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Lower Bound on the Density of States for Periodic
Schrödinger Operators

Sergey Morozov, Leonid Parnovski, and Irina Pchelintseva

Abstract. We consider Schrödinger operators −∆ + V in Rd (d > 2) with

smooth periodic potentials V , and obtain a uniform lower bound on the (non-

integrated) density of states for large values of the spectral parameter. It turns
out that as the spectral parameter increases, the density of states approaches

the one for −∆.

1. Introduction

Let H = −∆ + V be a Schrödinger operator in L2(Rd) with a smooth periodic
potential V . We will assume throughout that d > 2. The integrated density of
states (IDS) for H is defined as

(1.1) N(λ) := lim
L→∞

L−dN(λ;H
(L)
D ), λ ∈ R.

Here H
(L)
D is the restriction of H to the cube [0, L]d with the Dirichlet boundary

conditions, and N(λ; ·) is the counting function of the discrete spectrum below λ.
The existence of the limit in (1.1) is well known, see e.g. [RS78, Shu79]. For
H0 := −∆ the IDS can be easily computed explicitly (e.g. using the representation
(2.6) below):

(1.2) N0(λ) =

{
(2π)−dd−1ωdλ

d/2, λ > 0;

0, λ 6 0.

Here ωd = 2πd/2/Γ(d/2) is the surface area of the unit sphere Sd−1 in Rd.
The asymptotic behaviour of the function (1.1) for large values of the spectral

parameter was recently studied in a number of publications, see [Skr87], [Kar97],
[HM98], [Kar00], [Sob05], [PS09], and references therein.

Our article concerns the high–energy behaviour of the Radon–Nikodym deriv-
ative of IDS

g := dN/dλ,
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which is called the density of states (DOS) (see [RS78]). Our main result is that
for big values of λ

(1.3) g(λ) > g0(λ)
(
1− o(1)

)
,

where

g0(λ) = dN0(λ)/ dλ = (2π)−dωdλ
(d−2)/2/2.

We remark that (1.3) should be understood in the sense of measures; in particular,
we do not claim that g(λ) is everywhere differentiable.

It has been proved in [Par08] that the spectrum of H contains a semi-axis
[λ0,+∞); this statement is known as the Bethe-Sommerfeld conjecture (see the
references in [Par08] for the history of this problem). This result has an obvious
reformulation in terms of IDS: each point λ > λ0 is a point of growth of N . It was
also proved in [Par08] that for each n ∈ N and ε = λ−n we have

(1.4) N(λ+ ε)−N(λ)� ελ(d−2)/2.

Later, when the second author discussed the results and methods of [Par08] with
Yu. Karpeshina, she suggested that using the technique from that paper, one should
be able to prove the opposite bound

(1.5) N(λ+ ε)−N(λ)� ελ(d−2)/2

when λ is sufficiently large, not just with ε = λ−n (when the proof is relatively
straightforward given [Par08]), but also uniformly over all ε ∈ (0, 1]. In our paper
we prove that for big λ

(1.6) N(λ+ ε)−N(λ) >
ωd

2(2π)d
ελ(d−2)/2

(
1− o(1)

)
.

Note that (1.6) implies the claimed bound (1.3).
The main result of the paper is

Theorem 1.1. For sufficiently big λ and any ε > 0 the integrated density of states
of H satisfies (1.6).

The proof of Theorem 1.1 is heavily based on the technique of [Par08] and
uses various statements proved therein. In order to minimise the size of the paper,
we will try to quote as many results as we can from [Par08], possibly with some
minor modifications where necessary.

The article is organized as follows. In Section 2 we introduce the necessary
notation and quote the results of [Par08] which we need for the proof of Theo-
rem 1.1. Sections 3 and 4 contain some auxiliary results, and the proof is finished
in Section 5.

