, (11)

and the positive Laplace–Beltrami operator is

−∆ = −y2
( ∂2

∂x2
1

+ · · ·+ ∂2

∂x2
d−1

+
∂2

∂y2

)
+ (d− 2)y

∂

∂y
. (12)

Our method for calculating the variance of Nρ(·,p) is to find its Fourier transform and then
apply the Plancherel formula, which we now recall.

The space L2(Γ\H) is a Hilbert space with the following inner product:

〈f, g〉 =
∫

Γ\H
f(p)ḡ(p)dµ(p).

Suppose first that Γ\H is compact. In this case, the orthonormal eigenfunctions φ0, φ1, φ2, . . .
span a dense subspace of L2(Γ\H). The discrete Fourier transform of a function f ∈ L2(Γ\H) is
defined by f̂

(disc)
j := 〈f, φj〉. Thus we have (with convergence in L2(Γ\H))

f =
∞∑

j=0

f̂
(disc)
j · φj .

From this, we deduce the Plancherel formula in this case,

‖f‖2 =
∞∑

j=0

∣∣∣f̂ (disc)
j

∣∣∣
2

.

In particular, the variance of f is simply this sum without the coefficient of φ0,

Var(f) =
1

vol(Γ\H)

∞∑

j=1

∣∣∣f̂ (disc)
j

∣∣∣
2

. (13)

Now suppose that Γ has cusps κ1, . . . , κM . In this case, the closed span of the eigenfunctions φj

is a proper subspace of L2(Γ\H). The orthogonal complement of this subspace consists of integrals
of Eisenstein series over the critical line Re s = D. More precisely, recall that, for each cusp κ,
we have an Eisenstein series Eκ(p, s). For each s which is not one of the poles of Eκ, the function
Eκ(·, s) is the solution of the eigenfunction equation for −∆,

−∆Eκ(·, s) = s(d− 1− s)Eκ(·, s). (14)
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Since Eκ(p, s) = Eκ(p, s), it follows that Eκ(·, s) is real valued for real s. Furthermore, by the
Fourier expansion of Eκ around κ, it follows that Eκ(p,D) is bounded below and tends to infinity
as p moves into the κ. For fixed s on the critical line (i.e., Re s = D), the function Eκ(p, s) is not
square-integrable; it is in fact in Lp(Γ\H) if and only if p < 2. However, for a ∈ C∞0 (R), the function

âκ(p) =
∫

R
a(t)Eκ (D + it,p) dt

is square-integrable on Γ\H. The orthogonal complement of the eigenfunctions is the closed span
of the functions âκ for the various cusps κ and a ∈ C∞0 (R).

We therefore define the continuous part of the Fourier transform of f by

f̂ (cts)
κ (s) =

∫

Γ\H
f(p)Ēκ(p, s)dµ(p), Re s = D.

In this case, the Plancherel formula states that

‖f‖2 =
∞∑

j=0

∣∣∣f̂ (disc)
j

∣∣∣
2

+
1
4π

∑
κ

∫

R

∣∣∣f̂ (cts)
κ (D + it)

∣∣∣
2

dt.

The constant 1/4π depends on the normalization of the Eisenstein series chosen in the introduction.
Again we obtain the variance by simply missing out the constant term:

Var(f) =
1

vol(Γ\H)

( ∞∑

j=1

∣∣∣f̂ (disc)
j

∣∣∣
2

+
1
4π

∑
κ

∫

R

∣∣∣f̂ (cts)
κ (D + it)

∣∣∣
2

dt

)
. (15)

2.2. Hypergeometric Functions

We collect here the facts which we shall need about the hypergeometric function 2F1. First, for
|x| < 1 and for c /∈ Z60, the function is defined by

2F1(a, b; c;x) =
∞∑

n=0

(a)n(b)n

(c)n

xn

n!
.

