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1. Introduction
Let Γ be a lattice of full rank in Rd with d ≥ 2; we assume that the volume of the unit cell
O := Rd/Γ is one. For k ∈ O and ρ > 0 we denote by Nρ(k) the number of lattice points in the
ball B(k, ρ) centered at k of radius ρ. It is easy to see (and we will show this in the next section
anyway) that

〈Nρ〉 = ωdρ
d,

where we denote 〈f〉 :=
∫
O f(k)dk and ωd is the volume of the unit ball in Rd. Many efforts have

been spent on studying the upper bounds on the remainder

Rρ(k) := Nρ(k)− 〈Nρ〉,

and estimates with optimal powers of ρ have been obtained in dimensions d ≥ 42; for d = 2, 3
only non-optimal estimates are known.

The question of the size ofRρ plays a very important role in the periodic problems, in particular,
in proving the Bethe-Sommerfeld conjecture for periodic Schrödinger operators, see e.g. [5] and
[3]. The estimates required in periodic problems are of slightly different nature than the classical
uniform upper bounds. Namely, we introduce the following functions:

σp(ρ) := ||Rρ||p = 〈|Rρ|p〉1/p, p = 1, 2
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2references
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(the quantity σ1 can be thought of as an average deviation of N(·) from its average) and study the
power lower bounds of σp. The following theorem was proved in [2] (upper bound), [5] (lower
bound, d 6= 1(mod4)) and [3] (the case d = 1(mod4)):

Theorem 1. 1. Upper bounds For all sufficiently big ρ the estimate holds:

σ1(ρ) ≤ σ2(ρ) ≤ Cρd−1. (1.1)

2. Lower bound Suppose that d 6= 1(mod4) Then for all sufficiently big ρ the estimate holds:

σ1(ρ) ≥ Cρ
d−1
2 . (1.2)

Suppose that d = 1(mod4) and ε > 0. Then for all sufficiently big ρ the estimate holds:

σ1(ρ) ≥ Cρ
d−1
2
−ε. (1.3)

3. Exactness of the lower bound Moreover, if d = 1(mod4) and ε > 0, then there exists a se-
quence ρj →∞, such that

σ2(ρj) ≤ Cρd−1
j (ln ρj)

(−1+ε)/d. (1.4)

Using these estimates, one can prove Bethe-Sommerfeld conjecture for Schrödinger operators
in dimensions 2, 3, 4 and for some other periodic operators, see [3] and [4] for details; however,
these estimates cannot prove the conjecture for Schrödinger operators in dimensions d ≥ 5.

One immediate observation one can make from Theorem 1 is the following: if d 6= 1(mod4),
then both σ1 and σ2 have upper and lower bounds with the same power of ρ, whereas if d =
1(mod4), such bounds do not exist. This makes it natural to call the cases d = 1(mod4) the
critical dimensions. The question we want to ask is whether there are different set-ups where (for
similar problems) the critical dimensions take other values. This paper deals with the situation
when instead of counting lattice points inside the ball, we count lattice points inside the annuli.
Thus, we introduce two parameters: ρ (the radius of the annulus) and η = η(ρ) (half-width of the
annulus) which we assume to be a continuous function of ρ with η < ρ. We denote by Nρ;η(k) the
number of lattice points in the annulus B(k, ρ; η) := B(k, ρ+η)\B(k, ρ−η). Similar to the case
of the ball, we have

〈Nρ;η〉 = ωd[(ρ+ η)d − (ρ− η)d],

and we define
Rρ;η(k) := Nρ;η(k)− 〈Nρ;η〉.

The purpose of this paper is to find estimates of the following averages of R:

σp(ρ; ρ) := ||Rρ||p = 〈|Rρ;η|p〉1/p, p = 1, 2,

and, in particular, to establish which dimensions are critical. The answer will depend on how
exactly η depends on ρ. There are four possible regimes of the behaviour of η:
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(i) η = cρ;
(ii) η →∞, but ηρ−1 → 0;
(iii) η � 1 (i.e. c < η < C);
and, finally,
(iv) η → 0.
The first regime is the simplest one: here the answer is exactly the same as it is in the case of

the ball, namely, critical dimensions are d = 1(mod4). The proof of this fact is also very similar to
the case of the ball, and we skip it. The other regimes are much more interesting. In particular, in
the case (ii) all dimensions are critical, and in the case (iii) critical dimensions are d = 3(mod4).
The case (iv) is the most difficult one; here, the answer depends on how quickly η tends to zero.
We do not know the precise answer, but if η tends to zero slower than any power of ρ, then the
situation is similar to the case (iii), i.e. critical dimensions are d = 3(mod4). If, on the other hand,
η � ρ−a with positive a, then there are no critical dimensions (however, we can deal only with σ2

in this regime; the case of σ1 is too difficult for us). We will formulate the precise statements in
the sections where we discuss the corresponding regimes.

2. Preliminaries
Let Γ = Zd denote the integer lattice in Rd for some d ≥ 2. Denote byO = [0, 1)d its fundamental
cell. For any integrable function f : O → C, we use the notation

〈f〉 =

∫
O
f(k)dk and f̂(b) =

∫
O
f(k)eibkdk, b ∈ Rd.

Let B(ρ) denote the open ball of radius ρ > 0 in Rd centered at the origin and, for 0 < η < ρ,
let

A(ρ, η) = {k ∈ Rd : ρ− η ≤ |k| < ρ+ η}

denote the annulus of the external radius ρ+ η and internal radius ρ− η centered at zero.
Let χ(·, A) denote the characteristic function of a set A ⊂ Rd. For k ∈ O and 0 < η < ρ,

denote by

Nρ(k) =
∑
m∈Γ

χ(m− k, B(ρ)) and Nρ,η(k) =
∑
m∈Γ

χ(m− k, A(ρ, η))

the number of points in the ball of radius ρ and the annulus of radii ρ + η, ρ − η centered at k.
Obviously,

Nρ,η = Nρ+η −Nρ−η.

Since

〈Nρ〉 =

∫
O

∑
m∈Γ

χ(m− k, B(ρ))dk =

∫
Rd
χ(k, B(ρ))dk = vol(B(ρ)) = ωdρ

d,
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where ωd is the volume of the unit ball in Rd, we have

〈Nρ,η〉 = 〈Nρ+η〉 − 〈Nρ−η〉 = vol(A(ρ, η)) = ωd
(
(ρ+ η)d − (ρ− η)d

)
.

We shall estimate the remainder term

Rρ,η = Nρ,η − 〈Nρ,η〉 = Nρ,η − ωd
(
(ρ+ η)d − (ρ− η)d

)
.

In particular, we shall estimate the norms

||Rρ,η||p = 〈|Rρ,η|p〉1/p, p = 1, 2.

Throughout the paper, we assume that η is a function of ρ and consider different regimes of η(ρ)
as ρ → ∞. Namely, we distinguish between the situations when η(ρ) is bounded away from zero
and infinity (Section 4.), η(ρ) tends to infinity (Section 5.) and η(ρ) tends to zero (Section 6.). In
Section 3. we gather ancillary statements which can be used for several regimes of η.

