
THE STEKLOV SPECTRUM OF SURFACES: ASYMPTOTICS AND
INVARIANTS

ALEXANDRE GIROUARD, LEONID PARNOVSKI, IOSIF POLTEROVICH, AND DAVID A. SHER

Abstract. We obtain precise asymptotics for the Steklov eigenvalues on a compact Rie-
mannian surface with boundary. It is shown that the number of connected components of
the boundary, as well as their lengths, are invariants of the Steklov spectrum. The proofs
are based on pseudodifferential techniques for the Dirichlet-to-Neumann operator and on a
number–theoretic argument.

1. Introduction and main results

1.1. Steklov spectrum. Let Ω be a smooth compact Riemannian manifold of dimension
n with smooth boundary M = ∂Ω of dimension n − 1. Consider the Steklov eigenvalue
problem on Ω: {

∆u = 0 in Ω,
∂u
∂ν

= σ u on M.
(1.1)

Its spectrum is discrete and is given by a sequence of eigenvalues

0 = σ0 ≤ σ1 ≤ σ2 ≤ · · · ↗ ∞.
The Steklov eigenvalues are the eigenvalues of the Dirichlet-to-Neumann operator
D : C∞(M)→ C∞(M); recall that if f ∈ C∞(M), then Df = ∂ν(Hf), where Hf ∈ C∞(Ω)
is the harmonic extension of f to Ω and ∂ν denotes the outward normal derivative.

1.2. Spectral asymptotics. The Dirichlet-to-Neumann operatorD is an elliptic self-adjoint
pseudodifferential operator of order one (see [Tay, pp. 37-38]). Its eigenvalues satisfy the
asymptotic formula

σj = 2π

(
j

Vol(Bn−1) Vol(M)

) 1
n−1

+O(1), (1.2)

which is a direct consequence of Weyl’s law with a sharp remainder estimate (see [Hö]):

#(σj < σ) =
Vol(Bn−1) Vol(M)

(2π)n−1
σn−1 +O(σn−2).

Here Bn−1 is a unit ball in Rn−1. For simply connected surfaces, much more precise asymp-
totics were independently obtained by Rozenblyum and Guillemin–Melrose (see [Ro, Ed]):

σ2j = σ2j+1 +O(j−∞) =
2π

`(M)
j +O(j−∞). (1.3)

Here `(M) denotes the length of the boundary M , and the notation O(j−∞) means that the
error term decays faster than any power of j.

The first goal of this paper is to prove an analogue of (1.3) for an arbitrary surface Ω.
Given a finite sequence C = {α1, · · · , αk} of positive numbers, consider the following union
of multisets (i.e. sets with multiplicity): {0, .. . . . , 0}∪α1N∪α1N∪α2N∪α2N∪· · ·∪αkN∪αkN,
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where the first multiset contains k zeros and αN = {α, 2α, 3α, . . . , nα, . . . }. We rearrange
the elements of this multiset into a monotone increasing sequence S(C). For example,
S({1}) = {0, 1, 1, 2, 2, 3, 3, · · · } and S({1, π}) = {0, 0, 1, 1, 2, 2, 3, 3, π, π, 4, 4, 5, 5, 6, 6, 2π, 2π,
7, 7, · · · }.

Theorem 1.4. Let Ω be a smooth compact Riemannian surface with boundary M . Let
M1, · · · ,Mk be the connected components of the boundary M = ∂Ω, with lengths `(Mi), 1 ≤
i ≤ k. Set R =

{
2π

`(M1)
, · · · , 2π

`(Mk)

}
. Then

σj = S(R)j +O(j−∞).

Theorem 1.4 is proved in Section 2.2.
Note that the sequence S({α}) is the Steklov spectrum of a disk of radius 1/α; as a

consequence, the sequence S(R) is the Steklov spectrum of a disjoint union of k disks, with
radii 1

2π
`(Mi), i = 1, · · · , k.

Remark 1.5. Some related results in higher dimensions were obtained in [HL] (see also The-
orem 2.5); this paper served as a motivation and a starting point for our research.

Theorem 1.4 has the following corollary, which generalizes [KKP, Proposition 1.5.2]:

Corollary 1.6. For any smooth compact Riemannian surface Ω with k boundary compo-
nents, there is a constant N depending on the metric on Ω such that for j > N , the multi-
plicity of σj is at most 2k.

The proof is immediate from Theorem 1.4.