Here we are using the standard notation (a)n := Γ(a + n)/Γ(a) = a(a + 1) · · · (a + n− 1), (a)0 = 1.
For the case in which c ∈ Z60, we define

2F1(a, b; c; x) =
∞∑

n=0

(a)n(b)n

Γ(n + c)
xn

n!
.

Here we are using the convention 1/Γ(n + c) = 0 for n+c = −1,−2,−3, . . . Note that generically we
have 2F1(a, b; c; z) = Γ(c)2F1(a, b; c; z). If Re c > Re b > 0, then we have an integral representation
(Theorem 2.2.1 of [1])

2F1(a, b; c; x) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− xt)−adt. (16)

Using the analytic continuation of (1− x)−a to the cut plane C \ [1,∞), the identity (16) gives an
analytic continuation of 2F1 to the same cut plane, as long as Re c > Re b > 0, and in fact 2F1 has
an analytic continuation to this cut plane for all a, b, c ∈ C. When we refer to 2F1(a, b; c; x) with
|x| > 1, we shall always mean this continuation.

From (16), one easily obtains Pfaff’s identity (Theorem 2.2.5 of [1]):
2F1(a, b; c; x) = (1− x)−a

2F1

(
a, c− b; c;x/(x− 1)

)
. (17)

The hypergeometric function 2F1(a, b; c; ·) is a solution to the following differential equation (see
section 2.3 of [1]):

(1− x)d2f/dx2 + (c− (a + b + 1)x)df/dx− abf = 0. (18)
This equation has two linearly independent solutions on the interval (0, 1); the form of the second
solution depends on which of the numbers c, a − b, c − a − b are integers. If c is not an integer,
then a second solution is given by x1−c

2F1(a + 1− c, b + 1− c; 2− c;x). Now consider the function
2F1(a, b; a + b + 1− c; 1− x) for x ∈ (0, 1). It follows that this is also a solution to (18), so we may
write 2F1(a, b; a+ b+1− c; 1−x) as a linear combination of the two linearly independent solutions.
If c is not an integer, then this expansion is:

2F1(a, b; a + b + 1− c; 1− x) = A 2F1(a, b, c; x) + Bx1−c
2F1(a + 1− c, b + 1− c; 2− c; x), (19)
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where
A = Γ(1− c)Γ(a+b+1−c)/Γ(a + 1− c)Γ(b + 1− c), B = Γ(a + b− c)Γ(a+b+1−c)/Γ(a)Γ(b).

Formula (19) gives us a good understanding of 2F1(a, b; a + b + 1 − c; 1 − x) when x is small and
c /∈ Z. We shall need a formula of this form valid for c ∈ Z: if c = 1−m with m = 1, 2, . . . , then

2F1(a, b; a + b + m; 1− x) =
Γ(m)Γ(a + b + m)
Γ(a + m)Γ(b + m)

m−1∑
n=0

(a)n(b)n

(1−m)n

xn

n!

+
Γ(a + b + m)

Γ(a)Γ(b)
(−x)m

∞∑
n=0

(a + m)n(b + m)n

(n + m)!
(log(x) + rn)

xn

n!
, (20)

where rn = ψ(a + m + n) + ψ(b + m + n)−ψ(1 + m + n)−ψ(n + 1), ψ(x) = Γ′(x)/Γ(x). This may
be obtained by taking the limit of (19) as c → 1−m; it can be found in [19, Sec. 2.4.1].

3. PROOFS OF THE MAIN RESULTS

Theorems 1 and 2 are proved by calculating the Fourier transform of the counting function
Nρ(·,p) and applying the Plancherel formula (13) or (15). We shall make brief use of the following
function on H×H: χρ(p,q) = 1 if dist(p,q) < ρ, χρ(p,q) = 0 if dist(p,q) > ρ. Obviously, we have
χρ(gp, gq) = χρ(p,q) for any isometry g of H, so χρ is a point-pair invariant in the sense of [24]
(the fact that χρ is not continuous will play no role here). To calculate the Fourier transform N̂ρ,
we need to integrate Nρ against eigenfunctions and Eisenstein series. As a first step in this, we note
the following lemma.

