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1. Introduction

It is a general property of elliptic differential operators with periodic
coefficients, that their spectra are formed by union of closed intervals
called spectral bands (see [12], [14]) possibly separated by gaps. One
of the challenging questions of the spectral theory of periodic operators
is to find out whether or not the number of gaps in the spectrum of
a given operator is finite. The statement asserting the finiteness is
usually referred to as the Bethe-Sommerfeld conjecture, after H. Bethe
and A. Sommerfeld who raised this issue in the 30’s for the Schrödinger
operator H = −∆+V with a periodic electric potential V in dimension
three.

It is convenient to rephrase this problem in quantitative terms by
introducing the multiplicity of overlapping m(λ)(see [17]) which, by
definition, is equal to the number of bands containing a given point
λ ∈ R. Then, naturally, the Bethe-Sommerfeld conjecture holds iff
m(λ) ≥ 1 for all sufficiently large positive λ.

The aim of the present paper is to justify the Bethe-Sommerfeld con-
jecture for the polyharmonic operator with a self-adjoint perturbation
V periodic with respect to some lattice Γ ⊂ Rd, d ≥ 2:

H = H0 + V, H0 = (−∆)l, l > 0.

We say that V is periodic if it commutes with shifts along the vectors
of the lattice. As M. Skriganov has shown in his works (see [16], [17]),
under certain restrictions on the dimension d and the order l some
general properties of the band spectral structure of the operator H are
entirely determined by the lattice Γ and do not depend on the nature
of the periodic perturbation V . In particular, if 2l > d, d ≥ 3, then
for each t > 0 there is a number λ0 = λ0(t) ∈ R such that m(λ) ≥ 1,
λ ≥ λ0 for all V such that ‖V ‖ ≤ t (see Section 14 of [17]). Later the
polyharmonic operator was studied in [8] (see also [9] and references
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therein) by purely analytic means under the assumption that V is the
multiplication by a real-valued periodic function V (x). The focus of
[8] was on the high energy asymptotics for the Bloch eigenvalues of the
operator H. This asymptotics implied the finiteness of the number of
gaps for all integer l such that 4l > d + 1, d ≥ 2.

The sources quoted above require restrictions on the order l depend-
ing on the dimension d. If one removes the constraints on l and d one
cannot say much about the number of gaps. The complexity of the
problem can be clearly seen in the case l = 1 which has been studied
comparatively well. Indeed, for l = 1 the number of gaps is proved to
be finite in dimensions d = 2, 3 and 4 (see [13], [4] for d = 2, [18] for
d = 3 and [6] for d = 2, 3, 4) for arbitrary lattices Γ. On the contrary,
for d > 4 this result is only known for rational lattices (see [17]). We
point out that technical difficulties increase dramatically as the dimen-
sion d grows, and hence solution of the problem calls for more and
more elaborate methods. The proofs in [13], [4], [18], [6], [17] range
from perturbation techniques (for d = 2 and 3) to microlocal analysis
(for d = 4) and subtle number-theoretic estimates for lattice points (for
d ≥ 5 and rational lattices).

In the present paper we prove two types of results generalising [17]
and [8]. The first of them (see Theorem 2.1 below) extends the conclu-
sions of [8] to arbitrary orders l, not necessarily integer, and arbitrary
bounded periodic perturbations V , not necessarily local. Precisely, it
shows that the number of gaps in the spectrum of H is finite under the
condition 4l > d + 1, d ≥ 2. Moreover we also establish the bound

(1.1) m(λ) ≥ cλ
d−1−δ

4l , λ ≥ λ0,

with a positive constant c = c(δ), where δ = 0 if d 6= 1(mod 4) and δ
is an arbitrary positive number if d = 1(mod 4). Our proof of (1.1) is
an extension of the idea from [4] to general dimensions d and orders
l. It is based on a very simple perturbation argument and uses only
the information on the band structure of the unperturbed operator
H0, which, in its turn, is closely related to estimates for the number
of lattice points in the ball of a large radius. The improvement of
Skriganov’s result from [16], [17] has become possible due to a more
precise information on this number-theoretic problem, which was not
available at the time when [17] was published (see Section 3 for details).

