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1 Introduction

Let M be a connected surface with cusps (i.e., M is a compact perturbation of a surface with constant negative
curvature and finite volume). Let ∆ be the selfadjoint extention of the positive Laplace operator on M . Then
(see [8] and references there) the spectrum of ∆ consists of:

(i) the finite number of eigenvalues 0 = λ0 < λ1 ≤ ... ≤ λl < 1/4,
(ii) the absolutely continuous spectrum [1/4,+∞)
(iii) the eventual eigenvalues 1/4 ≤ λl+1 ≤ ... (in finite number or not) which are embedded in the

continuous spectrum.
Let Nd(T ) and Nc(T ) be the counting functions of the discrete and continuous spectra correspondingly (see

Section 2 for the precise definition). Because of the complicated structure of spectrum (existence of embedded
eigenvalues), it is hard to compute the asymptotics of Nd(T ) or Nc(T ) separately. However, it is possible to
study the asymptotics of the sum

Nd(T ) + Nc(T ). (1.1)

In the case of a surface with constant negative curvature three terms of the asymptotics of (1.1) can be obtained
using methods of the theory of automorphic forms [6]:

Nd(T ) + Nc(T ) =
|M |
4π

T 2 − k

π
T lnT +

k

π
(1− ln 2)T + o(T ) (1.2)

(|M | is the area of M and k is the number of cusps). In the general case only the existence of the leading term
in the asymptotics (1.2) was known [8]. In the first part of our paper we study the asymptotic behaviour of
(1.1) for arbitrary surfaces with cusps and prove the following
Theorem 1.1

Let M be a surface with cusps. Then the following asymptotic formula holds:

Nd(T ) + Nc(T ) =
|M |
4π

T 2 − k

π
T lnT + O(T ). (1.3)

Suppose in addition that the Liouville measure of the periodic trajectories of the geodesic flow on M equals zero.
Then formula (1.2) is valid.
Remark 1

The nonperiodicity condition in this theorem is very essential; if it is not satisfied, then formula (1.2) is
not valid even for closed surfaces (k = 0).
Remark 2

Since for surfaces with constant negative curvature of finite volume the nonperiodicity condition is satisfied,
we thus give another proof of (1.2) for such surfaces, without using the Selberg trace formula.

There exist two natural approaches to this problem. The first one is to use the cut-off Laplacian ∆a [3]. If
N∆a(T ) denotes the number of eigenvalues of ∆a less than T 2, one can prove in the same way as in [5] that

Nd(T ) + Nc(T )−N∆a
(T ) = O(T ).

In order to compute N∆a
(T ), one can use, for example, Dirichlet-Neumann bracketing (in the spirit of [2]).

This approach has the advantage of being direct and simple, it is easy to check that the contribution from the
cusp to N∆a(λ), computed via bracketing, equals exactly (4.12). After proceeding further like we do in this
paper, one arrives at the two-term asymptotics, which is quite sufficient to obtain formulae (1.8) and (1.9) for
resonances. The disadvantage of this method is the bad estimate of the remainder term. Using bracketing it
is never possible to obtain something better than O(T ) in the remainder, and so it seems difficult to obtain
(1.2) using the cut-off Laplacian. In order to obtain three terms of Nd(T ) + Nc(T ), we will use the approach
of Vassiliev [12, 13]. But since his method was created for compact manifolds (and pure discrete spectrum), we
should change it a little.

Suppose first that M is compact and denote T 2 = λ. Then Vassiliev’s method computes Nd(T ) = TrEλ =∫
M

e(λ, x, x)dx, where Eλ is a spectral projector, i.e., the orthogonal projector onto the subspace of L2(M),
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generated by the eigenfunctions of ∆ with eigenvalues less than λ, and e(λ, x, y) is the integral kernel of Eλ.
In case M contains cusps, the trace of the spectral projector is infinite. But suppose that MY is big enough
compact part of M (more precisely MY is defined via (4.1)); then the cut-off trace

∫
MY

e(λ, x, x)dx is finite and

may be computed in the same way as in [9]. This results in obtaining (1.2) for general surfaces with cusps and
non-periodic geodesic flow and (1.3) in the general case.