1.3. Spectral invariants. It follows from the standard results of Duistermaat and Guillemin
[DG] on wave trace asymptotics for pseudodifferential operators that, in any dimension, the
lengths of closed geodesics on the boundary M are invariants of the spectrum of the Dirichlet-
to-Neumann operator. For surfaces, the boundary is one–dimensional, and the lengths of
closed geodesics are simply the integer multiples of the lengths of boundary components.
However, this information is in general not enough to determine the number of bound-
ary components and their lengths. For example, the wave traces of a surface Ω1 with two
boundary components of lengths 1 and 5, respectively, and a surface Ω2 with three boundary
components of lengths 1, 2 and 3, respectively, have the same singularities. The perimeters of
Ω1 and Ω2 are also equal. Hence, these surfaces can not be spectrally distinguished without
further analysis.

Instead of using the wave trace, we propose a more direct approach to the study of spectral
invariants, based on Theorem 1.4 and some elementary number theory. The main result of
the paper is:

Theorem 1.7. The Steklov spectrum determines the number and the lengths of boundary
components of a smooth compact Riemannian surface.

The proof of Theorem 1.7 based on Lemmas 2.6 and 2.8 is presented in section 2.3. In
particular, this theorem implies that the disk is uniquely determined by its Steklov spectrum
among all bounded smooth Euclidean domains; see Section 1.4. Let us also state the following
corollary of Lemma 2.6:
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Corollary 1.8. Let {σj} be the monotone increasing sequence of Steklov eigenvalues of a
smooth compact Riemannian surface Ω. Then the length `max of a boundary component of
Ω with the largest perimeter is given by:

`max =
2π

lim supj→∞(σj+1 − σj)
.

Interestingly enough, Theorem 1.7 does not admit a straightforward generalization to
higher dimensions, as the following example shows.

Example 1.9. Consider four flat rectangular tori: T1,1 = R2/Z2, T2,1 = R/2Z × R/Z,

T2,2 = R2/(2Z)2 and T√2,
√

2 = R2/(
√

2Z)2. It was shown in ([DR, Pa]) that the dis-
joint union T = T1,1 t T1,1 t T2,2 is Laplace–Beltrami isospectral to the disjoint union
T ′ = T2,1 t T2,1 t T√2,

√
2. Therefore, for any L > 0, the two disjoint unions of cylinders

Ω1 = [0, L] × T and Ω2 = [0, L] × T ′ are Steklov isospectral. This follows from separation
of variables (see [CEG, Lemma 6.1]). At the same time, Ω1 has four boundary components
of area 1 and two boundary components of area 4, while Ω2 has six boundary components
of area 2. Therefore, the areas of boundary components can not be determined from the
Steklov spectrum.

Remark 1.10. As was mentioned above, the error estimate (1.2) in dimension n ≥ 3 is
significantly weaker than (1.3). It does not allow one to “decouple” the contributions of
different boundary components to the whole spectrum, and this explains why the volumes
of individual boundary components can not be recovered from the Steklov spectrum in
higher dimensions. An attempt to prove a result of this kind was made in [HL, Theorem
1.5]; however, the proof lacked a “decoupling” argument. As Example 1.9 shows, such an
argument does not exist in dimensions n ≥ 3. It remains to be seen whether the number of
boundary components can be determined from the Steklov spectrum in higher dimensions.

1.4. Discussion. One could ask whether there exist Riemannian manifolds with boundary
which are not isometric but have the same Steklov spectrum; in fact, there are at least
two general constructions of such manifolds. The first one is based on the idea used in
Example 1.9. Namely, cylinders of the same length over Laplace–Beltrami isospectral closed
manifolds (of which there exist many examples — see, for instance, [GPS] and references
therein) are Steklov isospectral. Using this method, one can produce examples of non-
isometric Steklov isospectral manifolds of any dimension n ≥ 3.

In dimension two, one can use a different approach. Let g1 and g2 = ρg1 be two con-
formally equivalent metrics on a surface Ω with the conformal factor ρ|∂Ω ≡ 1. Then it
immediately follows from the variational principle for Steklov eigenvalues and from the con-
formal invariance of the Dirichlet energy that the Riemannian surfaces (Ω, g1) and (Ω, g2)
are isospectral. In [FS1] such surfaces are referred to as σ-isometric. It is conjectured in [JS]
that two Riemannian surfaces are Steklov isospectral if and only if they are σ–isometric. If
true, this would imply that any smooth planar domain is uniquely determined by its Steklov
spectrum, since two planar domains are σ–isometric if and only if they are isometric.