2. Preliminaries

We study the Schrödinger operator

(2.1) H = −∆ + V (x), x ∈ Rd

with the potential V being infinitely smooth and periodic with the lattice of periods
Λ. We denote the lattice dual to Λ by Λ†, fundamental cells of these lattices are
denoted by Ω and Ω†, respectively. We introduce

(2.2) Q := sup
{
|ξ|
∣∣ξ ∈ Ω†

}
.



LOWER BOUND ON THE DENSITY OF STATES 3

Let

(2.3) D := −i∇, D(k) := D + k.

The Floquet-Bloch decomposition allows to represent our operator (2.1) as a
direct integral (see e.g. [RS78]):

(2.4) H =

∫
Ω†
⊕H(k) dk,

where

(2.5) H(k) = D(k)2 + V (x)

is the family of ‘fibre’ operators acting in L2(Ω). The domain D of each H(k) is the
set of periodic functions from H2(Ω). The spectrum of H is the union over k ∈ Ω†

of the spectra of the operators (2.5). Let {λj(k)}, j ∈ N be the set of eigenvalues
of H(k) (counting with multiplicities). Then the integrated density of states (1.1)
admits the following representation:

(2.6) N(λ) := (2π)−d
∫

Ω†
#
{
j : λj(k) < λ

}
dk,

see e.g. [RS78].
We denote by | · |◦ the surface area Lebesgue measure on the unit sphere Sd−1

in Rd and put ωd := |Sd−1|◦ = 2πd/2/Γ(d/2). By vol(·) we denote the Lebesgue
measure in Rd. We write B(R) for the ball of radius R centered at the origin. The
identity matrix is denoted by I. By λ = ρ2 we denote a point on the spectral axis.
We also denote by v the L∞–norm of the potential V , and put J := [λ−20v, λ+20v].

Any vector ξ ∈ Rd can be uniquely decomposed as ξ = n + k with n ∈ Λ† and
k ∈ Ω†. We call n =: [ξ] the ‘integer part’ of ξ and k =: {ξ} the ‘fractional part’
of ξ. For ξ ∈ Rd \ {0} we define r = r(ξ) := |ξ| and ξ′ := ξ/|ξ|. For any h ∈ L2(Ω)
we introduce its Fourier coefficients

(2.7) hn := (vol Ω)−1/2

∫
Ω

h(x) exp
(
− i〈n,x〉

)
dx, n ∈ Λ†.

Given two positive functions f and g, we say that f � g, or g � f , or g = O(f)
if the ratio g/f is bounded. We say f � g if f � g and f � g. Whenever we use
O, o, �, �, or � notation, the constants involved can depend on d and norms of
the potential in various Sobolev spaces Hs; the same is also the case when we use
the expression ‘sufficiently large’.

Let

(2.8) A :=
{
ξ ∈ Rd,

∣∣|ξ|2 − λ∣∣ 6 40v
}
.

Notice that the definition of A obviously implies that if ξ ∈ A, then
∣∣|ξ|−ρ∣∣� ρ−1.

We put

(2.9) R = R(ρ) := ρ1/(36d2(d+2))

(so that the condition stated after equation (5.15) in [Par08] is satisfied). For
j ∈ N let

Θ′j := Λ† ∩B(jR) \ {0}.
Let M := 5d2 + 7d. We introduce the set

(2.10) B :=
{
ξ ∈ A

∣∣∣∣∣〈ξ,η′〉∣∣ > ρ1/2, for all η ∈ Θ′6M

}
.
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In other words, B consists of all points ξ ∈ A the projections of which to the
directions of all vectors η ∈ Θ′6M have lengths larger than ρ1/2. We also denote
D := A \ B.