One should point out that in the short note [20] by N.N. Yakovlev,
under the same restriction 4l > d+1 the number of gaps was announced
to be finite even for more general operators of the form P0 +V with an
elliptic pseudo-differential operator P0 with constant coefficients hav-
ing a homogeneous convex symbol of order 2l, and arbitrary bounded
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periodic perturbation V . However, we have been able neither to find
in the literature nor to reproduce in full Yakovlev’s proof of this claim.

The second result (Theorem 2.2) shows that the condition 4l > d +
1 can be relaxed if V is the multiplication by a real-valued periodic
function V (x). Namely, under this assumption on V the lower bound
(1.1) remains true for all l such that 6l > d + 2, d ≥ 2. Again, l is
not supposed to be integer. Besides, for d 6= 1(mod 4) we establish
the estimate (1.1) for 6l = d + 2 assuming that the potential V is a
trigonometric polynomial and it is sufficiently small.

The strategy of the proof follows the paper [18], where the Bethe-
Sommerfeld conjecture was justified for l = 1, d = 3 for the first time:
it is a combination of arguments from number theory and perturbation
theory. As in [18], we employ the connection of the multiplicity of over-
lapping m(λ) with the counting function N(λ; H(k)) of the operator
H(k) = H0(k) + V ; H0(k) = (−i∇ + k)2, acting on the torus Rd/Γ,
with the quasi-momentum k ∈ Rd:

m(λ) ≥ max
k

N(λ; H(k))−min
k

N(λ; H(k)).

Skriganov’s idea in [18] for d = 3 and l = 1 was to show that

(1) The multiplicity m(λ) for the unperturbed operator H0(k) sat-
isfies (1.1). This is done by proving appropriate bounds on the
number of lattice points in the ball of radius ρ = λ1/2l;

(2) Effectively, for each k, the potential V induces only a finite
dimensional perturbation whose dimension is less than the r.h.s.
of (1.1), i.e.

(1.2) |N(λ; H(k))−N(λ; H0(k))| = o(λ(d−1−δ)/4l).

Combining these two ingredients, he obtained (1.1) for the perturbed
operator. We follow the same general plan, but refine the second ingre-
dient by observing that instead of a pointwise in k estimate it suffices
to prove the estimate (1.2) averaged in k (see Theorem 2.9). It is ex-
actly this observation that allows us to simplify Skriganov’s argument
and extend his result to arbitrary dimensions d and arbitrary orders
l : 6l > d + 2. Note also that our proof of the averaged estimate (1.2)
does not require any facts from number theory, in contrast to [18].

For l = 1 Theorem 2.2 proves the Bethe-Sommerfeld conjecture in
dimensions d = 2, 3 and, for small trigonometric polynomials V , also in
the case d = 4. Thus, for the Schrödinger operator our Theorem does
not provide any new information in comparison with the known results
from [13], [4], [18], [6], and in the case d = 4 it is even less general
than [6]. However, we consider this as an important advantage of our
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approach over that of [6], that in order to prove Theorem 2.2 we do not
need any advanced techniques, such as microlocal and quasi-classical
analysis, but use only elementary perturbation theory as our main tool.
In fact, a more elaborate variant of our method allows us to handle the
case d = 4, l = 1 in full generality. We plan to present this and other
findings in a subsequent publication.

Notation. By bold lowercase letters we denote vectors in Rd and Zd,
e.g. x ∈ Rd, m ∈ Zd. Bold uppercase letters G,F are used for d × d
constant positive definite matrices. The notations ab and aGb stand
for the scalar product in Rd and the quadratic form of the matrix G
respectively. For any function f ∈ L1(O), O = [0, 2π)d the Fourier
transform is defined as follows:

f̂(m) =
1

(2π)d/2

∫
O

e−imxf(x)dx.

By C and c (with or without indices) we denote various positive
constants whose precise value is unimportant.

2. Main result and preliminaries

2.1. Notation and main result. We shall be concerned with the
spectrum of the operator

H =H0 + B,

H0 =H
(l)
0 = (DGD)l, D = −i∇,

where G is a constant positive-definite d × d -matrix, and B is a
bounded self-adjoint operator in L2(Rd), periodic with respect to the
lattice Γ = (2πZ)d. By periodicity we mean that B commutes with the
family of unitary shifts by the vectors of the lattice Γ:

BTm = TmB, (Tmu)(x) = u(x + 2πm), m ∈ Γ.