Another question we would like to discuss in this paper is the asymptotic behaviour of the resonance set
of ∆. Let ϕ(s) be the determinant of the scattering matrix and R be the set of all poles of ϕ(s) (all but a finite
number of elements of R lie in the left half-plane Re s < 1/2). Let Np(T ) be the number of poles ρ of ϕ(s),
counted with the order, such that |ρ− 1/2| < T . The resonance set σ(M) of M is the union of three sets:

a) R,
b) the set of points sj ∈ C such that sj(1− sj) is an eigenvalue of ∆,
c) 1/2.
Each point ν ∈ σ(M) occurs with certain multiplicity m(ν) (see [8] for the precise definition). The counting

function of the resonance set
Nρ(T ) =

∑
ν∈σ(M), |ν−1/2|<T

m(ν) (1.4)

is, up to small terms, equal to 2(Nd(T ) + 1
2Np(T )). We want to obtain the asymptotics of (1.4) by means of

(1.3). In order to do this we have to estimate the difference

R(T ) := Nc(T )− 1
2
Np(T ).

Thus, the second half of our paper is devoted to the estimations of R(T ).
In [8] it was shown that

R(T ) = o(T 2), (1.5)

but later a gap in the proof was found. In case when M has constant curvature it is known [11] that all the
poles ρ ∈ R of ϕ(λ) lie in the strip |Re ρ| < C and

R(T ) = O(T ),

which results in obtaining two terms of the asymptotics of Nρ(T ).
Although we are not able to obtain the second term in the general case, we can prove (1.5) and even

improve it a little. Namely, we prove the following
Theorem 1.2

a) For arbitrary ε > 0 the following estimate holds:

R(T ) = o(T 3/2+ε). (1.6)

b) Suppose that all poles ρ ∈ R of ϕ(λ) lie in the strip |Re ρ| < C. Then for arbitrary ε > 0

R(T ) = o(T 1+ε). (1.7)

Corollary 1.1
a) For arbitrary ε > 0 the following estimate holds:

Nd(T ) +
1
2
Np(T ) =

|M |
4π

T 2 + o(T 3/2+ε). (1.8)

b) Suppose that all the poles ρ ∈ R of ϕ(λ) lie in the strip |Re ρ| < C. Then for arbitrary ε > 0

Nd(T ) +
1
2
Np(T ) =

|M |
4π

T 2 + o(T 1+ε). (1.9)

The proof of these two statements is based on the pigeonhole principle; the monotonicity of Nd(T )+Np(T )
is very essential.
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After our paper was written two new results concerning the above mentioned problems appeared. Namely,
in [4] the example of manifold with cusps is constructed, for which the condition of part b) of theorem 1.2 is
not satisfied. And in [14] the estimate

R(T ) = O(T 5/3)

were obtained, using methods, quite different from that of us.
The rest of the paper is organized in the following way: in Section 2 we introduce some preliminary notions

and results; in Section 3 we give a brief description of Vassiliev’s method for compact manifolds; in Section 4
we prove theorem 1.1 for general surfaces with cusps, and in Section 5 we prove theorem 1.2.

2 Preliminaries

For more details we refer the reader to [3, 7, 8].
Let M be the surface with cusps, i.e., M is a complete orientable two-dimentional manifold with metric g,

and M admits a decomposition
M = M0 ∪ Z1 ∪ ... ∪ Zk.

Here M0 is compact,
Zi ' S1 × [ai,∞), i = 1, ..., k, (2.1)

ai > 0, and the metric on Zi in coordinates z := (x, y) ∈ S1 × [ai,∞) is

ds2 =
dx2 + dy2

y2
.

If the metric g on M has constant negative curvature −1, then M is of the form Γ\H2, where H2 is hyperbolic
plane and Γ is a torsion-free discrete subgroup of PSL(2, R).

Next, we consider the positive Laplace operator ∆ : C∞
0 (M) → C∞(M), generated by the metric g. This

operator, regarded as an operator in L2(M), has a unique self-adjoint extension, for which we save the notation
∆.

The spectrum of ∆ consists of:
(i) the finite number of eigenvalues 0 = λ0 < λ1 ≤ ... ≤ λl < 1/4,
(ii) the absolutely continuous spectrum [1/4,+∞) of multiplicity k (k is the number of cusps of our surface),
(iii) the eventual eigenvalues 1/4 ≤ λl+1 ≤ ... (in finite number or not) which are embedded in the

continuous spectrum (as it is shown in [3], for generic metric on M the set (iii) is empty).
The generalized eigenfunctions, which belong to the continuous spectrum, are Eisenstein functions Ej(z, s)

(j = 1, ..., k). Each Ej(z, s) is a meromorphic function of s ∈ C with poles contained in the union of the
half-plane Re s < 1/2 and the interval (1/2, 1]; Ej(z, s) is a smooth function of z ∈ M and

∆Ej(z, s) = s(1− s)Ej(z, s). (2.2)

The zeroth Fourier coefficient of Ej(z, s) on the cusp Zi equals

δi,jy
s
i + φi,j(s)y1−s

i . (2.3)

Let
φ(s) =

(
φi,j(s)

)
, ϕ(s) = det φ(s).