In the rest of the section we quote some results from [Par08] which will be
used in this paper. Our approach is slightly different from that of [Par08]. In
particular, we consider arbitrary lattice of periods Λ, not equal to (2πZ)d. We also
use a different form of the Floquet-Bloch decomposition (so that the operators on
fibers (2.5) are defined on the same domain). This leads to several straightforward
changes in the formulation of the results from [Par08]. These changes are:

(1) The lattices (2πZ)d and Zd are replaced by Λ and Λ†, respectively. The
‘integer’ and ‘fractional’ parts are now defined with respect to Λ† (see
above);

(2) The matrices F and G are replaced by the unit matrix I throughout;
(3) The Fourier transform is now defined by (2.7), and the exponentials em

introduced at the beginning of Section 5 in [Par08] are redefined as

em(x) := (vol Ω)−1/2 ei〈m,x〉, m ∈ Λ†;

(4) The operators H(k) are now given by (2.5) on the common domain D.

The main result we will need follows from Corollary 7.15 of [Par08]:

Proposition 2.1. There exist mappings f, g : A → R which satisfy the following
properties:

(i) f(ξ) is an eigenvalue of H(k) with {ξ} = k;
∣∣f(ξ) − |ξ|2

∣∣ 6 2v. f is an
injection (if we count all eigenvalues with multiplicities) and all eigenvalues of H(k)
inside J are in the image of f .

(ii) If ξ ∈ A, then
∣∣f(ξ)− g(ξ)

∣∣ 6 ρ−d−3.
(iii) For any ξ ∈ B

g(ξ) = |ξ|2

+

2M∑
j=1

∑
η1,...,ηj∈Θ′M

∑
26n1+···+nj62M

Cn1,...,nj
〈ξ,η1〉−n1 . . . 〈ξ,ηj〉−nj .

(2.11)

Remark 2.2. Formula (2.11) implies that

(2.12) ∂g/∂r(ξ) � ρ, for any ξ ∈ B.
For each positive δ 6 v we denote by A(δ), B(δ), and D(δ) the intersections of

g−1
(
[ρ2 − δ, ρ2 + δ]

)
with A, B, and D, respectively.

It is proved in Lemma 8.1 of [Par08] that

(2.13) vol
(
D(δ)

)
� ρd−7/3δ.

The following statement (Corollary 8.5 of [Par08]) gives a sufficient condition
for the continuity of f :

Lemma 2.3. There exists a constant C1 with the following properties. Let

I :=
{
ξ(t) : t ∈ [tmin, tmax]

}
⊂ B(v).

be a straight interval of length L < ρ−1δ. Suppose that there is a point t0 ∈
[tmin, tmax] with the property that for each non-zero n ∈ Λ† g

(
ξ(t0) + n

)
is either

outside the interval[
g
(
ξ(t0)

)
− C1ρ

−d−3 − C1ρL, g
(
ξ(t0)

)
+ C1ρ

−d−3 + C1ρL
]
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or not defined. Then f
(
ξ(t)

)
is a continuous function of t.

By inspection of the proof of Lemma 8.3 of [Par08] we obtain

Lemma 2.4. For large enough ρ and δ < ρ−1 the following estimates hold uni-
formly over a ∈ Λ† \ {0}: if d > 3,

(2.14) vol
(
B(δ) ∩

(
B(δ) + a

))
� (δ2ρd−3 + δρ−d);

if d = 2,

(2.15) vol
(
B(δ) ∩

(
B(δ) + a

))
� δ3/2, |a| 6 2ρ− 1,

� δ3/2 + δρ−2,
∣∣|a| − 2ρ

∣∣ < 1,

= 0, |a| > 2ρ+ 1.

3. Prevalence of regular directions

In this section we prove that for most directions ξ′ the image of the function f
of Proposition 2.1 is an isolated eigenvalue of H

(
{ξ}
)

continuously depending on

|ξ| if it belongs to a neighborhood of ρ2.

Lemma 3.1. For ρ big enough and

0 < δ 6 ρ−d−3

there exists a set F = F(ρ) on the unit sphere Sd−1 in Rd with

(3.1) |F|◦ > ωd
(
1− o(1)

)
such that f(ξ) is a simple eigenvalue of H

(
{ξ}
)

continuously depending on r := |ξ|
for every ξ = (r, ξ′) ∈ f−1

(
[ρ2 − δ, ρ2 + δ)

)
with ξ′ := ξ/|ξ| ∈ F .

