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eigenvalues and eigenfunctions of an abstract self-adjoint operator acting in a Hilbert
space. Applications involve abstract universal estimates for the eigenvalue gaps. As
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1. INTRODUCTION

In 1956, Payne et al. [PaPoWe] have shown that if {;} is the set of
(positive) eigenvalues of the Dirichlet boundary-value problem for the
Laplacian in a domain Q < R”, then

4 m
(PPW)  Zpi1 — m <—Z vy

foreachm=1,2,...
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This inequality was improved to

. A mn
=
=1 Amt1 — Aj 4

(HP)

by Hile and Protter [HiPr]. This is indeed stronger than (PPW), which is
obtained from (HP) by replacing all 4; in the denominators in the left-hand
side by 4,,.

Later, Hongcang Yang [Ya] proved an even stronger inequality

HOY-1) Y Gt =i (e = (143) 1) <0

j=1

which after some modifications implies an explicit estimate
(HCY-2) Api1 < 1+4 li)
- A1 < —|= .
+1 n mj:1 j

These two inequalities are known as Yang’s first and second inequalities,
respectively. We note that (HCY-1) still holds if we replace 4,.; by an
arbitrary z € (A, Amr1] (see [HaSt]), and that the sharpest so far known
explicit upper bound on A,4; is also derived from (HCY-1), see
[Ash, formula (3.33)].

Payne-Polya—Weinberger, Hile—Protter and Yang inequalities are com-
monly referred to as universal estimates for the eigenvalues of the Dirichlet
Laplacian. These estimates are valid uniformly over all bounded domains
in R". The derivation of all four results is similar and uses the variational
principle with ingenious choices of test functions, and the Cauchy—Schwarz
inequality. We refer the reader to the extensive survey [Ash] which provides
the detailed proofs as well as the proof of the implication

(HCY-1) = (HCY-2) = (HP) = (PPW).

In 1997, Harrell and Stubbe [HaSt] showed that all of these results are
consequences of a certain abstract operator identity and that this identity
has several other applications.

Similar universal estimates were also obtained in spectral problems for
operators other then the Euclidean Dirichlet Laplacian (or Schrodinger
operator), e.g. higher order differential operators in R”, operators on
manifolds, systems like Lamé system of elasticity, etc., see, [Hal, Ha2,
HaMil, HaMi2, Hol, Ho2] and already mentioned survey paper [Ash].

Unfortunately, despite the abstract nature of the results of [HaSt], it is
unclear whether they are applicable in all these cases.
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The first main result of our paper is a general abstract operator identity
which holds under minimal restrictions:

THEOREM 1.1. Let H and G be self-adjoint operators such that
G(Dy) € Dy Let 2; and ¢; be eigenvalues and eigenvectors of H. Then for
each j

H, Gl g !
3 W — 5<[IH.GL.Gl¢;, >
* .

> G = ADIKGh, I (1.1)
k

This theorem has a lot of applications, notably the estimates of the
eigenvalue gaps of various operators. In particular, the results of Payne,
Pélya and Weinberger for the Dirichlet Laplacian follow from (1.1) if we set
G to be an operator of multiplication by the coordinate x;. Then (1.1) takes a
particular simple and elegant form:

op;
6x /

(1.2)

2
LY ) /Qx,qs_,qsk 1

Then (PPW) follows from (1.2) if we sum the resulting equalities over / and
use some simple bounds, see Examples 4.1 and 4.2 for details. There are
other applications of Theorem 1.1—in each particular case one should work
out what is the optimal choice of G—and we give several such applications
below.

Remark 1.2. The second equation in (1.2), in the context of a
Schrodinger operator acting in R” is known as the Thomas—Reiche—Kuhn
sum rule in the physics literature. It was derived by Heisenberg in 1925 [He].
The name attached to the sum rule comes from the fact that Thomas,
Reiche, and Kuhn had derived some semiclassical analogues of this formula
in their study of the width of the lines of the atomic spectra, [Ku, ReTh, Th].
Similarly, taking G to be the operator of multiplication by ¢~ (with a real
vector £), one arrives at the Bethe sum rule,

zk:(/lk_/lj)/we

see [Bet], and for further generalization [Wa]. Both the Thomas—Reiche—
Kuhn and Bethe sum rules are discussed in standard text books on quantum
mechanics, see, ¢.g., [CTDilLa, Vol. 2, p. 1318; Mer, Chap. 19].