Then φ(s) is called the scattering matrix and satisfies

φ(s)φ(1− s) = Id, φ(s) = φ(s̄), φ(s)∗ = φ(s̄).

The poles of φ(s) (and of ϕ(s)) are contained in the union of the half-plane Re s < 1/2 and the interval (1/2, 1].
Let

Nd(T ) =
∑

λj<T 2

1
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and

Nc(T ) := − 1
4π

T∫
−T

ϕ′

ϕ
(1/2 + ir)dr

be the counting functions of the discrete and continuous spectra correspondingly.
Let uj be an eigenfunction of ∆, corresponding to λj . We may assume that {uj} form an orthonormal

basis in the subspace of L2(M), generated by the eigenfunctions of ∆. The Fourier expansion of the function
f ∈ C∞

0 (M) has the form

f(z) =
∑

j

(f, uj)uj(z) +
1
4π

k∑
j=1

∞∫
−∞

Ej(1/2 + ir, z)
∫
M

f(w)Ej(1/2− ir, w)dµ(w)dr, (2.4)

where dµ(w) is the volume form, generated by g.

3 Vassiliev’s approach

Here, for the convenience of the reader, we give a brief description of the method used by Vassiliev in [12, 13]
to compute the spectral asymptotics of elliptic operators on compact connected manifolds with boundaries (for
the sake of simplicity we consider Laplace operators only).

Let M be a compact connected n-dimensional manifold with smooth boundary Γ. Suppose, 0 < λ1 < λ2 ≤
... are eigenvalues of ∆ (with Dirichlet boundary conditions) and ui(z) are corresponding eigenvectors. Let
m ∈ N be any number greater than n/2. We are going to prove the asymptotic formula

N∆m(T ) := card{λj < T 2/m} = Cn|M |Tn/m − C̃n|Γ|T (n−1)/m + o(T (n−1)/m) (3.1)

in case, when Liouville measure of the union of periodic trajectories of the geodesic flow equals zero, and

N∆m(T ) = Cn|M |Tn/m + O(T (n−1)/m) (3.2)

in the general case (|Γ| is the (n − 1)-dimensional volume of Γ, Cn = (2π)−nωn and Ĉn = (2π)1−nωn−1/4, ωn

being the volume of a unit ball in Rn). Obviously, from (3.1) and (3.2) the asymptotics of N∆(λ) follows at
once.

First of all we introduce the coordinates z := (r, rΓ) on M such that r measures the distance from z to Γ
and rΓ = (r1, ..., rn−1) are coordinates along the boundary. Next we denote λ = T 2 and introduce the partition
of M into three regions:

(i) inner region r > δ (δ is some small positive number),
(ii) intermediate region λ(ε−1)/2m < r < δ (0 < ε < 1/4),
(iii) boundary region r < λ(ε−1)/2m.
Let χ+(r) ∈ C∞(R+) be a real function such that χ+(r) = 0 whenever r < 1/2, dχ+(r)/dr ≥ 0, χ+(1−r) =

1− χ+(1 + r); we also denote χ0(r) := χ+(r)− χ+(r/2), χ−(r) := 1− χ+(r/2) and |M |ε =
∫
M

χε. (ε = +,−, 0).

Let p be the smallest positive number such that δ/2p+1 < λ(ε−1)/2m. We set δl = δ/2l, l = 1, ..., p + 1.
One may easily see that

N∆m(T ) = TrEλ = Tr(χ+(r/δ)Eλ) +
p∑

l=1

Tr(χ0(r/δl)Eλ) + Tr
(
χ−(r/δp+1)Eλ

)
, (3.3)

where Eλ is the spectral projector of ∆m, i.e.,

Eλ(v) =
∑

λm
k

<λ

(v, uk)uk.
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Now using microlocal analysis as well as the wave equation method it is possible to prove the following asymp-
totics in the inner and intermediate regions:
Proposition 3.1

As λ →∞,
Tr

(
χ+(r/δ)Eλ

)
= Cn|M |+λn/2m + O(λ(n−1)/2m). (3.4)

Suppose that the Liouville measure of the union of periodic trajectories of the geodesic flow on M equals
zero. Then, as λ →∞,

Tr
(
χ+(r/δ)Eλ

)
= Cn|M |+λn/2m + o(λ(n−1)/2m). (3.5)