3. Preliminary results
In this section we introduce notation and prove some technical statements which will be used
later and which are relevant to several regimes of η simultaneously. In Lemma 2 we give simple
upper and lower bounds for the norms ||Rρ,η||1 and ||Rρ,η||2. Since the lower bound is in terms
of the Fourier coefficients and as we will later use Parseval’s identity to further estimate ||Rρ,η||2,
we compute the asymptotics of the Fourier coefficients in Lemma 3. In Lemma 4 we study two
explicit families of functions which are closely related to computing the lengths of elements of the
lattice. Finally, Lemma 5 is one of the most important tools to prove main results of the paper. It
guarantees that the leading term in the asymptotic of the Fourier coefficients found in Lemma 3
can be kept away from zero despite the oscillating trigonometric term.

Denote by Γ∗ = (2πZ)d the lattice dual to Γ = Zd. For any vector x ∈ Rd we denote by
x = |x| its Euclidean norm. For 1 ≤ i ≤ d, we denote by ei the i-th basis vector of Γ∗. Obviously,
ei = 2π.

For each x ∈ R we denote by ω[x] the distance from x/π to the nearest integer. Observe that
ω satisfies the triangle inequality and ω[nx] ≤ nω[x] for any x ∈ R and n ∈ Z.

Denote Rρ = Nρ − 〈Nρ〉 = Nρ − ωdρd.

Lemma 2. There is a constant c such that, for all 0 < η < ρ and b ∈ Γ∗

|R̂ρ,η(b)| ≤ ||Rρ,η||1 ≤ ||Rρ,η||2 < cρ
d−1
2 .

Proof. The lower bound follows from

||Rρ,η||1 =

∫
O
|Rρ,η(k)|dk ≥

∣∣∣ ∫
O
Rρ,η(k)eibkdk

∣∣∣ = R̂ρ,η(b).
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To prove the upper bound, observe that according to [3, Th. 3.1] there is a constant c1 such that3

||Rρ||2 < c1ρ
d−1
2 for all ρ > 0.

Using η < ρ we obtain

||Rρ,η||1 ≤ ||Rρ,η||2 = ||Rρ+η −Rρ−η||2 ≤ ||Rρ+η||+ ||Rρ−η||2
< 2c1(ρ+ η)

d−1
2 < c12

d+1
2 ρ

d−1
2 ≤ cρ

d−1
2

for some c > 0. 2

Lemma 3. For any b ∈ Γ∗,

R̂ρ,η(b) =

{ (
2π(ρ+η)

b

)d/2
Jd/2(b(ρ+ η))−

(
2π(ρ−η)

b

)d/2
Jd/2(b(ρ− η)) if b 6= 0,

0 if b = 0,
(3.1)

where Jν denotes the Bessel function of the first kind.
If η(ρ)/ρ→ 0 then

R̂ρ,η(ρ)(b) = −2

√
2

π
(2π)

d
2ρ

d−1
2 b−

d+1
2 sin(bη(ρ)) sin(bρ− θ) + η(ρ)ρ

d−3
2 b−

d+1
2 O(1) (3.2)

uniformly in b ∈ Γ∗\{0}.

Proof. Repeating the computations from [3] we have, for all b ∈ Γ∗\{0},

N̂ρ(b) =

∫
O
Nρ(k)eibkdk =

∫
O

∑
m∈Γ

χ(m− k, B(ρ))eibkdk

=

∫
|k|<ρ

eibkdk =
(2πρ

b

)d/2
Jd/2(bρ).

Similarly, N̂ρ(0) = ωdρ
d. Hence

R̂ρ(b) =

{ (
2πρ
b

)d/2
Jd/2(bρ) if b 6= 0,

0 if b = 0.

3In the paper, it is stated only for ρ large enough. However, using continuity in ρ and the observation that, for ρ
small enough,

||Rρ||22 = (1−vol(B(ρ))2vol(B(ρ))+vol(B(ρ))2(1−vol(B(ρ))) = vol(B(ρ))(1−vol(B(ρ))) ≤ vol(B(ρ)) = ωdρ
d,

and so
||Rρ||2 ≤

√
ωdρ

d
2 ≤
√
ωdρ

d−1
2 ,

we can use it for all ρ > 0.
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Now (3.1) follows from R̂ρ,η(b) = R̂ρ+η(b)− R̂ρ−η(b).
Suppose now that η(ρ)/ρ → 0. The Bessel function Jd/2 has the following asymptotics4 as

x→∞ (see formula (4.8.5) of [1])

Jd/2(x) ∝
√

2

πx

(
cos(x− θ)

∞∑
n=0

(−1)na2nx
−2n − sin(x− θ)

∞∑
n=0

(−1)na2n+1x
−2n−1

)
with a0 = 1 and some real coefficients ak, k ≥ 1. The symbol∝ here means that this asymptotic is
true when truncated after an arbitrary power x−k of x, with the error of orderO(x−k−1). Moreover,
this asymptotics can be differentiated termwise5.

Let

Id/2(x) = Jd/2(x)

√
πx

2
− cos(x− θ)

∝ cos(x− θ)
∞∑
n=1

(−1)na2nx
−2n − sin(x− θ)

∞∑
n=0

(−1)na2n+1x
−2n−1.

Then Id/2(x) = O(x−1) as x→∞. Further,

I ′d/2(x) ∝− sin(x− θ)
∞∑
n=1

(−1)na2nx
−2n − cos(x− θ)

∞∑
n=1

(−1)n2na2nx
−2n−1

− cos(x− θ)
∞∑
n=0

(−1)na2n+1x
−2n−1 + sin(x− θ)

∞∑
n=0

(−1)n(2n+ 1)a2n+1x
−2n−2.

Truncating this formula after the leading term, we obtain

I ′d/2(x) = O(x−1). (3.3)

4I’ve taken it from Richard’s notes – double check
5True? Reference?
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Using (3.1) we obtain for b ∈ Γ∗\{0},

R̂ρ,η(ρ)(b) =
(2π(ρ+ η(ρ))

b

)d/2
Jd/2

(
b(ρ+ η(ρ))

)
−
(2π(ρ− η(ρ))

b

)d/2
Jd/2

(
b(ρ− η(ρ))

)
=

√
2

π
(2π)

d
2 (ρ+ η(ρ))

d−1
2 b−

d+1
2

(
Id/2
(
b(ρ+ η(ρ))− θ

))
−
√

2

π
(2π)

d
2 (ρ− η(ρ))

d−1
2 b−

d+1
2

(
Id/2
(
b(ρ− η(ρ))− θ

))
=

√
2

π
(2π)

d
2ρ

d−1
2 b−

d+1
2

(
cos
(
b(ρ+ η(ρ))− θ

)
− cos

(
b(ρ− η(ρ))− θ

)
+ Id/2

(
b(ρ+ η(ρ)

)
− Id/2

(
b(ρ− η(ρ)

)
+O

(
η(ρ)/ρ

))
=

√
2

π
(2π)

d
2ρ

d−1
2 b−

d+1
2

(
− 2 sin(bη(ρ)) sin(bρ− θ) + 2bη(ρ)I ′d/2(ξ(b, ρ))

+O
(
η(ρ)/ρ

))
,

where ξ(b, ρ) ∈ (b(ρ− η(ρ), b(ρ+ η(ρ)) and O(·) is uniform in b. Using the asymptotics (3.3) we
obtain I ′d/2(ξ(b, ρ)) = (bρ)−1O(1) uniformly in b, which completes the proof. 2

Lemma 4. (1) Let m ∈ N and I > 0. For each t > 0, x ∈ [0, I] and k ∈ Z ∩ [0,m] denote

fk,x(t) =
√

(1 + xt)2 + k2t2.