2
2
=&l
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Our other main result is the generalization of formula (1.1) to the case of
several operators. Namely, suppose we have two operators H; and H, (the
model case being Laplacians with different boundary conditions) and we
want to estimate eigenvalues of H; in terms of eigenvalues of H,. Then one
can write the formula, similar to (1.1), but instead of the usual commutator
[H, G] we will have the ‘mixing commutator’ HG — GH,. It turns out that
one of the operators H; in this scheme can be non-self-adjoint. Details are
given in Section 3. We give several applications of the second formula as
well; however, now the possible choice of the auxiliary operator G is even
more restrictive, since we have to make sure that all the commutators
involved make sense.

2. STATEMENTS FOR A SINGLE OPERATOR

In this Section, H denotes a self-adjoint operator with eigenvalues 4; and
an orthonormal basis of eigenfunctions ¢;. Operator H acts in a Hilbert
space A equipped with the scalar product <-,-» and the corresponding norm
I 1l

We start by stating the following obvious result.

LemMA 2.1.  Let Aj = Ax. Then
{(H,Gl¢;, ¢» = 0. 2.0

Our next theorem gives various trace identities similar to the one given in
Theorem 1.1.

THEOREM 2.2. Let H and G be self-adjoint operators with domains Dy
and D¢ such that G(Dy) < Dy < Dg. Let 4; and </>j be eigenvalues and
eigenvectors of H. Let P; be the projector on the eigenspace # ; corresponding
to the set of eigenvalues which are equal to A;. Then for each j

|<[H9G]¢9 ¢k>|2 1
, ) 1
2 k= ADIKGh, d0F = =3 U, G, G169, (23)
H,Gl¢, o))
5~ KO0 00F G 1p — 1pGa 1 (2.4)

p i — 4
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> Gk = 1Y KGoj, ¢l = IIIH, Gl I (2.5)
k

Remark 2.3. The summation in (2.2)—(2.5) is over all k. Lemma 2.1
guarantees that the summands in (2.2) and (2.4) are correctly defined even
when /; = 4; (if we assume 0/0 = 0).

Remark 2.4. Instead of the condition G(D(H)) < D(H) we can impose
weaker conditions G¢; € D(H), sz)j eD(H), j=1,... . Moreover, the
latter condition can be dropped if the double commutator is understood in
the weak sense, i.e., if the right-hand side of (2.2) and (2.3) is replaced by

([H,Glp;,Go,> (see (2.10)).

Remark 2.5. Formulae (2.2)—(2.5) can be extended to the case of H
having continuous spectrum. In this case, the identities will include
integration instead of summation, cf. [HaSt]. We omit the full details.

Proof of Theorem 2.2. We are going to prove identities (2.2) and (2.3);
the other two identities are proved in a similar manner (and are much

easier).
Obviously, we have

[H.Gp; = (H — 7,)Gob;. (2.6)
Therefore,
(GIH,Gp;. ;> = G(H — i,)G;, ;). 27
Since G is self-adjoint, we have

(G(H = 2))G;, ;> = {(H — )G, G,
=Y LH = 2)G,, > br, Gb,>
k

=" i — 2)KG; P 2.8)
k

Using the fact that [H, G] is skew-adjoint, the left-hand side of (2.7) can be
rewritten as

<G[H3 G]¢]a ¢j> = - <[[H>G]3G]¢]a ¢]> + <[H9G]G¢j9 ¢j>
= - <[[H>G]’G]¢]a (/5]> - <¢ja G[H>G]¢j>9 (29)
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SO

(GIH,Gl¢;. d;> = —x[[H, G, Gl;, d,> (2.10)

(notice that {G[H, G];, ¢, is real, see (2.7) and (2.8)). This proves (2.3).
Since (2.6) implies

[H,Glp;, > = (ke — ADLGP;, i),
this also proves (2.2). 1

Let us now put in (2.4) G = [H, F] where F is skew-adjoint. Then due to
(2.1) the second term on the right-hand side of (2.4) vanishes, and we have
the following:

COROLLARY 2.6.  For a skew-adjoint operator F such that F(¢$;) € D(H?)
for all j, we have

H,[H,Fl¢., ¢,
k

G — 2j)°
As above (see Remark 2.4), we can replace the conditions F(¢,) € D(H?)
by weaker ones F(¢;) € D(H) if we agree to understand the double
commutators in an appropriate weak sense.
From now on, we assume that the sequence of eigenvalues {4; } ~, is non-
decreasing.