Lemma 1. Let ρ > 0. For any automorphic function g on H, we have∫

Γ\H
Nρ(q,p)g(q)dµ(q) =

∫

H
χρ(p,q)g(q)dµ(q).

Proof. As Γ is torsion-free, we may express Nρ as Nρ(q,p) =
∑

γ∈Γ χρ(γq,p). We may unfold
the integral as follows:∫

Γ\H
Nρ(q,p)g(q)dµ(q) =

∫

Γ\H

∑
γ

χρ(γq,p)g(q)dµ(q) =
∫

H
χρ(q,p)g(q)dµ(q). ¤

Thus to calculate N̂ρ(·,p), we will need to integrate eigenfunctions against the point-pair invari-
ant χρ. To do this, we recall the following proposition.

Proposition 1. Fix ρ > 0 and s ∈ C. There is a number I(ρ, s) with the following property :
for any smooth function φ : H → C satisfying

−∆φ = s(d− 1− s)φ, (21)
we always have ∫

H
χρ(p,q)φ(q)dµ(q) = I(ρ, s)φ(p). (22)

The function I does not depend on φ or p.

Proof. This is true for any point-pair invariant (see, for example, Theorem 1 of [23]). ¤
Putting the last two results together, we have

N̂ρ(·,p)
(disc)

j = I(ρ, sj)φ̄j(p), N̂ρ(·,p)
(cts)

(s) = I(ρ, s)Ē(s,p). (23)
It is therefore important for us to understand I(ρ, s). Before going on, we note the following obvious
properties of I:

(1) for all ρ > 0 and all s ∈ C,

I(ρ, s) =
∫

B(O,ρ)

y(q)sdµ(q), (24)

where O is the point (0, . . . , 0, 1) of the upper half-space H;
(2) for fixed ρ > 0, the function I(ρ, ·) is entire, and satisfies the functional equation I(ρ, s) =

I(ρ, d− 1− s). In particular, I(ρ, s) is real for s real or s on the critical line Re s = D;
(3) For fixed ρ > 0, the function I(ρ, s) is bounded in vertical strips.
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The identity (24) follows by substituting φ(q) = y(q)s and p = O into (22). The functional
equation is immediate from the defining property (22) of I. The analytic properties of I follow
from (24).

We need to investigate the behavior of I(ρ, s) as ρ →∞. We begin with the following result.

Proposition 2. For all ρ > 0 and all s ∈ C, we have

I(ρ, s) =
πDΓ(D + 1)

Γ(d + 1)
(2 sinh(ρ))de(s−d)ρ

2F1

(
d− s,D + 1; d + 1; 1− e−2ρ

)
.

Proof. After substituting the definition (11) of the invariant measure µ into the expression (24),
we have

I(ρ, s) =
∫

B(O,ρ)

ys−ddx1 . . . dxndy.

To calculate the integral, we shall express B(O, ρ) as a Euclidean ball. The lowest point of this ball
has y-coordinate e−ρ and the highest point eρ. Thus the Euclidean radius is sinh(ρ) and the Eu-
clidean center is (0, cosh(ρ)). In the integral, the y coordinate runs from e−ρ to eρ. For a fixed value
of y, the x-coordinate runs over a (d−1)-dimensional Euclidean ball of radius

√
(eρ − y)(y − e−ρ).

We therefore have

I(ρ, s) =
∫ eρ

e−ρ

∫

B
(
0,
√

(eρ−y)(y−e−ρ)
) ys−ddxdy.

Since the Euclidean ball B(0, r) in Rd−1 has volume πD
Γ(D+1)r

d−1, we have

I(ρ, s) =
πD

Γ(D + 1)

∫ eρ

e−ρ

(eρ − y)D(y − e−ρ)Dys−ddy.