The assumption that the lattice is cubic is not restrictive as any lattice
can be reduced to a cubic one by a suitable non-degenerate linear trans-
formation which would affect only the matrix G. As B is bounded, the
operator H is self-adjoint on the domain D(H0) = H2l(Rd). We use
the following notation for the fundamental domains of the lattice Γ and
its dual lattice Γ† = Zd:

O = [0, 2π)d, O† = [0, 1)d.

Let us also introduce the torus Td = Rd/Γ. To describe the spectrum
of H we use the Floquet decomposition of the operator H (see [14]).
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We identify the space L2(Rd) with the direct integral

G =

∫
O†

Hdk, H = L2(O).

The identification is implemented by the Gelfand transform

(2.1) (Uu)(x,k) = e−ikx
∑
m∈Zd

e−i2πkmu(x + 2πm), k ∈ Rd,

which is initially defined on functions from the Schwarz class and ex-
tends by continuity to a unitary mapping from L2(Rd) onto G. The
unitary operator U reduces Tm to the diagonal form:

UTmU−1 = ei2πkm, ∀m ∈ Zd.

As H0 and V commute with all Tm’s, they are partially diagonalised
by U (see [14]). It is readily seen that

(UH0U
−1u)( · ,k) = H0(k)u( · ,k),

H0(k) =
(
(D + k)G(D + k)

)l
, k ∈ Rd,

with the domain D(H0(k)) = H2l(Td). As far as B is concerned, we
have

(UBU−1u)( · ,k) = B(k)u( · ,k), a.a. k ∈ Rd

with a measurable family of bounded self-adjoint operators B(k). It
follows from the definition (2.1) that

(2.2) H0(k + n) = E∗
nH0(k)En, B(k + n) = E∗

nB(k)En, ∀n ∈ Zd.

where En is the unitary in H operator of multiplication by exp(ixn).
Note that ‖B‖ = ess-supk ‖B(k)‖. The family H(k) = H0(k) + B(k)
realises the decomposition of H in the direct integral:

UHU−1 =

∫
O†

H(k)dk.

From now on we shall always assume that the operator family B( · ) is
norm-continuous in k ∈ Rd. Note that if B is the multiplication by a
real-valued function V (x), then B(k) ≡ V is trivially continuous in k.

The spectra of all H(k) consist of discrete eigenvalues λj(k), j =
1, 2, . . . , that we arrange in non-decreasing order counting multiplicity.
As B( · ) depends on k ∈ Rd continuously, so do λj( · ). By (2.2) λj( · )
are periodic in k with respect to the lattice Γ†. The images

`j = ∪
k∈O†

λj(k),
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of the functions λj are called spectral bands. The spectrum of the
initial operator H has the following representation:

σ(H) = ∪j`j.

The bands with distinct numbers may overlap. To characterise this
overlapping we introduce the function m(λ) = m(λ, B) called the multi-
plicity of overlapping, which is equal to the number of bands containing
given point λ ∈ R:

m(λ) = #{j : λ ∈ `j};
and the overlapping function ζ(λ) = ζ(λ, B), λ ∈ R, defined as the
maximal number t such that the symmetric interval [λ − t, λ + t] is
entirely contained in one of the bands `j:

ζ(λ) = max
j

max{t : [λ− t, λ + t] ⊂ `j}.

These two quantities were first introduced by M. Skriganov (see e.g.
[17]). It is easy to see that ζ is a continuous function of λ ∈ R. The
main results of the paper are stated in the following two theorems.

From now on we always use the following notation:

(2.3) δ = δd =

{
0, d 6= 1(mod 4);

arbitrary positive number, d = 1(mod 4).

Theorem 2.1. Let d ≥ 2, l > 0 and let B be a periodic bounded self-
adjoint operator such that B(k) is norm-continuous in k ∈ Rd.

(1) If 4l > d + 1, then there is a number λl = λl(‖B‖, δ) ∈ R such
that

(2.4) m(λ) ≥ c0λ
d−1
4l

−δ, ζ(λ) ≥ c0λ
1− d+1

4l
−δ

for all λ ≥ λl with a constant c0 independent of B.
(2) If d 6= 1(mod 4) and 4l = d + 1, then the estimates (2.4) hold

for sufficiently small ‖B‖.