Proof. It is enough to consider δ := ρ−d−3. For each ξ′ ∈ Sd−1 let

(3.2) Iξ′(δ) := {rξ′, r > 0} ∩ B(δ).

Let F1 :=
{
ξ′ ∈ Sd−1

∣∣Iξ′(δ) 6= ∅, Iξ′(δ) ∩ D(δ) = ∅
}

.

For any η ∈ Θ′6M the area of the set of points ξ′ ∈ Sd−1 satisfying∣∣〈rξ′,η′〉∣∣ 6 ρ1/2

is evidently O(ρ−1/2) if r > ρ/2 (the latter is true for all rξ′ ∈ A). Since the
number of elements in Θ′6M is O(Rd), by (2.9) and (2.10) we have

(3.3) |Sd−1 \ F1|◦ = o(1).

By definition B(δ) = B ∩ g−1
(
[ρ2 − δ, ρ2 + δ]

)
, hence (2.12) implies that for big

ρ the length lξ′(δ) of Iξ′(δ) satisfies

(3.4) lξ′(δ) � δρ−1, ξ′ ∈ F1.

Let
F :=

{
ξ′ ∈ F1

f is continuous on Iξ′(δ)
}
,

and
E(δ) :=

{
ξ ∈ B(δ)

∣∣ξ′ ∈ F1 \ F
}
.

Lemma 2.3 tells us that for each point ξ ∈ E(δ) there is a non-zero vector n ∈ Λ†

such that

(3.5)
∣∣g(ξ + n)− g(ξ)

∣∣ 6 C1

(
ρ−d−3 + ρlξ′(δ)

)
� (ρ−d−3 + δ).
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Since
∣∣g(ξ)− ρ2

∣∣ 6 δ, this implies∣∣g(ξ + n)− ρ2
∣∣ 6 C2(ρ−d−3 + δ) =: δ1 � ρ−d−3 = δ,

and thus ξ + n ∈ A(δ1); notice that C2 > 1 and so δ1 > δ. Therefore, each point
ξ ∈ E(δ) also belongs to the set

(
A(δ1) − n

)
for a non-zero n ∈ Λ†; obviously,

|n| � ρ. In other words,

(3.6) E(δ) ⊂
⋃

n∈Λ†∩B(Cρ),n6=0

(
A(δ1)− n

)
=
⋃
n6=0

(
B(δ1)− n

)
∪
⋃
n6=0

(
D(δ1)− n

)
.

To proceed further, we need more notation. Denote D0(δ1) to be the set of all
points ν from D(δ1) for which there is no non-zero n ∈ Λ† satisfying ν −n ∈ B(δ);
D1(δ1) to be the set of all points ν from D(δ1) for which there is a unique non-zero
n ∈ Λ† satisfying ν − n ∈ B(δ); and D2(δ1) to be the rest of the points from D(δ1)
(i.e. D2(δ1) consists of all points ν from D(δ1) for which there exist at least two
different non-zero vectors n1,n2 ∈ Λ† satisfying ν − nj ∈ B(δ)). Then Lemma 8.7
of [Par08] implies that we can rewrite (3.6) as

(3.7) E(δ) ⊂
⋃
n6=0

(
B(δ1)− n

)
∪
⋃
n6=0

(
D1(δ1)− n

)
.

From this we conclude that

(3.8) E(δ) ⊂
⋃
n6=0

((
B(δ1)− n

)
∩ B(δ)

)
∪
⋃
n6=0

((
D1(δ1)− n

)
∩ B(δ)

)
,

since E(δ) ⊂ B(δ).
The definition of the set D1(δ1) and (2.13) imply that

vol

( ⋃
n6=0

((
D1(δ1)− n

)
∩ B(δ)

))
6 vol

(
D1(δ1)

)
6 vol

(
D(δ1)

)
� δ1ρ

d−7/3 � δρd−7/3.