Now, making the change of variable 2 sinh(ρ)η = y − e−ρ, we have

I(ρ, s) =
πD

Γ(D + 1)
(2 sinh(ρ))de(d−s)ρ

∫ 1

0

(1− η)DηD(1− (1− e2ρ)η)s−ddη.

By Euler’s integral formula (16), this is equal to

I(ρ, s) =
πDΓ(D + 1)

Γ(d + 1)
(2 sinh(ρ))de(d−s)ρ

2F1(d− s,D + 1; d + 1; 1− e2ρ).

Finally, by Pfaff’s identity (17), we have

I(ρ, s) =
πDΓ(D + 1)

Γ(d + 1)
(2 sinh(ρ))de(s−d)ρ

2F1(d− s,D + 1; d + 1; 1− e−2ρ). ¤

In passing, we note the following corollary.

Corollary 2. The volume of a ball in H of radius ρ is given by:
vol(B(p, ρ)) = (πDΓ(D + 1)/Γ(d + 1))(2 sinh(ρ))de−ρ

2F1

(
1,D + 1; d + 1; 1− e−2ρ

)
.

Proof. We simply note that vol(B(p, ρ)) = I(ρ, d− 1). ¤

3.1. Leading Terms from the Discrete Spectrum

Recall that, for a real s > D, we defined: w(s) = πDΓ(s−D)/Γ(s + 1),

fs(x) = w(s)(1− x)d
∑

06n<s−D

(d− s)n(D + 1)n

(D − s + 1)n

xn

n!
,

hd =

{
−∑(d−1)/2

k=1 1/k if d is odd,

log(4)−∑(d−2)/2
k=0 2/(2k + 1) if d is even.
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Proposition 3. Fix a real s ∈ [D, d− 1).

(i) If s−D /∈ Z, then I(ρ, s) = fs(e−2ρ)esρ + O(e(d−1−s)ρ).
(ii) If s−D is a positive integer, then

I(ρ, s) = fs(e−2ρ)esρ +
2(−1)s−DπD

(s−D)!Γ(d− s)
e(d−1−s)ρρ + O(e(d−1−s)ρ).

(iii) In the case s = D, we have I(ρ,D) = (2πD/Γ(D + 1)) (hd + ρ) eDρ + O(ρeρ(D−2)).
The implied constant in case (i) depends on s.

Proof. In case (i), we use the expansion (19) to show that for x ∈ (0, 1):
2F1(d− s,D + 1; d + 1; 1− x) = A2F1(d− s,D + 1;D + 1− s; x) + Bxs−D

2F1(d−D, s + 1; 1; x),
where A = Γ(d + 1)Γ(s−D)/Γ(D + 1)Γ(s + 1). Bounding the second term above by xs−D, we have

2F1(d− s,D + 1; d + 1; 1− x) =
Γ(d + 1)Γ(s−D)
Γ(D + 1)Γ(s + 1) 2F1(d− s,D + 1;D + 1− s;x) + O(xs−D).

Truncating the hypergeometric series at the error term, we obtain

2F1(d− s,D + 1; d + 1; 1− x) =
Γ(d + 1)Γ(s−D)
Γ(D + 1)Γ(s + 1)

∑

06n<s−D

(d− s)n(D + 1)n

(D + 1− s)n

xn

n!
+ O(xs−D).

Substituting this into Proposition 2, we can write

I(ρ, s) = w(s)(2 sinh(ρ))de(s−d)ρ
∑

06n<s−D

(d− s)n(D + 1)n

(D + 1− s)n

e−2nρ

n!
+ O(e(d−1−s)ρ).