Then there is tf > 0 such that

fk,x(t) =
∞∑
n=0

an(k, x)tn (3.4)

on [0, tf ], where a0(k, x) = 1, a1(k, x) = x, and an(k, ·) is a polynomial in x of degree n − 2 for
all n ≥ 2.

(2) Let m ∈ N. For each t > 0 and x ∈ [−2π, 2π], denote

gx(t) =
√

1 + 2tx+ 4π2t2.

Then there is tg > 0 such that

gx(t) =
∞∑
n=0

bn(x)tn (3.5)

uniformly on [−2π, 2π]× [0, tg], where bn(·) is a polynomial in x of degree n for all n ≥ 0.
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Proof. (1) The functions fk,x have no singularities for x = k = 0 and otherwise they have sin-
gularities at (−x ± ik)−1. In the latter case they are uniformly separated from zero by distance
(I2 + m2)−1/2 which implies the choice of tf . Further, using an(k, x) = f

(n)
k,x (0)/n! and dif-

ferentiating f 2
k,x = (1 + xt)2 + k2t2 we obtain the required formulas for a0 and a1 as well as

a2(k, x) = k2/2. Continuing for n ≥ 3 we get

2fk,xf
(n)
k,x + 2nf

(1)
k,xf

(n−1)
k,x +

n−2∑
i=2

(
n

i

)
f

(i)
k,xf

(n−i)
k,x = 0.

Evaluating it at zero and using induction we obtain that f (1)
k,x(0)f

(n−1)
k,x (0) is a polynomial of de-

gree n − 2 and f (i)
k,x(0)f

(n−i)
k,x (0) are polynomials of degree n − 4, which implies that f (n)

k,x (0) is a
polynomial of degree n− 2 and so is an(k, ·).

(2) The singularities of the functions gx are uniformly separated from zero by distance 1/(4π).
Using bn(x) = g

(n)
x (0)/n! and differentiating g2

x = 1 + 2tx + 4π2t2 we obtain b0(k, x) = 1,
b1(x) = x and b2(x) = −x2/2 + 2π2. Continuing for n ≥ 3 we get

2gxg
(n)
x +

n−1∑
i=1

(
n

i

)
g(i)
x g

(n−i)
x = 0. (3.6)

Evaluating it at zero and using induction we obtain that g(i)
x (0)g

(n−i)
x (0) are polynomials of degree

n, which implies that g(n)
x (0) is a polynomial of degree at most n.

To prove that the degree of g(n)
x (0) (and so of bn) is exactly equal to n, denote its coefficient at

xn by pn. Then p0 = 1, p1 = 1, p2 = −1 and (3.6) implies the following recurrent formula for
n ≥ 3

pn = −1

2

n−1∑
i=1

(
n

i

)
pipn−i.

It can be easily seen by induction that pn = (−1)n+1|pn| and pn 6= 0 as pipn−i = (−1)n|pi||pn−i|
for all i.

It remains to prove that the series representing gx(t) converges uniformly in x and t. Let
qn, n ∈ N ∪ {0} be Catalan numbers, that is, q0 = 1 and qn+1 =

∑n
i=0 qiqn−i for n ≥ 0. Let us

prove that |g(n)(x)(0)| ≤ 2(2π)nn!qn−1 for all n ∈ N. For n = 1 we have |g(1)(x)(0)| = |x| ≤ 2π
and for n = 2 we have |g(2)(x)(0)| = 4π2 − x2 ≤ 4π2, which imply the required formulas. For
n ≥ 3, it follows inductively from (3.6) as

|g(n)
x (0)| ≤ 1

2

n−1∑
i=1

n!

i!(n− i)!
|g(i)
x (0)||g(n−i)

x (0)| ≤ 2(2π)nn!
n−1∑
i=1

qi−1qn−i−1

= 2(2π)nn!
n−2∑
i=0

qiqn−2−i = 2(2π)nn!qn−1.
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This implies |bn(x)tn| ≤ 2(2πtg)
nqn−1. Since the radius of convergence of the series

∑∞
n=1 qnt

n

is 1/4, the series (3.5) converges uniformy in x and t once tg < 1/(8π). 2

Lemma 5. Suppose η is such that

lim inf
ρ→∞

log η(ρ)

log ρ
≥ 0. (3.7)

Then for any ε > 0 there exists α ∈ (0, 1/2) such that for any ρ large enough one can find an
element b(ρ) ∈ Γ∗ with the properties b(ρ) ≤ ρε, ω[b(ρ)ρ− θ] ≥ α, and ω[b(ρ)η(ρ)] ≥ α.

Proof. Let ε > 0 be given. Without loss of generality we assume ε < 1. Let m be such that
1

m−1
< ε/8, L = 2m, and I = L(m+ 1) + 1.

Observe that the inequality ω[b(ρ)ρ−θ] ≥ α follows from the inequality ω[4b(ρ)ρ] ≥ 4α since
θ ∈ (π/4)Z. We will prove the statement of the lemma with the latter inequality instead of the
former.

Step 1. We start by slightly generalising the proof of Lemma 3.3 from [3]. Namely, we will
find α ∈ (0, 1/6), an integer valued function n(ρ) satisfying6 n(ρ) � ρ

1
m−1 and integer-valued

functions ki(ρ), 0 ≤ i ≤ I , taking values between 0 and m such that all elements

bi(ρ) = (n(ρ) + i)e1 + ki(ρ)e2, 0 ≤ i ≤ I, (3.8)

satisfy bi(ρ) ≤ ρε/3, ω[4bi(ρ)ρ] ≥ 8α.
For any n ∈ N and k ∈ Z ∩ [0,m], the length of the vector ne1 + ke2 is given by

Bn(k) = 2π
√
n2 + k2.