Note that in both constructions presented above, the Steklov isospectral manifolds have
Laplace isospectral boundaries. Therefore, it is natural to ask the following:

Question 1.11. Do there exist Steklov isospectral manifolds with boundaries which are not
Laplace isospectral?
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In dimension n ≥ 3 this question remains open. At the same time, Theorem 1.7 implies
that in two dimensions the answer is negative:

Corollary 1.12. Let Ω1 and Ω2 be two Steklov isospectral Riemannian surfaces. Then ∂Ω1

an ∂Ω2 are Laplace isospectral.

Proof. Indeed, two closed curves have the same Laplace spectrum if and only if they have
the same length. The corollary then follows immediately from Theorem 1.7. �

Another interesting problem is to determine which Riemannian manifolds are uniquely
determined by their Steklov spectrum. In [PS] it is conjectured that the n-dimensional ball
is uniquely determined by its Steklov spectrum among all domains in Rn. It is proved for
n = 2 [We, Ed] and n = 3 [PS] in the class of smooth Euclidean domains with connected
boundary. Theorem 1.7 allows us to remove the assumption that the boundary is connected
in dimension two. In fact, we obtain a more general result.

Corollary 1.13. Let Ω be a smooth orientable surface of genus zero which is Steklov isospec-
tral to a disk of perimeter l. Then Ω is σ–isometric to a disk of perimeter l.

Proof. Indeed, as follows from Theorem 1.7, Ω has one boundary component of length l. As
was shown in [We, Formula (4.6)] (see also [FS2, Section 4]), for orientable surfaces of genus
zero with one boundary component of length l, σ1 attains its maximum if and only if the
surface is σ–isometric to a disk. This completes the proof of the corollary. �

Using the results of [FS1], similar rigidity statements can be proved for the critical catenoid
and the critical Möbius band (see [FS1, FS2] for the definitions of these surfaces).

Remark 1.14. One can also show that the disk is uniquely determined by its Steklov spectrum
among all simply connected planar domains with C1 boundaries. Indeed, the one-term Weyl
asymptotics hold in this case [Ag], and Weinstock’s inequality is true under even more general
assumptions [GP]. It would be interesting to prove Theorem 1.7 for non-C∞ boundaries.
This requires new methods, since the corresponding Dirichlet-to-Neumann operator would
no longer be pseudodifferential in this case.

Finally, one may also ask if orientability is an invariant of the Steklov spectrum — for
instance, whether one can always distinguish between a Möbius band and a topological disk
of the same perimeter. Both surfaces have one boundary component, and therefore Theorem
1.7 is not sufficient to tell them apart.
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terovich for useful discussions. The research of A.G. was partially supported by a startup
grant from Université Laval. The research of L.P. was partially supported by the EPSRC
grant EP/J016829/1. The research of I.P. was partially supported by NSERC, FRQNT, and
the Canada Research Chairs program. The research of D.S. was partially supported by the
CRM-ISM postdoctoral fellowship and the NSF grant 1045119.

2. Proofs

2.1. Smoothing perturbations. Recall that a pseudodifferential operator S on a Riemn-
nian manifold M is called smoothing if it has a smooth integral kernel [Tr]; it is a standard
fact that smoothing operators form an ideal in the algebra of pseudodifferential operators.
Additionally, smoothing operators are bounded as maps from Hs(M) to H t(M) for any s
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and t ∈ R, so in particular are bounded operators on L2(M). We will make use of the
following well-known result, which is part of the folklore of the theory of pseudodifferential
operators.

Lemma 2.1. Let M be a compact manifold of dimension n. Let P and Q be elliptic, bounded
below, self-adjoint pseudodifferential operators on M of order m > 0. If the difference P −Q
is a smoothing operator, then the eigenvalues of P and Q satisfy

λj(P )− λj(Q) = O(j−∞).

Since we could not locate a proof in the literature with the desired level of generality, we
have included one here for convenience. The argument is based loosely on the proof of the
first theorem in [HL, Section 5]; see also [Ed] for a related result.