Replacing 2 sinh(ρ) by eρ(1− e−2ρ), we obtain I(ρ, s) = fs(e−2ρ)esρ + O(e(d−1−s)ρ). This gives (i).
For (ii), we use the expansion (20) instead of (19). To prove (iii), we first use (20) as well, holding on
to one extra term. This gives I(ρ,D) = (2πD/Γ(D + 1))eDρ (ψ(1)− ψ(D + 1) + ρ) + O(ρeρ(D−2)),
where ψ = Γ′/Γ. By Theorem 1.2.7 of [1], we have ψ(1)− ψ(D + 1) = hd. ¤

Theorem 3.
• For an exceptional eigenvalue 0 < λj < D2,∣∣∣N̂ρ(·,p)

(disc)

j

∣∣∣
2

= fsj (e
−2ρ)2|φj(p)|2e2sjρ + clog(sj)ρe(d−1)ρ + O(e(d−1)ρ),

where clog is as defined in (6).
• For λj = D2,∣∣∣N̂ρ(·,p)

(disc)

j

∣∣∣
2

= (4πd−1/Γ(D + 1)2)(hd + ρ)2|φj(p)|2e2sjρ + O(e(d−1)ρ).

The implied constants depend on Γ.

Proof. This follows from (23) and Proposition 3. ¤

3.2. The Leading Term from the Continuous Spectrum

Theorem 4. For sufficiently large ρ,

1
4π

∑
κ

∫ 1

−1

∣∣∣∣N̂ρ(·,p)
(cts)

κ (D + it)
∣∣∣∣
2

dt =
πd−1

Γ(D + 1)2
|E (D,p)|2 ρe(d−1)ρ + O(e(d−1)ρ).

The implied constant depends on p and Γ.

Proof. Let s = D + it be on the critical line, with t ∈ [−1, 1] and t 6= 0. By (19), we have

2F1(d− s,D + 1; d + 1; 1− e−2ρ) =
Γ(d + 1)Γ(it)

Γ(D + 1)Γ(D + 1 + it) 2F1(D + 1− it,D + 1; 1− it; e−2ρ)

+
Γ(d + 1)Γ(−it)e−2itρ

Γ(D + 1)Γ(D + 1− it) 2F1(D + 1 + it,D + 1; 1 + it; e−2ρ).
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Substituting this into Proposition 2, we obtain

I(ρ, s) = πD(2 sinh(ρ))de−(D+1)ρ
( Γ(it)

Γ(D + 1 + it)
eitρ

2F1(D + 1− it,D + 1; 1− it; e−2ρ)

+
Γ(−it)

Γ(D + 1− it)
e−itρ

2F1(D + 1 + it,D + 1; 1 + it; e−2ρ)
)
.

Replacing Γ(it) by Γ(1+it)
it , we can write this as

I(ρ, s) = 2πD(2 sinh(ρ))de−(D+1)ρ Im
(

eitρ

t

−Γ(1 + it)
Γ(D + 1 + it) 2F1(D + 1− it,D + 1; 1− it; e−2ρ)

)
.

Hence by (23), we have
1
4π

∑
κ

∫ 1

−1

∣∣∣∣N̂ρ(·,p)
(cts)

κ (D + it)
∣∣∣∣
2

dt = πd−2(2 sinh(ρ))2de−(d+1)ρ

∫ 1

−1

h(t, ρ)2 |E(p,D + it)|2 dt, (25)

where h(t, ρ) = Im
(
(eitρ/t)(Γ(1 + it)/Γ(D + 1 + it))2F1(D + 1 − it,D + 1; 1 − it; e−2ρ)

)
. We shall

estimate the integral on the right-hand side of (25). To this end, we first break h up into more man-
ageable pieces as follows: h(t, ρ) = Im

(
eitρ/t

)
Re

(
g(e−2ρ, t)

)
+ Re

(
eitρ/t

)
Im

(
g(e−2ρ, t)

)
, where

g(x, t) = (Γ(1 + it)/Γ(D + 1 + it))2F1(D+ 1− it,D+ 1; 1− it; x). We note that g(x, t) is real ana-
lytic for |x| < 1