We now have at our disposal all the tools required for establishing the
“abstract” versions of (PPW) and (HCY-1).

COROLLARY 2.7. Under conditions of Theorem 2.2,

m

—(ms1 — Am)Z ([[H. G, Gl¢;. ¢, )<2Z IH.Glp,IP.  (2.12)
Proof. Let us sum Eq. (2.2) over j = 1,...,m. Then we have

m 00 H, . 2 m
sy WG P0F Z ([H.GLGlpb).  (213)

g Ak = 4j

Parceval’s equality implies that the left-hand side of (2.13) is not greater
than ;———>"" | |I[H, Gl¢,|I°. This proves (2.12). |

The next corollary uses the idea of [HaSt].
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COROLLARY 2.8.  For all z € (A, Ami1] we have
Z(z—ﬂ,)nH Gl I = Z(z—ﬂ,)<HG] Glo,d,>.  (2.14)

Proof.  Let us multiply (2.2) by (z — ;nj)2 and sum the result over all
j=1..., m. We will get

[H,G "
ZZ( —%)2% Z z = ) [IH. Gl.Gl¢ . b,).

2.15)

The left-hand side of (2.15) can be estimated as follows:

I<[H, G, pioI
Z ; (z— )~j)2 —/1 _jl‘ k

o SN GAC s

=1 k=1 k=4
U [H,G]

“I‘Z Z (Z— j)2|< ; is)¢k>|
j=1 k=m+1 k

S L KIH Gl doP

= IZZ] k=1 e k= A

3 G- IKH. Gl OF

j=1 k=m+1

Z (z%)Z K[H, G, oI
=

m m H 2
+ZZ<<Z s LA 008 (1, ¢k>|>

=1 k=1 Ak = 4

Z (= )IH, Gl
=

m

m - i

=1 k=1

Z (z = 2)IIH, Gl II°
=
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DI ((_lkf)f(“) KIH, G]¢-,¢>k>|2)

(Z — WIIH, Glg,1. (2.16)

HMS

(The last equality uses the fact that the expression under 27:1 S
is skew-symmetric with respect to j, k.) Now (2.15) and (2.16) imply
2.14). 1

Remark 2.9. As we will see in case of the Dirichlet Laplacian, our
formula (2.12) is an abstract generalization of Payne-Pdélya—Weinberger
formula (PPW), and (2.14) is an abstract generalization of Yang’s formula
(HCY-1).

3. STATEMENTS FOR A PAIR OF OPERATORS

The results of previous section are not applicable, directly, to non-self-
adjoint operators. To extend the spectral trace identities to a non-self-
adjoint case we consider pairs of operators Hy, H,, where one of them is
allowed to be non-self-adjoint. Using auxiliary operators G;, G,, we can
relate the spectra of H; and H,.

First, we introduce the following notation. For a triple of operators X,
Y, Z acting in a Hilbert space ## we define the “mixing commutators”

[X,Y;Z]=XZ - 7Y, X, V,Zy ., =XZ+7*Y. (3.1)
We note some elementary properties of “mixing commutators’ (3.1):

X.X:Z]=[X.Z], [X.V:Z]' =—[Y*.X":Z"],
X.Y:Z)) = +{Y° X7},

We always assume non-self-adjoint operators to be closed.
Our main result concerning non-self-adjoint operators is the
following:

THEOREM 3.1. Let Hy be a self-adjoint operator in a Hilbert space # with
eigenvalues 1y and an orthonormal basis of eigenfunctions ¢,., and let H, be a
(not necessarily self-adjoint) operator in A with eigenvalues ; and
eigenfunctions ;. Define, for an auxiliary pair of operators Gy, Gy in A,
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the operators
A = [H\,H»; G|],
B =[H\, Hy; Gy,
C =[H, ,H;G,]= —B*,
= {C,B;G } .. (3.2)