(3.9)

For d > 3 Lemma 2.4, inequality δ < δ1, and the fact that the union in (3.8) consists
of no more than Cρd terms imply

(3.10) vol

( ⋃
n6=0

((
B(δ1)− n

)
∩ B(δ)

))
� ρd(δ2

1ρ
d−3 + δ1ρ

−d)� δ(ρd−6 + 1).

For d = 2 we obtain by Lemma 2.4

vol

( ⋃
n∈Λ†\{0}

(
B(δ) ∩

(
B(δ1) + n

)))
6

∑
n∈Λ†\{0}
|n|62ρ−1

vol
(
B(δ) ∩

(
B(δ1) + n

))

+
∑

n∈Λ†\{0}
||n|−2ρ|<1

vol
(
B(δ) ∩

(
B(δ1) + n

))

� δ
3/2
1 ρ2 + ρ(δ

3/2
1 + δ1ρ

−2)� δρ−1/2,

(3.11)

where we have used that

#
{

n ∈ Λ†
∣∣∣∣∣|n| − 2ρ

∣∣ < 1
}
� ρ.
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Applying (3.9), (3.10), and (3.11) to (3.8) we obtain for all d > 2

(3.12) vol E(δ)� δρd−7/3.

By definition,

E(δ) =
⋃

ξ′∈F1\F

Iξ′(δ).

Hence by (3.4)

(3.13) |F1 \ F|◦ � δ−1ρ2−d vol E(δ).

Combining (3.12) and (3.13) we conclude that for big ρ

(3.14) |F1 \ F|◦ = o(1).

We have

(3.15) |Sd−1 \ F|◦ = |Sd−1 \ F1|◦ + |F1 \ F|◦.

Substituting (3.3) and (3.14) into (3.15) we obtain (3.1).
Now we notice that for every ξ′ ∈ F the interval Iξ′(δ) has the following

property: for each point ξ ∈ Iξ′(δ) and each non-zero vector n ∈ Λ† such that

ξ + n ∈ A we have
∣∣g(ξ + n)− g(ξ)

∣∣ > 2ρ−d−3. This implies f(ξ + n)− f(ξ) 6= 0.

Therefore, f(ξ) is a simple eigenvalue of H
(
{ξ}
)

for each ξ ∈ Iξ′(δ). The lemma is
proved. �

4. Some properties of operators on the fibers

In this section we discuss some properties of operators H(k), k ∈ Ω†. In
Lemma 4.1 we prove that the Fourier coefficients of the eigenfunctions of these
operators satisfy certain decay estimates if the corresponding eigenvalues are big
enough. Using this, we obtain an estimate on the rate of change of such eigenvalues
with k in Lemma 4.2.

For m ∈ R let

V (m) :=
( ∑

n∈Λ†

|n|2m|Vn|2
)1/2

.

Since V is smooth, V (m) is finite for any m > 0. Recall that Q is defined by (2.2).

Lemma 4.1. Fix m ∈ N and κ ∈ (0, 1). For k ∈ Ω† let ψ be a normalized
eigenfunction of H(k):

(4.1) H(k)ψ = ζψ

with the eigenvalue

(4.2) ζ > max
{

36Q2κ−2, (1 +mκ)2/(d−1)κ−2d/(d−1)
}
.

Then there exists Mm = Mm(d,Λ, V ) ∈ R+ such that for all n ∈ Λ† with

(4.3) |n| > (1 +mκ)
√
ζ

the Fourier coefficients of ψ satisfy

(4.4) |ψn| < Mmκ−m|n|−(3m+1)/2.
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Proof. We proceed by induction. Suppose that either m = 1, or m > 1 and
the statement is proved for m− 1. Substituting the Fourier series

ψ(x) = (vol Ω)−1/2
∑
n∈Λ†

ψn exp
(
i〈n,x〉

)
, x ∈ Ω

into (4.1) and equating the coefficients at exp
(
i〈n,x〉

)
on both sides, we obtain by

(2.5):

(4.5) |n + k|2ψn +
∑
l∈Λ†

Vn−lψl = ζψn.