We emphasise that in Theorem 2.1 the perturbation B is an arbitrary
self-adjoint bounded periodic operator. As the next Theorem shows, if
one assumes that B is a local operator (multiplication by a function),
then the condition 4l > d + 1 can be relaxed.

Theorem 2.2. Let l > 0, d ≥ 2 and let B be the multiplication operator
by a bounded periodic real-valued function V such that

(2.5)

∫
O

V (x)dx = 0.

Suppose that one of the following two conditions is fulfilled:
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(1) 4l − 1 ≤ d < 6l − 2 and V ∈ Hα(Td) with

(2.6) 2α > d +
(d− 1)(d + 1− 4l)

6l − (d + 2)
;

(2) d 6= 1(mod 4), 4l = d + 1 and V is continuous;

Then there is a number λl = λl(V, δ) ∈ R such that the estimates (2.4)
hold for all λ ≥ λl with a constant c0 independent of V .

Suppose that d 6= 1(mod 4), 6l = d + 2, and V is a trigonometric
polynomial. Then there are numbers λl = λl(V ) ∈ R and g0 = g0(V ) >
0 such that the functions m(λ, gV ) and ζ(λ, gV ) satisfy the estimates
(2.4) for all λ ≥ λl and |g| ≤ g0, with a constant c0 independent of V .

Recall that a function V is called a trigonometric polynomial if the
set

(2.7) Θ = {θ ∈ Zd : V̂ (θ) 6= 0}
is finite. Note that 0 /∈ Θ in view of (2.5). For a finite set Θ the
quantity

(2.8) M = M(Θ) =
∑
θ∈Θ

|θ|−1.

is finite.

Remark 2.3. Either of the estimates (2.4) implies that the spectrum
of H has no gaps on the semi-axis [λl,∞). It is also legitimate to
ask whether the spectrum has any gaps at all if the perturbation B is
sufficiently small. As was found by M. Skriganov in [17], the answer to
this question is closely connected with the properties of the overlapping
function for the unperturbed operator, which we denote by ζ0(λ). In
Section 4 it will be shown that ζ0(λ) satisfies (2.4) for all l > 0 and
all d ≥ 2 provided that λ is sufficiently large. In particular, ζ0(λ)
is strictly positive for large λ. According to Skriganov’s results (see
Section 7 of [17]), this ensures that ζ0 is strictly positive for all λ > 0.
Now a straightforward application of the perturbation theory leads to
the conclusion that for any given λ0 there exists a number v0 = v0(λ0)
such that the perturbed operator H = H0 + B will not have any gaps
on the interval (−∞, λ0] if ‖B‖ ≤ v0. In combination with Theorems
2.1 and 2.2 this implies that the spectrum of H has no gaps at all
for sufficiently small perturbations B satisfying conditions of either of
these theorems.

Note also that the lower bound (2.4) for ζ0 improves the estimate

ζ0(λ) ≥ cλ1−d/2l,

established in Section 14 of [17].
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Remark 2.4. Although both Theorems 2.1 and 2.2 proclaim the esti-
mates (2.4), there exists an important difference between the bounds
for ζ under their conditions. If 4l > d + 1 then ζ(λ) → ∞, λ → ∞,
while for 4l < d + 1 the function ζ(λ) is allowed to tend to zero as
λ →∞.

The proof of Theorems 2.1, 2.2 exploits the connection between the
functions m(λ), ζ(λ) and the counting functions

N
(
λ; H(k)

)
=

∑
λj(k)≤λ

1, n
(
λ; H(k)

)
=

∑
λj(k)<λ

1.

Denote

N+(λ) = max
k

N
(
λ; H(k)

)
, N−(λ) = min

k
N

(
λ; H(k)

)
,

and similarly define n±(λ). It is easy to deduce from the definitions of
m(λ), ζ(λ) (see e.g. [17], [18]) that

m(λ) = N+(λ)− n−(λ),

ζ(λ) = sup{t : N−(λ + t) < N+(λ− t)},(2.9)

which immediately implies that

(2.10) m(λ) ≥ N+(λ)−N−(λ).

A central role in the proofs of Theorems 2.1 and 2.2 is played by
the properties of the function N(λ; H0(k)) that will be deduced from
elementary number-theoretic results summarised in Section 3. Next,
Theorem 2.1 follows almost immediately, upon application of a simple
perturbation argument. On the contrary, the proof of Theorem 2.2
calls for more delicate analysis of N(λ; H(k)), which is described in
the next subsection.