If the operators A, B, and D are well defined, and all the eigenfunctions of
H, belong to their domains, then the following trace identities hold for any

fixed j:

Ak 1
ReZ |2<Bl//,,¢k><Aw,,c/)k> =3P, (33

k_,“

Ak
iIm Zuk— SKBY . > A iy = <D+¢A,wj>. (3.4)

Proof. Acting as in the proof of Theorem 2.2 we get

KGilH\, Hy; G, ¥ ;> =< Gi(H Gy — Ga L)Y 1, ;)
=<(H — #j)GZ‘//ja G]* ‘p]>
=Y LHy = p)Goypj, i . GT ;>
k

=Y <Gayp (Hy — Ty > <> Gy ;>
k

=3 (G = mGy Y g X Gah b>. (3.5)
k

Also,

[Hy, H; Gy, ¢ = (H\ G2 — GaFo)Yj,
=l Gy > — G, bi>
= (e — 1G> (3.6)

and, similarly,

Hy, Ho Gy Wy > = (e — TG Wy ). (3.7)
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Therefore, (3.5) can be rewritten as
{Gi[Hy, Hy; Gz]%,lﬁ‘>

—Zlik— 5 H, Ho; Gal, oy > <TH Hoy Gy D, by (3.8)

Finally, using definitions (3.1), we have
2Re {Gi[Hy, Hy; Golj, ;> = {(Gi[H1, Ha; Go) + [Hy, Ho; Ga)* GO 0>
= — {(=Gi[H\, Hy; Gl + [H, , Hi; Gy )Gy >
— {[Hy  Hy; Gy 1 [H1, Hy: GoL; Gy 3,00,

(3.9)
and
2iIm {G\[Hy, Hy; Gy, ¥ > = {(Gi[Hy, Ha; Ga] — [Hi, Hy; Go)* GO >
= {(G1[H, Hy; Go] + [Hy , Hy; Gy 1G>
= <{[H2* P Hl, Gz*], [H19H2» G2]a Gl* }+‘/jp lﬁ/>
(3.10)

The theorem now follows by combining (3.8)—(3.10) and using (3.2). 1

The trace identities (3.3) and (3 4) are much simpler if we choose
Gz* = G;. Then 4 = B = [H,, Hy; G ], and we immediately arrive at

THEOREM 3.2. [If, in addition to conditions of Theorem 3.1, we assume
G, = G, the following trace identities hold for any j:

I | *
ZﬁK Uy ol = =S A=A A GU L), (B

2

An even simpler case is when the operators H, and G| = G, are self-
adjoint. As for any self-adjoint Z, {X,Y;Z}_=|[X,7Y;Z], we do not have to
use any “curly brackets” commutators and immediately obtain

2|<Alﬁ,,¢k>| **<{ AN AG . (3.12)

|k—#|

THEOREM 3.3. If, in addition to conditions of Theorem 3.1, we assume
that H, = H; and G| = G1* = Gy = G, the following trace identity holds for



UNIVERSAL ESTIMATES FOR EIGENVALUES 435

any J.

1 1
> T, | U H G, il = =5 llHs, Hy; L, [Hy, Ha; GL; Gl ).
k J
(3.13)

We emphasize that each of Theorems 3.1-3.3 supersedes Theorem 2.2.
Indeed, if we set Hy = Hy = H, , = A, Y, = ¢, and G| = G, = G, we
have [H,H;G] =[H,G], [[H,H;G],[H,H;G];G] = [[H,G],G], and identity
(3.13) becomes (2.2). The other identities generalizing (2.3)—(2.5) in Theorem
2.2, can be obtained in similar fashion.

Remark 3.4. The main difficulty in applying Theorems 3.1-3.3 is the
choice of auxiliary operators G; and G, in such a way that all the
commutators involved make sense. Similarly to Remark 2.4, we can weaken
the conditions of the theorems by considering the double “mixing”
commutators in the weak sense only.

In principle, one can obtain estimates for the eigenvalues in a general
situation of Theorem 3.1. However, this is impractical because of the variety
of combinations of signs of terms in (3.3) and (3.4). The situation simplifies
if we consider more restricted choice of Theorems 3.2 and 3.3.