Since |k| 6 Q, by (4.2) and (4.3) we have

(4.6) 2|n||k| 6 κ|n|2/6 + 6κ−1Q2 6 κ|n|2/3.

For κ ∈ (0, 1), it follows from (4.3) that

(4.7) |n|2 − ζ >
(
1− (1 + κ)−2

)
|n|2 = κ(2 + κ)(1 + κ)−2|n|2 > κ|n|2/2.

Combining (4.6) and (4.7) we obtain

|n + k|2 − ζ > |n|2 − 2|n||k| − ζ > κ|n|2/6,

and thus by (4.5)

(4.8) |ψn| < 6κ−1|n|−2
∑
l∈Λ†

|Vn−lψl|.

If m = 1 we estimate the sum on the r.h. s. by V (0) using Cauchy–Schwarz
inequality (since ψ is normalized) and obtain (4.4) with M1 := 6V (0).

If m > 1, we estimate

(4.9)
∑

l∈Λ†: |l−n|6|n|1/d
|Vn−lψl| 6 sup

m: |m|>|n|−|n|1/d
|ψm|

∑
l∈Λ†: |l|6|n|1/d

|Vl|.

By (4.3), (4.2), and monotonicity of the function q(t) = t− t1/d for t > 1 we have

|n| − |n|1/d > (1 +mκ)
√
ζ −

(
(1 +mκ)

√
ζ
)1/d

>
(
1 + (m− 1)κ

)√
ζ.

According to the induction hypothesis

(4.10) sup
m: |m|>|n|−|n|1/d

|ψm| 6 κ1−mMm−1

(
1− |n|(1−d)/d

)1−3m/2|n|1−3m/2.

Since κ ∈ (0, 1), from (4.3) and (4.2) we conclude

|n| > (1 +mκ)
√
ζ > (κ−1 +m)d/(d−1) > 2d/(d−1),

hence

(4.11)
(
1− |n|(1−d)/d

)1−3m/2
< 23m/2−1.

Let

W := sup
r>1

r−d#
{
l ∈ Λ†

∣∣|l| 6 r}.
Clearly, W <∞. By Cauchy–Schwarz inequality

(4.12)
∑

l∈Λ†: |l|6|n|1/d
|Vl| 6W 1/2V (0)|n|1/2.
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Substituting (4.10), (4.11), and (4.12) into (4.9) we get

(4.13)
∑

l∈Λ†: |l−n|6|n|1/d
|Vn−lψl| < 23m/2−1κ1−mW 1/2V (0)Mm−1|n|3(1−m)/2.

On the other hand, since ‖ψ‖ = 1, applying Cauchy–Schwarz inequality we obtain∑
l∈Λ†: |l−n|>|n|1/d

|Vn−lψl| < |n|3(1−m)/2
∑

l∈Λ†: |l|>|n|1/d
|l|3(m−1)d/2|Vl||ψn−l|

6 |n|3(1−m)/2
( ∑

l∈Λ†: |l|>|n|1/d
|l|3(m−1)d|Vl|2

)1/2

6 V (3(m−1)d/2)|n|3(1−m)/2.
(4.14)

Inserting (4.13) and (4.14) into (4.8) we arrive at (4.4) with

Mm := 6(23m/2−1W 1/2V (0)Mm−1 + V (3(m−1)d/2)).

�

Lemma 4.2. For any η ∈ (0, 1) there exists ζ0 > 0 such that if ζ(k) > ζ0 is a
simple eigenvalue of H(k) for some k ∈ Ω† then

(4.15) |∇kζ| 6 2(1 + η)
√
ζ.

Proof. Let ψ(k) be the eigenfunction corresponding to ζ(k) with

(4.16)
∥∥ψ(k)

∥∥ = 1.

Then

(4.17) ∇kζ(k) = ∇k

(
ψ(k), H(k)ψ(k)

)
=
(
ψ(k),

(
∇kH(k)

)
ψ(k)

)
.