Proposition 3.2
As λ →∞, the following asymptotic formula holds uniformly for λ(ε−1)/2m < δ ≤ d0 (d0 > 0):

Tr
(
χ0(r/δ)Eλ

)
= Cn|M |0λn/2m + O(δε/32λ(n−1)/2m). (3.6)

Since the boundary region is very small, it is sufficient to compute the contribution from there very roughly,
namely, we can apply the usual method of freezing coefficients. Let us fix arbitrary point rΓ ∈ Γ and consider
the new problem:

∆m
Γ u(r) = λu(r), (3.7)

d2j

dr2j
u(r)

∣∣∣
r=0

= 0 (j = 0, ...,m− 1),

where ∆m
Γ is obtained from ∆m via the following procedure (which we call freezing of the coefficients):

a) in the expression for ∆m in coordinates (r, rΓ) we save only terms with 2m derivatives;
b) all derivatives along the boundary ∂/∂rk (k = 1, ..., n− 1) we change into iξk;
c) we put z = (0, rΓ) into coefficients.
Let R(µ) be the resolvent of the initial Dirichlet problem, and RΓ(µ, ξΓ) (ξΓ = (ξ1, ..., ξn−1)) be the resolvent

of the problem (3.7). Then the following formula holds:

Tr
(
χ−(r/δ)

(
R(µ)− (2π)1−n

∫
Rn−1

RΓ(µ, ξΓ)dξΓ

))
= o(λε(n−1)/2m−1), (3.8)

whenever | arg µ| ≥ cλ−ε/2m (c > 0 being arbitrary). Let λc be a complex number such that arg λc =
c(λ1/2mδ)−1, |λc| = |λ|, and L(λc) be a circle arc which leads from λc to λ̄c and does not intersect the real
positive λ-axis. In order to compute the contribution from the boundary region we use the Pleijel formula [1]:

∣∣ Tr
(
χ−(r/δ)Eλ

)
− (−2πi)−1

∫
L(λc)

Tr
(
χ−(r/δ)R(µ)

)
dµ

∣∣
≤ (1 + π−2)1/2(Imλc)

∣∣ Tr
(
χ−(r/δ)R(λc)

) ∣∣ . (3.9)

Formulae (3.8) and (3.9) imply that in order to obtain the contribution to the asymptotics from the
boundary region we should investigate the one-dimension problem (3.7). After doing this we arrive at
Proposition 3.3

As λ →∞,
Tr

(
χ−(r/δ)Eλ

)
= Cn|M |−λn/2m + C̃n|Γ|λ(n−1)/2m + o(λ(n−1)/2m). (3.10)

Formulae (3.1) and (3.2) follow directly from (3.4)–(3.6) and (3.10).
Before proceeding further we make some remarks. As it turns out, the condition 2m > n is purely technical

and was introduced only in order to make all the integrals absolutely convergent; however, if not to care much
about the reasoning of passing to the limit c → 0 in (4.11), one may put m = 1, which leads to the same answer
but reduces computations reasonably. Since our computations are complicated enough even without additional
fractional powers of λ, in what follows we put m = 1 and do not pay much attention to the fact that some
integrals fail to converge absolutely; we also refer the reader to [9], where the complete computations are made
in a slightly different setting.
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4 Improved Asymptotics of Counting Function

Here we are going to give a proof of theorem 1.1.
Let λ := T 2 + 1/4. Since |

√
λ − T | = O(T−1), it is sufficient to prove the asymptotic formulas for

Nd(
√

1/4 + T 2) + Nc(T ), equvivalent to (1.2) and (1.3).
Suppose for simplicity that M contains only one cusp. Then, if we denote by Eλ the spectral projector of

∆, from (2.4) it follows that

Eλv =
∑

λj<λ

(v, uj)uj +
1
4π

T∫
−T

(
v,E(1/2 + ir, ·)

)
E(1/2 + ir, ·)dr,

where (·, ·) stands for the scalar product in L2(M). The spectral function (i.e., the integral kernel of Eλ) is
then equal to

e(λ, z, w) =
∑

λj<λ

uj(z)uj(w) +
1
4π

T∫
−T

E(1/2 + ir, z)E(1/2 + ir, w)dr.