We start with applications of Theorem 3.2. Before stating the main results
we introduce the following notation in addition to (3.2):

g =AyP  dy =Dy, df =KDy (B14)

(recall that 4 = [H, H>; Gl*], Dy ={—-A4*,4; Gl*}i). It is easy to check that
dji are in fact real numbers.

COROLLARY 3.5. Under conditions of Theorem 3.2, for any fixed j,

2 .
dist(u;, spec Hy) < — (3.15)
V@) + )
Moreover,
: =l 24
Re pt; — Jy|< min 2 “H =4 3.16
min |Re p; = A| < min Re ;] ld7 | (3.16)
and
= Al 2a
Im gt | < min 2 < =Y (3.17)
L YA



436 LEVITIN AND PARNOVSKI

Proof. Subtracting identity (3.11) from (3.12), taking the absolute value,
and using the triangle inequality and (3.14), we get

Zuk |<Aw,,¢k>| |4;+idf|.

The left-hand side of this inequality is estimated from above by

Z <AV P =— 4y |

1
ng |,U; — ]
1
:.—Clj,
dist(u;, spec Hy)

Iik

which implies (3.15). Estimates (3.16) and (3.17) are obtained by applying
exactly the same procedure to (3.11) and (3.12) separately. |

4. EXAMPLES
ExaMPLE 4.1 (Second Order Operator with Variable Coefficients, Dirich-
let Problem). Let 6 = 8/0x;, and let H = — ZZ’H Oray(x)0; be a positive

elliptic operator with Dirichlet boundary conditions in @ < R" (4 = {aj} is
positive). Let G be an operator of multiplication by a function f. Then

[H.Glu = (Hf)u =2 (0 f)ar(x)(8u)
k=1

and

[[H,GL,Gl = =2 (3/)au(x)(@0f).

k=1

Therefore, Corollary 2.7 implies

Zj S (HP)YD, =257 121 (B )anx)(819)))°
2 Jo 2him (6kf)ak1(x)(61f)¢2

(4.1)

}~m+1 - /lm <

Now, each choice of f in (4.1) will produce an inequality for the spectral
gap. For example, we can choose f = x;. Then (4.1) will have the following
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form:

S o Colny @Guan(e)) e, + 231 aun(x)@i9)))
fQ a;i(x) 27:1 <I5JZ .

Since (4.2) is valid for all i, we have

D1 = A < (4.2)

X X Jo (i Gan))g; +2 0, an)(@ig))’
B St o TrAG)$;
PR S Jo i Gty
S Jo Tr(A);
n 4930 Z;'n:l Jo O ail(x)(al¢j))2
S Jo TrA()¢;
where p and ¢ are arbitrary positive numbers greater than one such that

(p—1)(g—1)=1. The first term on the right-hand side of (4.3) can be
estimated by

)\,erl - )vm

, 4.3)

Py Qo (azazi(x)))z'

su 4.4
w  mTidw) 9
The second term is not greater than
4q(2;.":] /j)sup,.o (maximal eigenvalue of A(x)) 45
minf,co Tr(4(x)) ' @.5)
This gives the inequality for the spectral gap:
n n . 2
Dot — A < SUP P Q1 (Baiix)))
xeQ m Tr(A(x))

49(3"711 2))SUpeq (maximal eigenvalue of A(x)) 16
* minf g Tr(4(x)) (46)

in terms of the previous eigenvalues and properties of the coefficients of the
operator but not the geometric characteristics of the domain.

ExamPLE 4.2 (Dirichlet Laplacian). Let now H = —A4 acting in the
bounded domain Q = R” with Dirichlet boundary conditions. Then in (4.6)
we can let p — oo (and so ¢ — 1) and get (PPW) inequality (in the same way
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as in [HaSt]):

m

4
_ <— .
j'erl j~m mn Z }] (4 7)

=1
If one uses Corollary 2.8 instead, one gets the following inequality (in the
same way as in [HaSt]) for all z € (4, An11]:

m

4 m
;Z E= Iz = i) (4.8)
j=1

J=1

If z = 411, (4.8) becomes (HCY-1).
Now let us look once again at our main identity when H is the Dirichlet

Laplacian and G is the operator of multiplication by x; (/ = 1,...,n):
X Wy |
mkl 4.9)
kz:; A — j~m 4
where
o¢
il = | —= . 4.1
i = [ S, (4.10)