By (2.5) and (2.3),
∇kH(k) = 2D(k).

Substituting this into (4.17) we obtain:

(4.18)
∣∣∇kζ(k)

∣∣ 6 2
∥∥D(k)ψ(k)

∥∥ = 2
( ∑

n∈Λ†

|n + k|2
∣∣ψn(k)

∣∣2)1/2

.

Let

(4.19) m :=
[
(d+ 1)/3

]
+ 1

and

(4.20) κ := η/(2m+ 1).

We assume that

(4.21) ζ := ζ(k) > max
{

36Q2κ−2, (1 +mκ)2/(d−1)κ−2d/(d−1)
}
.

Since by (2.2) |k| 6 Q, by (4.16), (4.21), and (4.20) we have

(4.22)
∑

|n|<(1+mκ)
√
ζ

|n + k|2
∣∣ψn(k)

∣∣2 < (1 + (m+ 1/6)κ
)2
ζ < (1 + η/2)2ζ.

For |n| > (1 +mκ)
√
ζ we apply Lemma 4.1 obtaining

(4.23)
∑

|n|>(1+mκ)
√
ζ

|n + k|2
∣∣ψn(k)

∣∣2 6M2
mκ−2m

∑
|n|>(1+mκ)

√
ζ

|n + k|2
∣∣n|−3m−1.

By (4.19) the r.h. s. of (4.23) is finite and is O(ζ−1/2). Thus, choosing ζ0 big
enough, by (4.18), (4.22), and (4.23) we obtain (4.15). �
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5. Proof of Theorem 1.1

We are now ready to finish the proof of the main result. It is enough to prove

Theorem 5.1. For any α ∈ (0, 1) there exists ρ0 > 0 big enough such that for all
ρ > ρ0

(5.1) N(ρ2 + δ)−N(ρ2 − δ) > (1− α)(2π)−dωdδρ
d−2

for any

(5.2) 0 < δ 6 ρ−d−3.

Indeed, the original statement of Theorem 1.1 can be obtained by partitioning
of the interval [λ, λ+ε] into subintervals with lengths not exceeding 2λ(−d−3)/2 and
adding up estimates (5.1) on these subintervals (with ρ2 being respective middle
points).

Proof. We first express the growth of IDS in terms of the function f of Propo-
sition 2.1(i) using (2.6):

(5.3) N(ρ2 + δ)−N(ρ2 − δ) = (2π)−d vol
(
f−1[ρ2 − δ, ρ2 + δ)

)
.

We can write

(5.4) vol
(
f−1[ρ2 − δ, ρ2 + δ)

)
=

∫
Sd−1

∫ ∞
0

χ(r, ξ′)rd−1 dr dξ′,

where χ is the indicator function of f−1
(
[ρ2 − δ, ρ2 + δ)

)
. To obtain a lower bound

we can restrict the integration in (5.4) to ξ′ ∈ F defined in Lemma 3.1. Then for
any η ∈ (0, 1) there exists ρ0 > 0 such that for any ρ > ρ0 we have

(5.5) |F|◦ > (1− η)ωd,

and for any ξ′ ∈ F the support of χ(·, ξ′) contains an interval [r1, r2] with

(5.6) (1− η)ρ 6 r1 < r1 + (1− η)ρ−1δ 6 r2.

Indeed, the first inequality in (5.6) follows from Proposition 2.1(ii),(iii). The last
inequality in (5.6) follows from Lemmata 3.1 and 4.2.

Thus for all ρ > ρ0 by (5.5) and (5.6) we obtain∫
Sd−1

∫ ∞
0

χ(r, ξ′)rd−1 dr dξ′ >
∫
F

(1− η)dρd−2δ dξ′

> (1− η)d+1ωdρ
d−2δ,

(5.7)

Combining (5.3), (5.4), and (5.7), and choosing η small enough we arrive at (5.1).
The theorem is proved. �
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