Denote B(1)
n (k) = Bn(k + 1) − Bn(k), k ∈ Z ∩ [0,m − 1], and, for all 2 ≤ i ≤ m, B(i)

n (k) =

B
(i−1)
n (k + 1)−B(i−1)

n (k), k ∈ [0,m− i]. It has been shown in Lemma 3.3 from [3] that

B(m)
n (0) = An1−m(1 +O(n−1)),

where A 6= 0. Define

n(ρ) = b(8|A|π−1ρ)
1

m−1 c, (3.9)

where b·c denotes taking the lower integer part. Then, for each 0 ≤ i ≤ I ,

4B
(m)
n(ρ)+i(0)ρ = π/2 + o(1)

as ρ→∞, so that

ω
[
4B

(m)
n(ρ)+i(0)ρ

]
= 1/2 + o(1). (3.10)

6Define symbol �
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Now let α be such that 2m+3α < 1/4, which in particular implies α ∈ (0, 1/6). For each i,
if ω[4Bn(ρ)+i(k)ρ] < 8α for all k ∈ Z ∩ [0,m] then ω[4B

(m)
n(ρ)+i(0)ρ] < 2m+3α < 1/4, which

contradicts (3.10) for ρ large enough. Hence for each i and ρ there is ki(ρ) ∈ Z ∩ [0,m] such that
ω[4Bn(ρ)+i(ki(ρ))ρ] ≥ 8α and so the elements bi defined in (3.8) satisfy ω[4bi(ρ)ρ] ≥ 8α. The
estimate bi(ρ) ≤ ρε/3 follows from 1

m−1
< ε/8 < ε/3.

Step 2. Let k ∈ Z ∈ [0,m] be fixed. For any n ∈ N, let hn : [0, I]→ R be defined by

hk,n(x) = 2π
√

(n+ x)2 + k2 = 2πn
√

(1 + x/n)2 + k2/n2 = 2πnfk,x(1/n),

By Lemma 4, for all n ≥ 1/tf , one has

hk,n(x) = 2πn
√

(1 + x/n)2 + k2/n2 = 2πfk,x(1/n) = 2π
∞∑
i=0

ai(k, x)n1−i, (3.11)

Let 0 ≤ l ≤ L and let 0 ≤ x0 < · · · < xl ≤ I be some integers. Let us consider∑l
j=0 cjhk,n(xj) and choose integer coefficients cj , 1 ≤ j ≤ l, in such a way that the first l+2 lead-

ing terms in the decomposition with respect to the powers of n disappear. To do so we use (3.11)
to get

l∑
j=0

cjhk,n(xj) = 2π
∞∑
i=0

n1−i
l∑

j=0

cjai(k, xj).

Equating the first l + 2 coefficients to zero we obtain the linear system

l∑
j=0

cjai(k, xj) = 0, 0 ≤ i ≤ l + 1

of l+2 equations in l+1 variables, which, according to Lemma 4 is equivalent to the linear system

l∑
j=0

cjx
i
j = 0, 0 ≤ i ≤ l − 1.

of l equations in l+ 1 variable. Since the system has integer coefficients it has an integer non-zero
solution cj(x), 0 ≤ j ≤ l, where x = (x0, . . . , xl). Moreover, since al+2(k, ·) is a polynomial of
degree l, we have

l∑
j=0

cj(x)al+2(k, xj) = C(k, x) 6= 0.

This implies

l∑
j=0

cj(x)hk,n(xj) = 2πC(k, x)n−l−1 + o(n−l−1).

10
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Observe that this asymptotic is uniform in l, x, and k as they can take only finitely many values.
Hence

M1n
−l−1 <

∣∣∣ l∑
j=0

cj(x)hk,n(xj)
∣∣∣ < M2n

−l−1, (3.12)

for all l, x, and k, where M1 = π infk,x |C(k, x)| > 0 and M2 = 4π infk,x |C(k, x)| <∞.

Step 3. Now we will show that there is i(ρ) ∈ Z ∩ [0, I] such that ω[bi(ρ)(ρ)η(ρ)] > ρ−ε/3.
First, let us choose l(ρ) ∈ Z ∩ [0, L] in such a way that it satisfies

ρ−ε/4 < ρ−
l(ρ)+1
m−1 η(ρ) < ρ−ε/8. (3.13)

This is equivalent to

log η(ρ)

log ρ
+ ε/8 <

l(ρ) + 1

m− 1
<

log η(ρ)

log ρ
+ ε/4.

By the assumption on η and since it is bounded by ρ from above, we have

lim inf
ρ→∞

log η(ρ)

log ρ
≥ 0 and lim sup

ρ→∞

log η(ρ)

log ρ
≤ 1.

Now the existence of l(ρ) for all ρ large enough follows from 1
m−1

< ε/8 and L+1
m−1

= 2m+1
m−1

> 2 >
1 + ε/4.

Second, since I = L(m + 1) + 1, by the pigeon hole principle there are integers 0 ≤ x0(ρ) <
· · · < xl(ρ)(ρ) ≤ I such that all kxi(ρ)(ρ) are equal, 0 ≤ i ≤ l(ρ). Denote the corresponding value
by k(ρ). Using the uniform bound (3.12), the asymptotic (3.9), and the estimate (3.13) we obtain

η(ρ)
∣∣∣ l(ρ)∑
j=0

cj(x(ρ))hk(ρ),n(ρ)(xj(ρ))
∣∣∣ > M1n(ρ)−l(ρ)−1η(ρ) � ρ−

l(ρ)+1
m−1 η(ρ) > ρ−ε/4.

On the other hand, by (3.12)

η(ρ)
∣∣∣ l(ρ)∑
j=0

cj(x(ρ))hk(ρ),n(ρ)(xj(ρ))
∣∣∣ < M2n(ρ)−l(ρ)−1η(ρ) � ρ−

l(ρ)+1
m−1 η(ρ) < ρ−ε/8 < 1/2

and so

ω
[
η(ρ)

l(ρ)∑
j=0

cj(x(ρ))hk(ρ),n(ρ)(xj(ρ))
]
> M3ρ

−ε/4

with some constant M3 > 0 for all ρ large enough.

11
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Third, assume ω[bi(ρ)η(ρ)] ≤ ρ−ε/3 for all i ∈ Z ∩ [0, I]. For i ∈ {x0(ρ), . . . , xl(ρ)(ρ)} we
have

ω[hk(ρ),n(ρ)(i)η(ρ)]π = [bi(ρ)η(ρ)] ≤ ρ−ε/3. (3.14)

By the triangle inequality and using the fact that all cj(x) are integers we then obtain

ω
[
η(ρ)

l(ρ)∑
j=0

cj(x(ρ))hk(ρ),n(ρ)(xj(ρ))
]
≤

l(ρ)∑
j=0

|cj(x(ρ))|ω
[
hk(ρ),n(ρ)(xj(ρ))η(ρ)

]
< M4ρ

−ε/3,

where M4 = 2 supx
∑l

j=0 |cj(x)|. It remains to compare this to (3.14) to get a contradiction.