Using Gaussian elimination, one can find the orthogonal coordinate system
X1,...,X, such that

Wimm+1,1 =Wmm+12 = = Wmm+ln—1 = Wmm+2,1 = *°*

=Wmm+2n-2 = = Wmm+n—1,1 = 0. (411)

Let us now make the obvious estimate of the left-hand side of (4.9):

1 00\ L o= Wkt |
m) s el 4.12
}vm_._[ — /1,,,/9 <8x1 ) kz::l )Lk - /1,,, 4 ( )
or
P 2
Dot — A <4 / <i> . (4.13)
o \ 0x
Summing these inequalities over all / = 1,...,n gives

> i1 <G+ 1), (4.14)
=1
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As far as we know, this estimate is new for m > 1 (for a discussion of the case
m = 1 see [Ash, Sect. 3.2]).

ExaMPLE 4.3 (Neumann Laplacian). The case of the Neumann condi-
tions is much more difficult than the Dirichlet ones because now if we take G
to be a multiplication by a function g, we have to make sure that g satisfies
Neumann conditions on the boundary. Therefore, we cannot get any
eigenvalue estimates without the preliminary knowledge of the geometry of
Q = R". We combine the ideas of [ChGrYa,HaMil] to get some
improvement on the estimate of [HaMil].

Suppose, for example, that we can insert ¢ balls B, = B(x,,7},)
(p=1,...,q9) of radii ry=2r>--->r, inside Q such that these balls
do not intersect each other. Let R(x) be the second radial eigen-
function of the Neumann Laplacian in a unit ball B(0,1) normalized in
such a way that it is equal to 1 on the boundary of the ball. Then the
function

1y
g(x) = {R(r” (=) xeBy, (4.15)

1 otherwise

satisfies Neumann conditions on 0. Therefore, if we take G to be
multiplication by g and A to be Neumann Laplacian on €, they satisfy
conditions of 2.2. Therefore, Corollary 2.7 implies (by Cj, C,. .. we denote
different constants depending only on n)

;Lm+l - ;Lm
<C1 Do e r_4f3 ¢1R2 +C 3 Yt s, IV, PIVR,I
~ 2 2 .
D 2 fB,, ?;IVR,|

(4.16)

The denominator on the right hand side of (4.16) can be estimated from

below by noticing that ¢, = |Q‘ Therefore,

. C3|Q| 4, 2
At = I < an(Zr +r, Z/l (4.17)

Assuming that all the radii »; are the same, we get

1 m
Dot = Jon < Col Qlry" <rqz + 52 z,-) . (4.18)

=1
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ExamPLE 4.4 (Elasticity). Here we mostly follow the lines of [Ho2]
(though the final result is slightly different); for convenience we use the same
notation. We consider the spectral problem for the operator of linear
elasticity,

Hu= —Au— agraddivu (4.19)
on a compact domain Q < R" with smooth boundary, with Dirichlet
boundary conditions u|yo = 0. Here u = (u,...,u,) is an n-dimensional
vector-function of x = (xy,...,x,) € R, and >0 is a fixed parameter.

Denote the eigenvalues of (4.19) by A1 <A,< ---4;< -+, and correspond-
ing eigenvectors u;.

We denote L = —4, M = —grad div, so that H = L + o M, and consider
the operators G; of multiplication by x;,, / =1,...,n. Then, by Hook
[Ho2, Lemmas 4, 5], we have

[L,Gi] = —-2S,, [M,G/] = —R,,

where S;u = g—;’[, Ryu = (divu) grad x; + grad u;. Also,

n

S RLGlu=2u, ) [S,Glu=nm.
=1

I=1

Applying identity (2.2) of Theorem 2.2 with G = G; and summing over
I=1,...,n, we obtain

2S R
Z S0 KQ2S+ aR )y, wedl —(n+a).
=4,
Corollary 2.7 now implies the estimate
A — A< ( = Z SIS+ oaRpuy| P (4.20)
=1 =

To estimate the right-hand side of (4.20), we need the following:

Lemma 4.5. Ifu= 0 on 09, then

{—grad divu,u) = ||divul?, 4.21)

> IRl = (7 + 2)<—grad div u,u) + (—Au,u), (4.22)
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n