Unfortunately, ∫
M

e(λ, z, z)dµ(z)

is infinite (if λ > 1/4), and so Eλ is not of trace class. Thus, we should introduce the cut-off trace which is
finite. Suppose that Y > a1 and let

MY = M0 + Z1,Y , (4.1)

where under the isometry (2.1) Z1,Y maps onto S1 × [a1, Y ].
We define the cut-off trace of Eλ to be

TrY Eλ :=
∫

MY

e(λ, z, z)dµ(z) =
∫

MY

[ ∑
λj<λ

|uj(z)|2 +
1
4π

T∫
−T

|E(1/2 + ir, z)|2dr
]
dµ(z). (4.2)

Employing the same method as in [5], one can show that∫
MY

|E(1/2 + ir, z)|2dµ(z) = 2 lnY − ϕ′

ϕ
(1/2 + ir) + b1(r, Y )− b2(r, Y ), (4.3)

where
b1(r, Y ) = O(1/r)

uniformly on Y and

b2(r, Y ) =
∫

M\MY

∣∣ E(1/2 + ir, z)− y1/2+ir − ϕ(1/2 + ir)y1/2−ir
∣∣2 dµ(z).

It is obvious that ∫
MY

[ ∑
λj<λ

|uj(z)|2
]
dµ(z) = Nd(

√
λ)− b3(λ, Y ),

where
b3(λ, Y ) =

∫
M\MY

∑
λj<λ

|uj(z)|2dµ(z).
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Integrating (4.3), we obtain:

T∫
−T

dr

∫
MY

|E(1/2 + ir, z)|2dµ(z) = 4T lnY −
T∫

−T

ϕ′

ϕ
(1/2 + ir)dr + O(lnT )−

T∫
−T

b2(r, Y )dr. (4.4)

This formula implies

0 <

T∫
−T

b2(r, a1)dr + b3(λ, a1) < −
T∫

−T

ϕ′

ϕ
(1/2 + ir)dr + Nd(λ) + O(T ) = O(T 2)

(the last estimate follows from [8]). Now, using the fact that Fourier expansions of uj(z) and
(
E(1/2 + ir, z)−

y1/2+ir − ϕ(1/2 + ir)y1/2−ir
)

contain no constant term, one can show that if

Y ∼ T 3, (4.5)

then

T∫
−T

b2(r, Y )dr + b3(λ, Y ) = o(1), T →∞. (4.6)

So, now we should compute the left side of (4.2) when Y ∼ λ3/2, and the time has come to employ Vassiliev’s
method. Suppose, a = λ2/5. Then, if we chose the inner region to be M0 and the intermediate one S1 × [a1, a],
propositions 3.1 and 3.2 are valid without any changes also in our case (one may simply repeat Vassiliev’s proof
of proposition 3.1; in order to prove proposition 3.2 one can use the same approach as in [10] together with the
explicit form of the fundamental solution of the wave equation at the cusp). However, proposition 3.3 fails to
be true. Thus what we have to do is to compute the contribution from the ”boundary” region, i.e.

Tr[χa,Y Eλ] =
∫
M

χa,Y (z)
[ ∑
λj<λ

|uj(z)|2 +
1
4π

T∫
−T

|E(1/2 + ir, z)|2dr
]
dµ(z), (4.7)

where

χa,Y (z) =

{
1, if a < y(z) < Y

0, otherwise

(the fact that χ−(z) = χa,Y (z) is no longer smooth does not play any role; see [9] for more details). Just as
before, in order to compute (4.7) we use the Pleijel formula

|Tr(χa,Y Eλ)− (−2πi)−1

∫
L(λc)

dµTr
(
χa,Y R(µ)

)
|

≤ (1 + π−2)1/2(Imλc)
∣∣ Tr

(
χa,Y R(λc)

) ∣∣, (4.8)

where
arg λc = c(λ1/2mδ)−1, |λc| = |λ|, (4.9)

and L(λc) is a circle arc which leads from λc to λ̄c and does not intersect the real positive λ-axis.
Now we again employ the method of freezing coefficients. Let Rfr(µ) be the resolvent of the Laplacian

with frozen coefficients on the circle S1 (later we compute Rfr(µ) precisely). Changing slightly considerations
of [12], it is easy to prove that

Tr
[
χa,Y

(
R(µ)− (2π)−1

∫
R

Rfr(µ)dξ
)]

= O(λ−4/5).
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So, it is sufficient to compute

I := (−2πi)−1

∫
L(λc)

∫
R

Tr
(
χa,Y Rfr(µ)

)
dξdµ (4.10)

and use (4.8) in order to obtain the ”boundary” contribution (4.7) (the estimation of the right side of (4.8) may
be handled in the same way and will be skipped).