Step 4. Let us now construct an element b(ρ) with the required properties.
If ω[bi(ρ)(ρ)η(ρ)] ≥ α then we can take b(ρ) = bi(ρ)(ρ) since bi(ρ)(ρ) ≤ ρε/3 ≤ ρε and

ω[4bi(ρ)(ρ)ρ] ≥ 8α ≥ 4α.
Suppose ω[bi(ρ)(ρ)η(ρ)] < α. Define

q = b3α[bi(ρ)(ρ)η(ρ)]−1
π c ≤ 3αρε/3, (3.15)

where the inequality follows from the Step 3. Since

qω[bi(ρ)(ρ)η(ρ)] ≤ 3α < 1/2

we have

ω[qbi(ρ)(ρ)η(ρ)] = qω[bi(ρ)(ρ)η(ρ)]

≥
(
3αω[bi(ρ)(ρ)η(ρ)]−1 − 1

)
ω[bi(ρ)(ρ)η(ρ)] > 3α− α = 2α. (3.16)

If ω[4qbi(ρ)(ρ)ρ] ≥ 4α then we can take b(ρ) = qbi(ρ)(ρ). Indeed, by (3.15) and since
bi(ρ)(ρ) < ρε/3 according to Step 1 we have

b(ρ) = qbi(ρ)(ρ) ≤ 3αρ2ε/3 ≤ ρε

if ρ is large enough, ω[4b(ρ)ρ] ≥ 4α follows from the assumption above, and ω[b(ρ)η(ρ)] ≥ α
holds by (3.16).

Suppose ω[4qbi(ρ)(ρ)ρ] < 4α. Then we take b(ρ) = (q − 1)bi(ρ)(ρ). The bound b(ρ) ≤ ρε

holds by the same argument as above and by the triangle inequality

ω[4b(ρ)ρ] = ω[4bi(ρ)(ρ)ρ− 4qbi(ρ)(ρ)ρ] > 8α− 4α = 4α

ω[b(ρ)η(ρ)] = ω[qbi(ρ)(ρ)η(ρ)− bi(ρ)(ρ)η(ρ)] > 2α− α = α

follow from (3.16) and the assumptions above. 2

12
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4. Annuli of bounded width
In this section we consider the case when η is bounded away from zero and infinity (although
one of the results is proved in a more general setting). It turns out that the norms ||Rρ,η(ρ)||1 and
||Rρ,η(ρ)||2 behave differently depending on whether d ≡ 3 mod 4 or not. In the case d ≡ 3 mod 4
the precise asymptotic is computed in Theorem 7, as in such dimensions the trigonometric term
appearing in the asymptotic of the Fourier coefficients can be easily kept away from zero (see
Lemma 6). In the case d 6≡ 3 mod 4 controlling the trigonometric term becomes more difficult
(this is done using Lemma 5), which results in an upper and lower bound becoming different and
not delivering a precise asymptotic. However, it turns out that such an asymptotic does not exist as
the norms behave differently along subsequences. For that reason we call such dimensions critical
and study them in Theorem 8. [I THINK THIS TEXT SHOULD BE IMPROVED..]

Lemma 6. Assume η � 1 and d 6≡ 3 mod 4. Then there are positive constants c1, c2 such that for
all ρ > 0 there is b(ρ) ∈ Γ∗ satisfying b(ρ) < c1 and

|sin(b(ρ)η(ρ)) sin(b(ρ)ρ− θ)| > c2.

Proof. Let b1,b2 ∈ Γ∗ be such that b1/b2 /∈ Q, which is obviously possible in Γ∗. We will show
that, for any ρ > 0, we may choose b(ρ) to be one of the four points b1, b2, 2b1, 2b2, so we let c1

be larger than max{2b1, 2b2}.
Since b1/b2 /∈ Q we have

|sin(2b1x)|+ |sin(2b2x)| 6= 0 for all x 6= 0.

As η takes values in a compact interval not containing zero, there is a constant ĉ1 > 0 such that

|sin(2b1η(ρ))|+ |sin(2b2η(ρ))| > ĉ1 for all ρ > 0.

Hence for any ρ, there is i(ρ) ∈ {1, 2} such that∣∣sin(2bi(ρ)η(ρ))
∣∣ > ĉ1/2.

Using the double angle formula, we obtain∣∣sin(bi(ρ)η(ρ))
∣∣ > ĉ1/4.

On the other hand, since θ 6= πm, we have

| sin(x− θ)|+ | sin(2x− θ)| 6= 0 for all x ∈ R.

Since this is a continuous periodic function, it is bounded away from zero by a constant ĉ2 > 0 and
so ∣∣sin(bi(ρ)ρ− θ)

∣∣+
∣∣sin(2bi(ρ)ρ− θ)

∣∣ > ĉ2.

Hence we have for either b(ρ) = bi(ρ) or b = 2bi(ρ),

|sin(b(ρ)ρ− θ)| > ĉ2/2.

The result follows with c2 = ĉ1ĉ2/8. 2

13
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Theorem 7. Assume η(ρ) � 1 and d 6≡ 3 mod 4. Then

||Rρ,η(ρ)||1 � ||Rρ,η(ρ)||2 � ρ
d−1
2 .

Proof. The upper bound follows from Lemma 2. To get the lower bound, observe that θ 6= πm as
d 6≡ 3 mod 4. Hence for each ρ we can pick b = b(ρ) according to Lemma 6. Then by Lemma 3

|R̂ρ,η(ρ)(b(ρ))| > cρ
d−1
2 .

since the trigonometric part of the first term on the right hand side of (3.2) is bounded away from
zero by Lemma 6 and the second term is then negligible. The lower bound follows now from
Lemma 2. 2

In the following theorem, the condition η � 1 is replaced by a weaker condition: η(ρ) does not
have to be separated from zero but should not approach it too fast.

Theorem 8. Assume η satisfies (3.7) and is bounded from above, and d ≡ 3 mod 4.
(1) For any δ > 0, there is a positive constants c such that for all ρ sufficiently large

ρ
d−1
2
−δ < ||Rρ,η(ρ)||1 ≤ ||Rρ,η(ρ)||2 < cρ

d−1
2 .

(2) There is a sequence ρn →∞ such that

||Rρn,η(ρn)||2 = ρ
d−1
2

n

( log log ρn
log ρn

) 1
2d
O(1) = ρ

d−1
2

n o(1),

that is, ||Rρ,η(ρ)||1 6� ρ
d−1
2 and ||Rρ,η(ρ)||2 6� ρ

d−1
2 .

Proof. (1) The upper bound follows from Lemma 2. To get the lower bound, observe that since
d ≡ 3 mod 4 we have θ = πm for some m ∈ Z. Without loss of generality we assume that δ < 1
and let 0 < ε < 2δ

d+1
. For each ρ, we pick b = b(ρ) according to Lemma 5. It follows from

Lemma 3 that

R̂ρ,η(ρ)(b(ρ)) = −2

√
2

π
(2π)

d
2ρ

d−1
2 b(ρ)−

d+1
2 (−1)m sin(b(ρ)η(ρ)) sin(b(ρ)ρ)

+ η(ρ)ρ
d−3
2 b(ρ)−

d+1
2 O(1).

The trigonometric part of the first term on the right hand side is bounded away from zero by
Lemma 5 and the second term is then negligible. This, together with the estimate b(ρ) ≤ ρε,
implies that there is a constant c1 > 0 such that for ρ large enough

|R̂ρ,η(ρ)(b)| > c1ρ
d−1
2
−ε d+1

2 > ρ
d−1
2
−δ.