2 and t ∈ [−1, 1]. We also have g(x,−t) = g(x, t). The latter observations show that
Re g(x, t) is an even function of t, whereas Im g(x, t) = tf(x, t) for some analytic function f . Hence

h(t, ρ) = Im
(

eitρ

t

)(
2F1(D + 1,D + 1; 1; e−2ρ)

Γ(D + 1)
+ O(t2)

)
+ Re

(
eitρ

)
f(e−2ρ, t),

or, more simply, h(t, ρ) = (2F1(D + 1,D + 1; 1; e−2ρ)/Γ(D + 1))(sin(tρ)/t) + cos(tρ)f(e−2ρ, 0) +
O(|t|). Squaring this, we obtain

h(t, ρ)2 = 2F1(D + 1,D + 1; 1; e−2ρ)2

Γ(D + 1)2

(
sin(tρ)

t

)2

+ 2F1(D + 1,D + 1; 1; e−2ρ)f(e−2ρ, 0)
Γ(D + 1)

sin(2tρ)
t

+ O(1).

Estimating the hypergeometric function by 1 + O(e−2ρ), we have

h(t, ρ)2 =
1

Γ(D + 1)2

(
sin(tρ)

t

)2

+ O(ρ2e−2ρ) +
f(e−2ρ, 0)
Γ(D + 1)

sin(2tρ)
t

+ O(ρe−2ρ) + O(1).

Since ρe−2ρ and ρ2e−2ρ are bounded, we obtain

h(t, ρ)2 =
1

Γ(D + 1)2

(
sin(tρ)

t

)2

+
f(e−2ρ, 0)
Γ(D + 1)

sin(2tρ)
t

+ O(1). (26)

On the other hand, by the functional equation (10) for E(p, s), we have
|E(p,D + it)|2 = |E(p,D)|2 + O(t2). (27)

Putting the estimates (26) and (27) together, we find that

h(t, ρ)2|E(p, s)|2 =
|E(p,D)|2
Γ(D + 1)2

(
sin(tρ)

t

)2

+
|E(p,D)|2f(e−2ρ, 0)

Γ(D + 1)
sin(2tρ)

t
+ O(1).

Integrating this, we obtain∫ 1

−1

h(t, ρ)2|E(p, s)|2dt =
|E(p,D)|2
Γ(D + 1)2

∫ 1

−1

sin2(tρ)
t2

dt +
|E(p,D)|2f(e−2ρ, 0)

Γ(D + 1)

∫ 1

−1

sin(2tρ)
t

dt + O(1).

The change of variable u = ρt gives∫ 1

−1

h(t, ρ)2|E(p,D)|2dt =
|E(p,D)|2
Γ(D + 1)2

ρ

∫ ρ

−ρ

sin2(u)
u2

du +
|E(p,D)|2f(e−2ρ, 0)

Γ(D + 1)

∫ ρ

−ρ

sin(2u)
u

dt + O(1).
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Integrating by parts, we note that the second term on the right-hand side above is bounded; it may
therefore be absorbed into the error term. The other integral may be replaced by

∫
R

sin2(u)
u2 du +

O(ρ−1) = π + O(ρ−1). This gives us∫ 1

−1

h(t, ρ)2|E(p,D)|2dt =
π|E(p,D)|2
Γ(D + 1)2

ρ + O(1).

Substituting this into (25), we have
1
4π

∑
κ

∫ 1

−1

∣∣∣∣N̂ρ(·,p)
(cts)

κ (D + it)
∣∣∣∣
2

dt =
πd−1|E(p,D)|2

Γ(D + 1)2
ρe(d−1)ρ + O(e(d−1)ρ). ¤

3.3. The End of the Critical Line

Theorem 5.
∑

κ

∫ ∞

1

∣∣∣∣N̂ρ(·,p)
(cts)

κ (D + it)
∣∣∣∣
2

dt +
∞∑

j : λj>D2

∣∣∣∣N̂ρ(·,p)
(disc)

j

∣∣∣∣
2

¿ e(d−1)ρ.