Let us proceed with direct computations. Suppose, we fixed a point y ∈ [a, Y ]. Then the operator with
frozen coefficients on S1 = R/Z is equal ([12] or [9]) to

∆frf(x) := −y2 d2

dx2
f(x) + y2ξ2f(x)

with periodical boundary conditions on the interval x ∈ [0, 1]. Using the Fourier expansion of a periodic function,
we can find the kernel of the resolvent of ∆fr to be equal to

Rfr(y, ξ;λ;x1, x2) =
∞∑

n=−∞

e2πin(x1−x2)

y2ξ2 + 4π2y2n2 − λ
.

Thus, the contribution (4.10) from the boundary region equals

I = (−2πi)−1(2π)−1

∞∫
−∞

dξ

Y∫
a

dy

1∫
0

dx

∫
L(λc)

dµRfr(y, ξ;µ;x, x)

= (−2πi)−1(2π)−1
∑

n

∞∫
−∞

dξ

Y∫
a

dy

∫
L(λc)

dµ(y2ξ2 + 4π2y2n2 − µ)−1. (4.11)

Now we may pass to the limit c → 0 in (4.11), which results in λc → λ ∈ R . Since

lim
λc→λ

∫
L(λc)

dµ

A− µ
=

{
0, A > λ

−2πi, A < λ
,

we see that

I = (2π)−1
∑

n

Y∫
a

dy

∫
y2ξ2+4π2y2n2<λ

dξ = 2(2π)−1

[
√

λ/(2πa)]∑
n=−[

√
λ/(2πa)]

Y∫
a

√
(λ− 4π2y2n2)+

y
dy

= π−1
√

λ(lnY − ln a) + 2π−1

[
√

λ/(2πa)]∑
n=1

√
λ/(2πn)∫
a

√
λ− 4π2y2n2

y
dy, (4.12)

where (·)+ stands for the positive part and [·] for the greatest integer part ((4.5) implies Y >
√

λ/(2π)).
After computing the integral∫

u−1
√

1− u2du =
√

1− u2 +
1
2

ln
1−

√
1− u2

1 +
√

1− u2
=: F (u) (4.13)

we may transform I as
I = π−1

√
λ(lnY − ln a) + 2π−1J, (4.14)
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where

J =
[α]∑

n=1

√
λ/(2πn)∫
a

√
λ− 4π2y2n2

y
dy = 2πa

[α]∑
n=1

α∫
n

√
α2 − w2

w
dw

= 2πaα

[α]∑
n=1

[
F (1)− F (n/α)

]
= −

√
λ

[α]∑
n=1

F (n/α) (4.15)

(we have put α :=
√

λ/(2πa) and made the substitution w = ny/a).
So, the problem is reduced to the computing of the asymptotic behaviour of J as α → ∞. Since the

expression in the right side of (4.15) is just α times integral sum for F (u) on [0,1], we obviously have:

J ∼ −
√

λα

1∫
0

F (u)du =: C1

√
λα, (4.16)

which gives us the leading term of the asymptotics. Now let us compute the following terms. First, we note
that

F (u) = lnu + G(u), (4.17)

where
G(1) = 0, G(0) = 1− ln 2. (4.18)

Then we have:

J− C1

√
λα = −

√
λ
[ [α]∑

n=1

(
F (n/α)− α

n/α∫
(n−1)/α

F (u)du
)
− α

1∫
[α]/α

F (u)du
]

=
√

λα
[ [α]∑

n=1

n/α∫
(n−1)/α

(
lnu− ln(n/α)

)
du

]
+
√

λα
[ [α]∑

n=1

n/α∫
(n−1)/α

(
G(u)−G(n/α)

)
du

]
+ O(1)

=: J1 + J2 + O(1). (4.19)

It is not difficult to compute J2, we just have to notice that

n/α∫
(n−1)/α

(
G(u)−G(n/α)

)
du =

G
(
(n− 1)/α

)
−G(n/α)

2α
+ O(α−3), (4.20)

and thus

J2 =
√

λα

[α]∑
n=1

G
(
(n− 1)/α

)
−G(n/α)

2α
+ O(1) =

√
λG(0)/2 + O(1) =

1− ln 2
2

√
λ + O(1). (4.21)

In order to compute J1, we use Stirling’s formula:

J1 =
√

λ
(
[α] ln([α]/α)− [α]

)
−
√

λ
( [α]∑
n=1

ln(n/α)
)

=
√

λ
(
[α] ln([α]/α)− [α]

)
−
√

λ
(
ln

[α]!
α[α]

)
=
√

λ
(
[α] ln([α]/α)− [α]

)
−
√

λ
(
[α] ln([α]/α)− [α] + 1/2 ln(2π[α]) + ln

(
1 + o(1)

))
= −

√
λ

4
lnλ +

√
λ

2
ln a + o(λ). (4.22)
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Comparing formulas (4.14)-(4.22), we have:

I = π−1
√

λ lnY + 4C1λ/a− 1
2π

√
λ lnλ +

1− ln 2
π

√
λ + o(λ). (4.23)

Now from (4.2)–(4.6) and (4.23) as well as (3.4)-(3.6) the desired asymptotic formula follows immediately, since

lnY (
√

λ−
√

λ− 1/4) ∼ lnλ√
λ

= o(1)

(we do not need to compute C1, since the coefficient at the first term is already known [8]).