The lower bound follows now from Lemma 2.

14
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(2) The existence of such a sequence ρn follows from the argument in the proof of Theorem 3.1
in [3]. Let n ∈ N and Mn = {|m| : m ∈ Zd, 0 < |m| ≤ n}. We apply Lemma 3.4 from [3] to
the set of reals Mn, which states that for any set of reals {α1, . . . , αm} and any Q ∈ N there are
integers p1, . . . , pm and q with Q ≤ q < Qm+1 such that |αiq−pi| < Q−1 for all i. So for Q =

√
n

there is a natural number ρn such that

n
1
2 ≤ ρn < n

|Mn|+1
2 (4.1)

and

| sin(2πρn|m|)| ≤ | sin(2πn−1/2)| ≤ 2πn−1/2 for all |m| ≤ n.

Since η(·) is bounded from above, it follows from Lemma 3 that there is a constant c1 such that

R̂2
ρ,η(ρ)(b) ≤ c1ρ

d−1b−d−1 sin2(bρ) + c1ρ
d−3b−d−1

for all sufficiently large ρ and all b ∈ Γ∗\{0}. Using Parseval’s identity7 we obtain, for all n large
enough,

||Rρn,η(ρn)||22 =
∑
b∈Γ∗

R̂2
ρn,η(ρn)(b) =

∑
m∈Zd\{0},|m|≤n

R̂ρn,η(ρn)(2πm) +
∑

m∈Zd,|m|>n

R̂ρn,η(ρn)(2πm)

≤ c2ρ
d−1
n

∑
06=|m|≤n

|m|−d−1 sin2(2πρn|m|)

+ c2ρ
d−1
n

∑
|m|>n

|m|−d−1 + c2ρ
d−3
n

∑
|m|6=0

|m|−d−1

≤ c3ρ
d−1
n n−1 + c3ρ

d−3
n ≤ c4ρ

d−1
n n−1, (4.2)

with some positive constants c2, c3, c4 since ρn ≥
√
n by (4.1).

Finally, we use the right hand side of the inequality (4.1) and the estimate |Mn|+1
2
≤ (3n)d to

obtain

log ρn ≤ (3n)d log n (4.3)

for all large n. Consider the function f(x) = 3x(log x)
1
d . It is easy to see that its inverse satisfies

f−1(y) = 1
3
y(log y)−

1
d (1+o(1)) as y →∞. Using (4.3) and the monotonicity of f for large values

of the argument we obtain

n ≥ f−1
(
(log ρn)

1
d

)
=
( log ρn

log log ρn

) 1
d
O(1)

for large n. Combining this with (4.2) we arrive at

||Rρn,η(ρn)||2 = ρ
d−1
2

n

( log log ρn
log ρn

) 1
2d
O(1)

for all large n. Restricting the sequence (ρn) to those large indices completes the proof. 2

7It seems to be correct in this form (without any constants) since the cell of Zd has unit volume but double check.
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5. Annuli of width tending to infinity
In this section we are mainly interested in the case when η(ρ) → ∞ and η(ρ) = o(ρ). However,
the theorem below is proved for a more general case. It turns out that in that case all dimensions
are critical.[MORE TEXT...]

Theorem 9. Assume lim supρ→∞ η(ρ) =∞, η(ρ) = o(ρ) and η satisfies (3.7).
(1) For any δ > 0, here is a positive constant c such that for all ρ sufficiently large

ρ
d−1
2
−δ < ||Rρ,η(ρ)||1 ≤ ||Rρ,η(ρ)||2 < cρ

d−1
2 .

(2) There is a sequence ρn →∞ such that

||Rρn,η(ρn)||2 = ρ
d−1
2

n o(1),

that is, ||Rρ,η(ρ)||1 6� ρ
d−1
2 and ||Rρ,η(ρ)||2 6� ρ

d−1
2 .

Proof. (1) The upper bound follows from Lemma 2. To get the lower bound, let ε < 2δ
d+1

and, for
each ρ, pick b = b(ρ) according to Lemma 5. It follows from Lemma 3 that

R̂ρ,η(ρ)(b(ρ)) = −2

√
2

π
(2π)

d
2ρ

d−1
2 b(ρ)−

d+1
2 sin(b(ρ)η(ρ)) sin(b(ρ)ρ− θ)

+ η(ρ)ρ
d−3
2 b(ρ)−

d+1
2 O(1).

The trigonometric part of the first term on the right hand side is bounded away from zero by
Lemma 5 and the second term is then negligible. This, together with the estimate b(ρ) ≤ ρε,
implies that there is a constant c1 > 0 such that for ρ large enough

|R̂ρ,η(ρ)(b)| > c1ρ
d−1
2
−ε d+1

2 > ρ
d−1
2
−δ.

The lower bound follows now from Lemma 2.

(2) The existence of such a sequence ρn is proved similarly to Theorem 3.1 in [3]. Let n ∈ N
and Mn = {|m| : m ∈ Zd, 0 < |m| ≤ n}. We apply Lemma 3.4 from [3] to the set of reals Mn,
which states that for any set of reals {α1, . . . , αm} and any Q ∈ N there are integers p1, . . . , pm
and q with Q ≤ q < Qm+1 such that |αiq − pi| < Q−1 for all i. Let (Qn)n∈N be a sequence of
natural numbers such that Qn → ∞. Then, for each n, there is a natural number qn ≥ Qn such
that

| sin(2πqn|m|)| ≤ | sin(2πQ−1
n )| ≤ 2πQ−1

n for all |m| ≤ n.

Since η is continuous and lim supρ→∞ η(ρ) = ∞, for all n large enough there is ρn such that
η(ρn) = qn. Obviously ρn →∞.
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It follows from Lemma 3 that there is a constant c1 such that

R̂2
ρ,η(ρ)(b) ≤ c1ρ

d−1b−d−1 sin2(bη(ρ)) + c1η(ρ)2ρd−3b−d−1

for all sufficiently large ρ uniformly in b ∈ Γ∗\{0}. Using Parseval’s identity we obtain, for all n
large enough,

||Rρn,η(ρn)||22 =
∑
b∈Γ∗

R̂2
ρn,η(ρn)(b) =

∑
m∈Zd\{0},|m|≤n

R̂ρn,η(ρn)(2πm) +
∑

m∈Zd,|m|>n

R̂ρn,η(ρn)(2πm)

≤ c2ρ
d−1
n

∑
06=|m|≤n

|m|−d−1 sin2(2πη(ρn)|m|)

+ c2ρ
d−1
n

∑
|m|>n

|m|−d−1 + c2η(ρ)2ρd−3
n

∑
|m|6=0

|m|−d−1

≤ c3ρ
d−1
n (Q−2

n + n−1 + η(ρ)2/ρ2) = ρd−1
n o(1),

with some positive constants c2, c3. 2

6. Annuli of width tending to zero
In this section we study the case when η(ρ) converges to zero. [MORE TEXT...]

Lemma 10. Assume η(ρ) → 0 as ρ → ∞. Then there is a positive constant c such that for all ρ
large enough

||Rρ,η(ρ)||2 < cρ
d−1
2 η(ρ)

1
2 .