Proof of Lemma 2.1. It follows from the spectral theorem (see [Sh, Theorem 8.3, p. 71])
that both P and Q have bounded below discrete spectra, which consist entirely of eigenval-
ues, each with finite multiplicity, and there are corresponding complete orthonormal bases of
L2(M). Suppose that the functions φj form an orthonormal basis associated to the eigenval-
ues λj(P ), with j ≥ 1. Let Ek ⊂ L2(M) be the span of the first k eigenfunctions φ1, · · · , φk.
By hypothesis, the operator S = Q − P is smoothing. It follows from the variational char-
acterizations of eigenvalues that

λk+1(Q) = λk+1(P + S) ≥ min
f⊥Ek,‖f‖=1

(〈Pf, f〉+ 〈Sf, f〉) ≥ λk+1(P )− max
f⊥Ek,‖f‖=1

|〈Sf, f〉|.

In other words,

λk+1(P )− λk+1(Q) ≤ max
f⊥Ek,‖f‖=1

|〈Sf, f〉| ≤ max
f⊥Ek,‖f‖=1

||Sf ||L2 . (2.2)

We may write any such f as a Fourier series: f =
∑

j>k fjφj, where fj = 〈f, φj〉. Then for
any positive integer p,

||Sf ||L2 ≤
∑
j>k

|fj| · ||Sφj||L2 =
∑
j>k

|fj|λ−pj ||SP pφj||L2 ≤ λ−pk
∑
j>k

|fj| · ||SP pφj||L2 .

By Cauchy-Schwarz and Plancherel’s theorem, and the fact that f has norm 1,

||Sf ||L2 ≤ λ−pk (
∑
j>k

||SP pφj||2L2)1/2 ≤ λ−pk (
∞∑
j=1

||SP pφj||2L2)1/2. (2.3)

Note that the bound is independent of f . Now observe that for any N , ||SP pφj||2L2 =

λ−2N
j ||SP p+Nφj||2L2 . Since S is smoothing, so is SP p+n (by the ideal property of smoothing

operators). As a consequence, the operator SP p+N is bounded from L2 to L2 for any N ,
and hence ||SP p+Nφj||L2 is bounded by a constant Kp,N independent of j. We have for any
p and N , and any f as above:

||Sf ||L2 ≤ λ−pk Kp,N(
∞∑
j=1

λ−2N
j )1/2.

By the Weyl asymptotics, the sum on the right-hand-side is finite for sufficiently large N .
Fix such a large N ; then there is a constant Cp depending only on p (and not on f) such
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that ||Sf ||L2 ≤ Cpλ
−p
k . Using the Weyl asymptotics again, we obtain that for any p, there is

a Cp such that

λk+1(P )− λk+1(Q) ≤ max
f⊥Ek,‖f‖=1

||Sf ||L2 ≤ Cpk
−mp/n.

Since m > 0 and the roles of P and Q are symmetric in this argument, this completes the
proof. �

2.2. Proof of Theorem 1.4. For each i = 1, · · · , k, let Ωi be a topological disk with a
Riemannian metric which is isometric to Ω in a neighborhood of the boundary component
Mi. Let Ω] be the disjoint union of the disks Ωi. In other words, Ω] is obtained by keeping
a collar neighborhood of each boundary curve Mi and capping it by smoothly gluing a disk.
Since Ω and Ω] are isometric in a neighborhood of their common boundary M , it follows
from [LU, Section 1] that the Dirichlet–to–Neumann operators DΩ,DΩ]

∈ OPS1(M) have
the same full symbol. In other words, the difference DΩ−DΩ]

is a smoothing operator. From
Lemma 2.1, it follows that

σj(Ω)− σj(Ω]) = O(j−∞).

It follows from the Riemann mapping theorem that for each i = 1, · · · , k, the disk Ωi

is conformally equivalent to the unit disk D. Since ∂Ωi is smooth, this implies that Ωi is
isometric to (D, δ2

i g0), where g0 is the Euclidean metric and δi ∈ C∞(D) is a smooth positive
function on the closure of D. In the coordinates provided by this isometry, the Steklov
eigenvalue problem becomes

∆u = 0, ∂νu = |δi|σu.

Since
∫ 2π

0
|δi| = li is the length of the boundary component Mi, it follows from [Ro, Corollary

1] that

σj(D, δi) = S

({
2π

`(Mi)

})
j

+O(j−∞).

This completes the proof of Theorem 1.4.

Remark 2.4. The result in [Ro] is based on a local coordinate computation of the full symbol
of the Dirichlet–to–Neumann map using a graph parametrization of the boundary. For a
different approach using a conformal equivalence to the upper half-plane, see [Ed].