5 Resonance set

Here we give a proof of theorem 1.2. The main tool for our investigations will be the formula

R(T ) =
1
2π

∑
ρ∈R

Reρ<1/2

arctg
( (1− 2Re ρ)T
|ρ− 1/2|2 − T 2

)
+ O(T ), (5.1)

due to W.Müller [8].
Lemma 5.1

Suppose that for some δ > 0
R(T ) = O(T 3/2+δ).

Then there exists a constant C1 such that for all sufficiently big T there exists T0 ∈ [T, T + T 1/2+δ/3] such that

|R(T0)| < C1T
3/2+δ/3
0 .

Lemma 5.2
Suppose that all the poles ρ ∈ R of ϕ(s) lie in the strip |Re ρ| < C. Suppose also that for some δ > 0

R(T ) = O(T 1+δ).

Then there exists C2 such that for all sufficiently big T there exists T0 ∈ [T, T + T 2δ/3] such that

|R(T0)| < C2T
1+2δ/3
0 .

Lemma 5.3
Suppose that there exist δ1, δ2 > 0 and C3 such that for all sufficiently big T there exists T0 ∈ [T, T + T δ1 ]

such that
|R(T0)| < C3T

1+δ2
0 .

Then
R(T ) = O(T 1+max(δ1,δ2)).

First suppose we have proved these lemmas. Since we know already that

R(T ) = O(T 2),

we can apply lemma 5.1 and show that for all sufficiently big T there exists T0 ∈ [T, T 2/3] such that R(T0) <

C1T
5/3
0 . After applying lemma 5.3 we see that R(T ) = O(T 5/3). Now we can apply lemma 5.1 again. After

sufficiently many steps we arrive at (1.6). Formula (1.7) follows in the same way from lemmas 5.2-5.3. So, it
remains only to prove lemmas 5.1-5.3.

11



Proof of lemma 5.1
Let T be so big that the number of poles ρ ∈ R such that |ρ− 1/2| ∈ [T, T +T 1/2+δ] is less than C4T

3/2+δ.
Now we cut [T, T + T 1/2+δ/3] into [T 2δ/3] smaller intervals, each of length ∼ T 1/2−δ/3. By the pigeonhole
principle one of these smaller intervals (say, [T1, T̃1], where T̃1 − T1 ∼ T 1/2−δ/3 ) contains modules of not more
than C5T

3/2+δ/3 poles ρ ∈ R. We chose T0 to be the middle point of [T1, T̃1]. Then we have:

R(T0) =
1
2π

( ∑
|ρ−1/2|∈[T1,T̃1]

+
∑

|ρ−1/2|/∈[T1,T̃1]

)
arctg

( (1− 2Re ρ)T0

|ρ− 1/2|2 − T 2
0

)
+ O(T )

=: I1 + I2 + O(T ).

Since the number of terms in I1 is smaller than C5T
3/2+δ/3 and arctg x < π/2, obviously

I1 = O(T 3/2+δ/3).

The estimations of I2 may be carried in the following way:

|I2| ≤ C6

∑
|ρ−1/2|/∈[T1,T̃1]

( (1− 2Re ρ)
|ρ− 1/2|2

T0

∣∣ 1− T 2
0

|ρ− 1/2|2
∣∣−1

)
≤ C7T

3/2+δ/3,

since [8] ∑
ρ∈R

( (1− 2Re ρ)
|ρ− 1/2|2

)
< ∞.