Proof. It follows from Lemma 3 that there is a constant c1 such that

R̂2
ρ,η(ρ)(b) ≤ c1ρ

d−1b−d−1 sin2(bη(ρ)) + c1η(ρ)2ρd−3b−d−1.

Using Parseval’s identity and the inequality | sin(x)| ≤ |x| we obtain

||Rρ,η(ρ)||22 =
∑
b∈Γ∗

R̂2
ρ,η(ρ)(b) =

∑
b∈Γ∗\{0},b<1/η(ρ)

R̂2
ρ,η(ρ)(b) +

∑
b∈Γ∗,b≥1/η(ρ)

R̂2
ρ,η(ρ)(b)

≤ c1ρ
d−1η(ρ)2

∑
b∈Γ∗\{0},b<1/η(ρ)

b−d+1 + c1ρ
d−1

∑
b∈Γ∗,b≥1/η(ρ)

b−d−1 + c1ρ
d−3η(ρ)2

∑
b∈Γ∗\{0}

b−d−1

= c2ρ
d−1η(ρ) + c2ρ

d−3η(ρ)2.

The observation that η(ρ)2 = o(η(ρ)) completes the proof. 2
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Theorem 11. Assume η(ρ)→ 0 as ρ→∞ and d 6≡ 3 mod 4. Then

||Rρ,η(ρ)||2 � ρ
d−1
2 η(ρ)

1
2 .

Proof. The upper bound follows from Lemma 10. To prove the lower bound we use the fact that
d 6≡ 3 mod 4.

It follows from Lemma 3 that

R̂2
ρ,η(ρ)(b) ≥ 8

π2
(2π)dρd−1b−d−1 sin2(bη(ρ)) sin2(bρ− θ)− ρd−2b−d−1η(ρ)O(1)

uniformly in b ∈ Γ∗\{0}. For all b ∈ Γ∗\{0} satisfying b < 1/η(ρ) we have | sin(bη(ρ))| ≥
1
2
bη(ρ). Hence

R̂2
ρ,η(ρ)(b) ≥ 2

π2
(2π)dρd−1b−d+1η(ρ)2 sin2(bρ− θ)− ρd−2b−d−1η(ρ)O(1)

uniformly for those b.
Since d 6≡ 3 mod 4 we have θ 6= πm for any m ∈ Z and so

sin2(x− θ) + sin2(2x− θ) 6= 0 for all x ∈ R.

Since this is a continuous periodic function, it is bounded away from zero.
Using Parseval’s identity we get

||Rρ,η(ρ)||22 =
∑
b∈Γ∗

R̂2
ρ,η(ρ)(b) ≥ 1/2

∑
b∈Γ∗\{0},b<1/η(ρ)

(
R̂2
ρ,η(ρ)(b) + R̂2

ρ,η(ρ)(2b)
)

=
1

π2
(2π)dρd−1η(ρ)2

∑
b∈Γ∗\{0},b<1/η(ρ)

(
b−d+1 sin2(bρ− θ) + (2b)−d+1 sin2(2bρ− θ)

)
− ρd−2η(ρ)O(1)

≥ 2πd−2ρd−1η(ρ)2
∑

b∈Γ∗\{0},b<1/η(ρ)

b−d+1
(

sin2(bρ− θ) + sin2(2bρ− θ)
)
− o(ρd−1η(ρ))

≥ c1ρ
d−1η(ρ)2

∑
b∈Γ∗\{0},b<1/η(ρ)

b−d+1 − o(ρd−1η(ρ))

≥ c2ρ
d−1η(ρ)− o(ρd−1η(ρ)),

which some positive constants c1, c2. 2

Lemma 12. Let p be a non-constant polynomial and a < b. For each s > 0, let Fs = {y ∈ R :
ω[sy] > 1/4}. Then there is a constant c such that for any s large enough there is a finite collection
of disjoint open intervals {Ii : 1 ≤ i ≤ n} with the properties Ii ⊂ [a, b], |Ii| ≥ c/s for all i,
n ≥ cs, and ∪ni=1Ii ⊂ p−1(Fs).
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Proof. Let s be large enough and let a < t1 < · · · < tm < b be the points of local maximum
or minimum of the polynomial p on (a, b). Denote by [A,B] the range of p on [a, b]. Obviously,
Fs∩ [A,B] contains at least bs(B−A)/πc−1 disjoint open intervals of length π

2s
. Let us consider

only those not containing the points p(ti), 0 ≤ i ≤ m. There are at least n = bs(B−A)/πc−m−1
such intervals. Denote them by {Ji : 1 ≤ i ≤ n}.

Let c = min
{
B−A

2π
, π

2

(
sup
t∈[a,b]

|p′(t)|
)−1}. Obviously n > cs for r large enough.

Further, for each i, Ji does not contain local extrema of p and hence there are disjoint intervals
Ii ⊂ [a, b], 1 ≤ i ≤ n, such that Ii ⊂ p−1(Ji) and |Ii| = |Ji|/|p′(ξi)| for some ξ ∈ Ii. This implies
|Ii| ≥ |Ji|2cπ = c/s. Since ∪ni=1Ji ⊂ Fs we also have ∪ni=1Ii ⊂ p−1(Fs). 2

For each α ∈ (0, 1/2) and r > 0, denote

Bα(r, ρ) = {a ∈ Γ∗ : r < a < 2r and [aρ]π ≥ α}.

Lemma 13. Let r be a function of ρ such that, as ρ → ∞, either r(ρ)ρ−γ → ∞ for all γ or
r(ρ) � ργ for some γ > 0. Then there is α ∈ (0, 1/2) and c ∈ (0, π/4) such that

|Bα(cr(ρ), ρ)| � r(ρ)d.

Proof. It suffices to show that there is α ∈ (0, 1/2), c > 0 and m ∈ N such that for all ρ large
enough and each a ∈ Γ∗ with cr(ρ) < a < 2cr(ρ) at least on of the points a + ke1, 0 ≤ k ≤ m
satisfies ω[|a + ke1|ρ] ≥ α.