The first part of the proof of Theorem 1.4 admits a straightforward extension to higher
dimensions, yielding the following theorem which can be viewed as the main result of [HL]:

Theorem 2.5. Suppose that Ω1 and Ω2 are smooth compact Riemannian manifolds with
boundary M1 and M2 respectively; let their Steklov eigenvalues be {σj(Ω1)} and {σj(Ω2)}
respectively. Assume there exists an isometry φ between a neighborhood U1 of M1 in Ω1 and
a neighborhood U2 of M2 in Ω2 for which φ(M1) = M2. Then

σj(Ω1)− σj(Ω2) = O(j−∞).
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2.3. Proof of Theorem 1.7. Let σ = {σj} be the monotone increasing sequence of Steklov

eigenvalues of a surface with boundary Ω. Let R =
{

2π
`1
, · · · , 2π

`k

}
be a finite multiset, such

that `1, . . . `k are the lengths of the boundary components of Ω. It follows from Theorem 1.4
that σj−S(R)j = O(j−∞). In order to prove Theorem 1.7 we describe an inductive procedure
which allows one to determine the multiset R from the infinite sequence σ. A problem of
independent interest (which we do not address here) is to find a practical implementation of
the proposed algorithm, that could be used to find the lengths of the boundary components
of a surface from its Steklov spectrum with high precision.

In what follows, we deal only with countable multisets of non-negative real numbers. Some-
what abusing notation, we identify such a multiset with the monotone increasing sequence of
its elements. In particular, mappings between multisets are understood as mappings between
the corresponding sequences.

Given two multisets of positive real numbers A and B, we say that a mapping F : A→ B
is close if it has the property that for each ε > 0, there are only finitely many x ∈ A with
|F (x) − x| ≥ ε. We say that F is an almost-bijection if for all but finitely many y ∈ B the
pre-image F−1(y) consists of one point.

Lemma 2.6. Let A = {Aj} be a multiset for which there exists a close almost-bijection
F : S(R)→ A for some finite multiset R of positive numbers. Then the smallest element of
R is L = lim supj→∞(Aj+1 − Aj).

Now assume without loss of generality that L = 1 (otherwise we may divide all elements

by L). Let R̂ be R with a 1 removed. We construct a new multiset Â as follows. Let N0 be
a (large) number such that for any natural number j > N0 there exists at least two elements
of A at a distance less than 1/10 from j. Denote by G1(j) and G2(j) the two elements of A
which are closest to j (in case of ties, we start by choosing the largest). Set

Â := A \ ∪j>N0{G1(j), G2(j)}. (2.7)

We claim

Lemma 2.8. If Â is infinite, there is a close almost-bijection F̂ : S(R̂)→ Â.

Assuming these two lemmas we may argue as follows. Note that the monotone increasing
sequence σ = {σj} of Steklov eigenvalues, viewed as a multiset, satisfies the hypothesis of
Lemma 2.6. Indeed, by Theorem 1.4, the map from S(R) to σ which takes S(R)j to σj is a
close bijection between sequences. Therefore,

2π

`max
= lim sup

j→∞
(σj+1 − σj),

where `max = max{l1, . . . , lk}. In particular, this proves Corollary 1.8. Applying Lemma 2.8

to σ̂ and combining it with Lemma 2.6 allows one to find the smallest element of R̂, which is
the second-smallest element of R; it corresponds to the second largest boundary component.
Repeating this construction until there remains only a finite number of elements from the
original sequence σ, we can find all of R. Therefore, the number of boundary components as
well as their lengths are uniquely determined by σ, and the proof of Theorem 1.7 is complete.
It remains to prove the lemmas.

Proof of Lemma 2.6: Let R = {α1, . . . , αk}, 0 < α1 ≤ α2 ≤ · · · ≤ αk be a multiset such
that F : S(R) → A is a close almost-bijection. Without loss of generality, we may assume
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that α1 = 1. We first claim that

lim sup
j

(S(R)j+1 − S(R)j) = lim sup
j

(Aj+1 − Aj).

To show this, pick any ε > 0. Since we are worried only about the limsup, we may ignore
any finite number of terms and therefore we assume that F is in fact a bijection. Since
F is close, there exists N ∈ N for which j ≥ N implies |F (S(R)j) − S(R)j| < ε. Let
L = lim supj(S(R)j+1 − S(R)j). Then there are infinitely many j ≥ N for which S(R)j+1 −
S(R)j ≥ L − ε and hence there are no elements of S(R) in the interval [S(R)j, S(R)j+1] of
length at least L−ε. But then there are no elements of A in [S(R)j+ε, S(R)j+1−ε], an interval
of length at least L−3ε. Since there are infinitely many such j, we have lim supj(Aj+1−Aj) ≥
L−3ε; since ε was arbitrary, lim supj(Aj+1−Aj) ≥ lim supj(S(R)j+1−S(R)j). Interchanging
S(R) and A and arguing in the same way we get the opposite inequality, proving the claim.