This completes the proof of lemma 4.1.
Proof of lemma 5.2

The proof is based on the same ideas as the previous one, but is more complicated.
First, we suppose that T is so big that the number of poles ρ ∈ R such that |ρ − 1/2| ∈ [T − T δ, T + T δ]

is less than C7T
1+δ. Next, we cut [T, T + T 2δ/3] onto [T δ/3] smaller intervals each of length ∼ T δ/3. By the

pigeonhole principle there exists one of these smaller intervals [T1, T̃1] (T̃1 − T1 ∼ T δ/3) such that T1 6= T
(i.e. T1 − T ≥ T δ/3), T̃1 6= T + T 2δ/3 and the number of points ρ ∈ R such that |ρ − 1/2| ∈ [T1, T̃1] is less
than C7T

1+δ/(T δ/3 − 2) < 2C7T
1+2δ/3. Continuing this process we obtain the sequence of intervals [Ti, T̃i]

(i = 1, ..., n = [3δ−1] + 4) such that T̃i − Ti ∼ T δ−(i+1)δ/3, Ti − Ti−1 ≥ T δ−(i+1)δ/3, T̃i−1− T̃i ≥ T δ−(i+1)δ/3 and
the number of points ρ ∈ R such that |ρ− 1/2| ∈ [Ti, T̃i] is less than 2iC7T

1+δ−iδ/3. Let now T0 = (Tn + T̃n)/2.
Then we have:

R(T0) = (2π)−1
∑
ρ∈R

arctg
( (1− 2Re ρ)T0

|ρ− 1/2|2 − T 2
0

)
+ O(T0)

≤ C8T0

∑
|ρ−1/2|>2T0

1− 2Re ρ

|ρ|2
+ C9

( ∑
|ρ−1/2|∈[0,2T0]\[T0−T δ

0 ,T0+T δ
0 ]

+
∑

|ρ−1/2|∈[T0−T δ
0 ,T0+T δ

0 ]\[T1,T̃1]

+
n−1∑
i=1

∑
|ρ−1/2|∈[Ti,T̃i]\[Ti+1,T̃i+1]

) 1
|ρ− 1/2| − T0

+ C10card{ρ ∈ R
∣∣ |ρ− 1/2| ∈ [Tn, T̃n]}+ O(T ) (5.2)

The estimate of every term of the right side in (5.2) exept the sum over

|ρ− 1/2| ∈ [0, 2T0] \ [T0 − T δ
0 , T0 + T δ

0 ] (5.3)

follows immediately from the construction of T0. In order to estimate sum over (5.3), we notice that whenever
1 > δ1 > δ, the number of poles ρ ∈ R in the interval [T − T δ1 , T + T δ1 ] is O(T 1+δ1). So, writing our sum as

[3δ−1]−3∑
j=1

∑
T

δ+(j−1)δ/3
0 <|ρ−1/2−T0|≤T

δ+jδ/3
0
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we obtain the desired estimate and finish the proof of lemma 4.2.
Proof of lemma 5.3

We may suppose that max(δ1, δ2) < 1. Obviously,

Nd(T ) +
1
2
Np(T ) + R(T ) = Nd(T ) + Nc(T ) =

|M |
4π

T 2 + O(T lnT ).

Suppose that T is big enough. Then there exist T0 ∈ [T, T + T δ1 ] and T1 ∈ [T − 2T δ1 , T ] such that |R(T0)| <
C3T

1+δ2
0 , |R(T1)| < C3T

1+δ2
1 . Since Nd(T ) + Np(T ) is monotonious, we have:

R(T ) =
|M |
4π

T 2 −Nd(T )− 1
2
Np(T ) + O(T lnT )

≥ |M |
4π

T 2 − |M |
4π

T 2
0 +

( |M |
4π

T 2
0 −Nd(T0)−

1
2
Np(T0)

)
+ O(T lnT )

≥ |M |
4π

T 2 − |M |
4π

(T + T δ1)2 + R(T0) + O(T lnT )

≥ −2
|M |
4π

T 1+δ1 − 4C3T
1+δ2 + O(T lnT ).

The opposite estimate may be proved in the same way. This finishes the proof of lemma 5.3 and of theorems
1.2.
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Summary

Let M be a surface with cusps of finite volume. We consider the sum of the counting functions of the
discrete and continuous spectrum of M . Using the method of Vasssiliev we obtain three terms of asymptotics
of this sum:

Nd(T )− 1
4π

T∫
−T

ϕ′

ϕ
(1/2 + ir)dr =

|M |
4π

T 2 − k

π
T lnT +

k

π
(1− ln 2)T + o(T )

(Nd(T ) being the counting function of the discrete spectrum, ϕ the determinant of the scattering matrix, and
k the number of cusps), if the Liouville measure of the periodic trajectories of the geodesic flow on M equals
zero; in the general case o(T ) must be substituted by O(T ).

Using this formula we improve the remainder term in the asymptotics of the counting function of the
resonance set Nρ(λ). We prove that

Nρ(T ) =
|M |
4π

T 2 + R(T ),

where
R(T ) = O(T 3/2+ε)

and, if the real parts of all resonances are bounded, then

R(T ) = O(T 1+ε),

ε > 0 being arbitrary.
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