The implied constant depends on Γ and p.

To prove this, we require the following lemma.

Lemma 2. Let δ > 0. For s = D + it with |t| > δ and ρ > 1, we have |I(ρ, s)| ¿ eDρ|t|−D−1.
Moreover, there exists a constant C1 > 0 such that for |t| > C1 and ρ > 1, we have
|I(ρ, s)| ³ eDρ|t|−D−1.

Proof. Let s = D + it. By formula (c2) of section II.2.6 of [19], we have for large t

2F1(d− s,D + 1; d + 1; 1− e−2ρ) =
Γ(d + 1)
Γ(D + 1)

(
(d− s)(1− e−2ρ)

)−D−1

×
(
eiπ(D+1) + e(d−s)(1−e−2ρ)

) (
1 + O(|(d− s)(1− e−2ρ)|−1)

)
.

For large t, the term (1+O(|(d− s)(1− e−2ρ)|−1)) is in fact 1+O(|t|−1) and, therefore, is bounded
away from zero and infinity. Hence, for large |t|, we have

∣∣
2F1(d− s,D + 1; d + 1; 1− e−2ρ)

∣∣ ³
t−D−1. The result follows from this estimate together with Proposition 2. ¤

Proof of the theorem. We have by (23)

N̂ρ(·,p)
(cts)

κ (D + it) = I(ρ,D + it)Eκ(D + it,p), N̂ρ(·,p)
(disc)

j = I(ρ, sj)φj(p).
Let |t| > C1. Then by the previous lemma, we have∣∣∣∣N̂ρ(·,p)

(cts)

κ (D + it)
∣∣∣∣ ³ eDρ|t|− d+1

2 |Eκ(D + it,p)| ,
∣∣∣∣N̂ρ(·,p)

(disc)

j

∣∣∣∣ ³ eDρ|t|− d+1
2 |φj(p)|

by the previous lemma. Hence
∑

κ

∫ ∞

C1

∣∣∣∣N̂ρ(·,p)
(cts)

κ (D + it)
∣∣∣∣
2

dt +
∞∑

j : Im sj>C1

∣∣∣∣N̂ρ(·,p)
(disc)

j

∣∣∣∣
2

³ e(d−1)ρ

( ∫ ∞

C1

|E(D + it,p)|2 t−d−1dt +
∞∑

j : Im sj>C1

|φj(p)|2 t−d−1

)
. (28)

The left-hand side of the above formula is finite by the Plancherel formula. Therefore the right-hand
side is finite, so the sum and the integral on the right-hand side both converge; this convergence
also follows from Chapter 29 of [9]. As the expression in the brackets in the right-hand side of (28)
does not depend on ρ, we have

∑
κ

∫ ∞

C1

∣∣∣∣N̂ρ(·,p)
(cts)

κ (D + it)
∣∣∣∣
2

dt +
∞∑

j : Im sj>C1

∣∣∣∣N̂ρ(·,p)
(disc)

j

∣∣∣∣
2

³ e(d−1)ρ.

A similar argument, using the first part of Lemma 2, shows that we can extend this bound to
∑

κ

∫ ∞

1

∣∣∣∣N̂ρ(·,p)
(cts)

κ (D + it)
∣∣∣∣
2

dt +
∞∑

j : λj>D2

∣∣∣∣N̂ρ(·,p)
(disc)

j

∣∣∣∣
2

³ e(d−1)ρ. ¤
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3.4. The Main Theorems

To prove Theorem 1, we simply add up the estimates given in Theorems 3 and 5 and apply the
Plancherel formula (13). Similarly, to obtain Theorem 2, we simply add up the estimates given in
Theorems 3, 4, and 5 and apply (15).
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