Denote θ = 〈a, e1〉/a ∈ [−2π, 2π]. Compute

|a + ke1| =
√
a2 + 2kaθ + 4π2k2 = a

√
1 + 2ka−1θ + 4π2k2a−2 = agθ(k/a) =

∞∑
i=0

bi(θ)k
ia1−i,

according to Lemma 4.
Let m = 1 if r(ρ)ρ−γ →∞ for all γ > 0 and let 1/γ < m ≤ 1/γ + 1 if r(ρ) � ργ . Consider

m∑
k=0

ck|a + ke1| =
∞∑
i=0

a1−ibi(θ)
m∑
k=0

ckk
i

and choose the coefficients ck, 0 ≤ k ≤ m, in such a way that the first m leading terms in the
decomposition disappear. To do so, we need to solve the linear system

∑m
k=0 ckk

i = 0, 0 ≤ i ≤
m−1, ofm equations inm+1 variables. Since the system has integer coefficients it has an integer
non-zero solution ck, 0 ≤ k ≤ m. Moreover, since the Wandermonde matrix is non-degenerated,
we have

m∑
k=0

ckk
m = C 6= 0.
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Denote D =
∑m

k=0 ckk
m+1. We have

ρ
m∑
k=0

ck|a + ke1| = ρ
∞∑
i=0

a1−ibi(θ)
m∑
k=0

ckk
i = Cρa1−mbm(θ) +Dρa−mbm+1(θ) +O(ρa−m−1),

where O(·) is uniform in θ. If m 6= 1/γ the second term is negligible for all a satisfying cr(ρ) <
a < 2cr(ρ) for any choice of c, so we pick c ∈ (0, π/4) arbitrarily. Otherwise, if m = 1/γ, we
choose c so small that

|Dρa−mbm+1(θ)| ≤ Dc−mρr(ρ)−1/γ max
|θ|≤2π

|bm+1(θ)| < 1/16

which is possible since ρr(ρ)−1/γ � 1. Observe that the last term is always negligible due to the
choice of m. This implies that

ρ
m∑
k=0

ck|a + ke1| = Cρa1−mbm(θ) + ϕθ(a, ρ),

where |ϕθ(a, ρ)| < 1/8 for all a satisfying cr(ρ) < a < 2cr(ρ) if ρ is large enough.
To deal with the first term, we use Lemma 12 with p = Cbm (which is non-constant as m ≥ 1

and so it has degree m by Lemma 4), [A,B] = [−2π, 2π], and s = ρa1−m. We obtain that, if ρ is
large enough, then for each value a ∈ (cr(ρ), 2cr(ρ)) there is a finite collection of disjoint open
subintervals {Ii(a) : 1 ≤ i ≤ n(a)} of [−2π, 2π] with the properties |Ii(a)| ≥ c1ρ

−1am−1, n(a) ≥
c1ρa

1−m, with some constant c1, and such that for all θ ∈ ∪n(a)
i=1 Ii one has ω[Cρa1−mbm(θ)] > 1/4

and, consequently,

ω
[
ρ

m∑
k=0

ck|a + ke1|
]
> 1/8. (6.1)

Hence, all points a from the set A(ρ) =
{
a ∈ Γ∗ : cr(ρ) < a < 2cr(ρ), 〈a, e1〉 ∈ ∪n(a)

i=1 aIi(a)
}

satisfy (6.1). Observe that proportion of such points in the annulus
{
a ∈ Γ∗ : cr(ρ) < a < 2cr(ρ)

}
is positive as a|Ii(a)| ≥ c1ρ

−1am ≥ c1ρ
−1r(ρ)m →∞ uniformly in a due to the choice of m, and

| ∪n(a)
i=1 aIi(a)| ≥ an(a) maxi |Ii(a)| ≥ c2

1a ≥ c2
1r(ρ).

Let α > 0 be such that α
∑m

k=0 |ck| < 1/8. It suffices now to show that each point a ∈ A(ρ)
has the property that at least on of the points a+ke1, 0 ≤ k ≤ m satisfies ω[|a+ke1|ρ] ≥ α. If this
is not true then using the triangle inequality for ω and the fact that the coefficients ck, 0 ≤ k ≤ m,
are integers we obtain

ω
[
ρ

m∑
k=0

ck|a + ke1|
]
≤

m∑
k=0

|ck|ω[|a + ke1|ρ] < α

m∑
k=0

|ck| < 1/8,

which contradicts (6.1). 2
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Theorem 14. Assume η(ρ)→ 0 as ρ→∞ and d ≡ 3 mod 4.
(1) If η(ρ)ργ → 0 for all γ > 0 or η(ρ) � ρ−γ for some γ > 0 then

||Rρ,η(ρ)||2 � ρ
d−1
2 η(ρ)

1
2 .

(2) If η(ρ)ργ →∞ for all γ > 0 then for any δ > 0 there is a positive constant c such that for
all ρ sufficiently large

ρ
d−1
2
−δ < ||Rρ,η(ρ)||2 < cρ

d−1
2 η(ρ)

1
2 .

If η(ρ)
(

log ρ
log log ρ

) 1
d →∞ as ρ→∞ then there is a sequence ρn →∞ such that

||Rρn,η(ρn)||2 = ρ
d−1
2

n η(ρn)
1
2 o(1),

that is, ||Rρ,η(ρ)||2 6� ρ
d−1
2 η(ρ)

1
2

Proof. Observe that the upper bound in both statements has been proved in Lemma 10, and the
lower bound in (2) has been proved in Theorem 8, as its assumption (3.7) is satisfied. So it suffices
to prove the lower bound in (1) and construct a sequence ρn.

(1) Since d ≡ 3 mod 4 we have θ = πm for some m ∈ Z. It follows from Lemma 3 that, for
some constants c1, c2 > 0,

R̂2
ρ,η(ρ)(b) ≥ c1ρ

d−1b−d−1 sin2(bη(ρ)) sin2(bρ)− c2ρ
d−2b−d−1η(ρ)

uniformly in b ∈ Γ∗\{0}.
Let r(ρ) = 1/η(ρ). By Lemma 13 there is α ∈ (0, 1/2) and c3 ∈ (0, π/2) such that

|Bα(c3r(ρ), ρ)| � r(ρ)d. Observe that for any b ∈ Bα(c3r(ρ), ρ) we have 0 < c3 ≤ bη(ρ) ≤
2c3 < π/2 and so sin(bη(ρ)) ≥ 2

π
bη. Further, any b ∈ Bα(c3r(ρ), ρ) satisfies [bρ]π ≥ α and so

sin2(bρ) ≥ c4 for some c4 > 0. Using Parseval’s identity we obtain

||Rρ,η(ρ)||22 =
∑
b∈Γ∗

R̂2
ρ,η(ρ)(b) ≥

∑
b∈Bα(c3r(ρ),ρ)

R̂2
ρ,η(ρ)(b)

≥ c5ρ
d−1η(ρ)2

∑
b∈Bα(c3r(ρ),ρ)

b−d+1 − ρd−2η(ρ)O(1)

≥ c6ρ
d−1η(ρ)2

∑
b∈Γ∗,c3r(ρ)<b<2c3r(ρ)

b−d+1 − o(ρd−1η(ρ))

≥ c7ρ
d−1η(ρ)2r(ρ) + o(ρd−1η(ρ)) = c7ρ

d−1η(ρ) + o(ρd−1η(ρ))

with some positive constants c5, c6, c7.

(2) Consider the sequence ρn constructed in Theorem 8. Since its assumption (3.7) on η is
satisfied we have

||Rρn,η(ρn)||2 = ρ
d−1
2

n

( log log ρn
log ρn

) 1
2d
O(1) = ρ

d−1
2

n η(ρn)
1
2 o(1)

according to the slow decay of η. 2
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