We are now ready to prove the lemma. Let X be an integer which is a multiple of the
numerators of all rational generators αi, and let {αi1 , . . . , αim}, 1 < i1 ≤ · · · ≤ im ≤ k, be the
multiset of irrational generators. Denote by α = αim the largest of all irrational generators
αin , n = 1, . . . ,m. By Dirichlet’s theorem on simultaneous approximation, applied to the
irrational numbers X/αin , there is an infinite set of positive integers K ⊂ N such that for
each q ∈ K and each αin , there exists an integer pq,n with

| X
αin
− pq,n

q
| < 1

q1+1/m
.

Rearranging, we have

|qX − pq,nαin| <
αin
q1/m

.

In particular, for each q ∈ K, there is a multiple of each irrational generator αin in the
interval [qX − αin

q1/m
, qX + αin

q1/m
], and hence in the larger interval [qX −α/q1/m, qX +α/q1/m].

Since qX is itself a multiple of each rational generator, there is in fact a multiple of each
generator in [qX − α/q1/m, qX + α/q1/m]. Since each generator is bigger than 1, there
must be no multiples of any generator, and hence no elements of S(R), in the interval
[qX − 1 + α/q1/m, qX − α/q1/m]. Since K is infinite, we conclude that

lim sup
j

(S(R)j+1 − S(R)j) ≥ 1.

Moreover, since α1 = 1, each integer is in S(R), so in fact lim supj(S(R)j+1 − S(R)j) = 1.
Therefore, by the previous claim, lim supj(Aj+1 − Aj) = 1, which completes the proof. �

Proof of Lemma 2.8: Let N be a large enough number such that for x ≥ N in S(R), we
have |F (x) − x| < 1/10, and for y ≥ N in A, F−1(y) consists of one point. First of all,
note that N ≥ N0, and for j > N the construction implies |Gi(j) − j| < 1/10 for i = 1, 2.
Moreover,

lim
j→∞
|Gi(j)− j| = 0 (i = 1, 2). (2.9)

We construct F̂ from F , since S(R̂) is a subset of S(R). Given any x > N + 1 in S(R̂),

there are two possibilities. One is that F (x) ∈ Â, in which case we let F̂ (x) = F (x). The

other is that F (x) /∈ Â, in which case F (x) must have been removed from A “by mistake;”
i.e. there is a j1 for which say F (x) = G1(j1). Then, obviously, j1 > N . In this case F (j1)
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cannot have been removed, and we put F̂ (x) := F (j1). More precisely, there are (at least)
two representatives of j1 in the multiset S(R); denote their images under F by F1(j1) and
F2(j1). Suppose that one of these points coincides with G1(j1), say F2(j1) = G2(j1); then we

let F̂ (x) := F1(j1). On the other hand, if neither of these points coincide with G2(j1), then

there exists another point y ∈ S(R̂) with F (y) = G2(j1). In this case, we let F̂ (x) := F1(j1)

and F̂ (y) := F2(j1). After doing this for each x > N + 1, we extend this mapping to the

finite remainder of the multiset S(R̂) in whichever way we like.

We claim that F̂ is a close almost-bijection. To see this, note that it is well-defined and in
fact invertible for large y. Therefore it is an almost-bijection. It remains to prove that it is
close. Assume that x > N + 1. Then we either have F̂ (x) = F (x) (and so |F (x)− x| → ∞),

or F̂ (x) = F (j1). In the latter case for i = 1, 2 we have

|F̂ (x)− x| = |F (j1)−Gi(j1)| ≤ |F (j1)− j1|+ |Gi(j1)− j1|,

which goes to zero as j1 goes to infinity. This completes the proof. �

Remark 2.10. The results of this section could be used to study multisets that are unions of
arithmetic progressions. Such multisets were studied, for instance, in [ABBG]. In particular,
it follows from Lemmas 2.6 and 2.8 that there is a close almost-bijection between two unions
of arithmetic progressions if and only if they coincide as multisets.
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