> ISl = <~4u,u), (4.23)
=1

Z {Sm,Ruy = 2{—graddivu,u). (4.24)
=1

Proof of Lemma 4.5. Equalities (4.21)—-(4.23) are proved in [Ho2]; it

remains only to prove (4.24).
Using the definitions of R;, S;, and integrating by parts, we have

Z S, Ru)y = Z / ( ) ((div u) grad x; + grad u;)
“ . 6u, 1 1 / 8u1 8uk
= divu) —+ —
121:/9( )6)61 ;; ankaxl
= / (divu)® — / (u - grad div u)
Q o}

= — 2{grad divu,ud. |

Applying now Lemma 4.5 to the right-hand side of (4.20), we have

1 m
At — A < ———— > @&ISpu,|* + ||Ruj|)> + 4a{S;, Ryu;
+1 m(n+a)j§:1 A1Smwj|I” + o [Rw |7 + 4aSpu;, Ry )

)Z (4 + o*){—Auj,u;>

m(n + o
+ ((n+ 2)a* + 8a)(—grad divu,,u,))

1 u .
< m; max(4+ o2, (n + 2)oa+8){—Au; — e grad divu;,u;>

m
max(4 + o2, (n+ 2+ 8) Y 4.

1
~m(n + o) =

ExaMPLE 4.6 (Two Schrodinger Operators). Here we consider a simple
example illustrating the results on pairs of operators. Let H; be a
Schrodinger operator _W + Vi(x) with Neumann boundary condmons on
a finite interval / < R and H, be a Schrodinger operator — d £ S+ V5(x) with
Dirichlet boundary conditions on the same interval; we assume that both
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potentials are sufficiently smooth and that 7} (but not necessarily V%) is real
valued.

We choose G=G* =G =G, = i%. It is easy to check that for an
eigenfunction y of H, corresponding to an eigenvalue y we have

d
— |G
Thus, Gy € Dy,, and the commutators appearing in Theorem 3.2 are

correctly defined.
Elementary computations then produce

d? ‘
=S| = =i V)l = 0.
ol dx? ol a

d _
A=[H,H,Gl = — Vg)ia—in', A* =N =) +il

and, further on,

2

d d
D+:—A*G+GA:(2iImV2)ﬁ+2V2’a+V2", (4.25)

2

d d
D_=—A"G—GA=20i —Rely) -+ 20/ = 1)

oW @26

Substituting these expressions into (3.11) and (3.12), we obtain the trace

identities,
GRS
- 11— WN)i——1i i
k |/Lk_:uj dx : e

1 d? d
=3 < ((21' Im V3) — + 2V2’E+ Vz”)wj,w>, (4.27)
Imu;
ZE 'u./ 5

d R
e — <((Vl_ %)la_%)%’(bk>

—1 2(V; — Re W5 a 2V — V) d |74 4.28
_§<((1— 1) o - 2>¢j,¢j>. (4.28)

Xk—Reuj 2

|2

2

Also, the estimates (3.15)—(3.17) hold.
As usual, obtaining ‘“‘practical” information about eigenvalues and
eigenvalue gaps from (3.15)—(3.17) requires constructing effective estimates
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from above for

2

aj = Iy I = H ((Vl i Vz) v,

and from below for

d2 ! d "
dj+ = _i<D+lpja ‘pj> = —i< <(2i Im VZ)E_F 2V2 a + Vz )l//ja‘//j>

and

d? d
&7 =~y = ~( (200~ Re W) 0 200 = 1) = 1 Yo )

Estimating a; is easy:
242 2
laj| <171 = Walli 45 + A1,

where || - ||; stands for the L; norm on the interval.

The estimation of a’ji does not seem to be possible in general, without
additional assumptions on potentials ¥, and V5. Therefore, we shall
consider a simple particular case of V; = J5 =V, assuming additionally
that V" >c¢ > 0 uniformly on /. Then we have

2 2
a; =Vl < VI,

d = —i< <2V’%+ V”) w,,¢,> = /1 V'3 =0

(as could be expected for a self-adjoint H,), and
d; =<V = /e = min \/V".

Then, by Corollary 3.5 we have

. ) Il
min [y, — Al <———=.

k min; \/ V"
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