2.2. Intermediary problem. In order to prove Theorem 2.2 we need
to study the deviation of N(λ; H(k)) from the unperturbed counting
function N(λ; H0(k)), averaged in k ∈ O†. To state the result introduce
the notation

〈f〉 =

∫
O†

f(k)dk

for the average value of a function f ∈ L1(O†). For instance, the
average value of N(λ; H(k)) is denoted by 〈N(λ; H)〉. Our ultimate
goal will be to establish for the quantity

T (ρ; B) =
〈∣∣N(ρ2l; H)−N(ρ2l; H0)

∣∣〉
the estimate of the form T (ρ) = o(ρ(d−1)/2−δ) (cf. (2.4)). However, this
question can be isolated in the following independent problem: We
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shall be interested in conditions on the perturbation B under which
the quantity T (ρ) is bounded by Cρβ with some real β. As the next
theorem shows, T (ρ) does not exceed Cρd−2l under fairly general con-
ditions on B:

Theorem 2.5. Let l > 0, d ≥ 2 and suppose that the perturbation B
is as in Theorem 2.1. Then

T (ρ; B) ≤ Cvρd−2l, v = ‖B‖,

for all ρ ≥ 1.

This elementary result is given here for methodological purposes only
and will not be used in the proofs of Theorems 2.1 and 2.2. It will
be convenient to postpone the proof of Theorem 2.5 until the end of
Section 4.

To obtain estimates with β < d− 2l we shall assume, as in Theorem
2.2, that B = V is a multiplication by a real-valued periodic function
and shall consider separately three cases. The following notation will
be convenient:

(2.11)

{
γ = d− 2l − β,

ν = 6l + 2β − 2d− 1.

Condition 2.6. (1) β ∈ (d − 3l + 1/2, d − 2l], l > 1/2 and V ∈
Hα(Td) with

(2.12) α >
d

2
+

γ(d− 1)

ν
.

(2) If d = 2 then ν ≤ 1.

Note that the conditions β ≥ d− 3l + 1/2 and ν ≥ 0 are equivalent.
The restriction l > 1/2 guarantees that the interval (d−3l+1/2, d−2l] is
not empty. The next two cases deal with the endpoints of this interval.

Condition 2.7. β = d− 2l, l > 1/2 and V is continuous.

Condition 2.8. β = d − 3l + 1/2, l > 1/2 and V is a trigonometric
polynomial.

Theorem 2.9. Let d ≥ 2, β ≤ d − 2l and V be a real-valued periodic
bounded function.

(1) Suppose that either Condition 2.6 or 2.7 are satisfied. Then one
has

(2.13) lim ρ−βT (ρ; V ) = 0, ρ →∞.
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(2) Suppose that Condition 2.8 is fulfilled. Then for any α > d/2

(2.14) T (ρ; V ) ≤ C‖V ‖HαM(Θ)1/2ρβ

(with M(Θ) defined in (2.8)) for all sufficiently large ρ. The
constant C does not depend on ρ, V or Θ, but may depend on
α.

Theorem 2.2 will be deduced from Theorem 2.9 in Sect. 4. The proof
of Theorem 2.9 will be completed in Sect. 5 – 6.

3. Integer points in the ellipsoid

3.1. Estimates. In this section we collect some facts from number
theory that will play a crucial role in the sequel.

Let C ⊂ Rd be a measurable set and let C(k), k ∈ O† be the family
of sets obtained by shifting C by the vector −k, i.e.

(3.1) C(k) = {ξ ∈ Rd : ξ + k ∈ C}.
The characteristic function of the set C will be denoted by χ( · ; C).
Denote by #(k; C) the number of integer points in C(k), i.e.

#(k; C) =
∑
m∈Zd

χ(m + k; C).

The following formula will be very useful in the sequel:

(3.2) 〈#(C)〉 = vol(C).

It follows from the relation∫
O†

∑
m

χ(m + k; C)dk =

∫
Rd

χ(ξ; C)dξ.

We shall need an estimate for the number of integer points inside an
(closed) ellipsoid determined by the matrix G. Precisely, for any ρ > 0
let E(ρ) = E(ρ,F) ⊂ Rd be the ellipsoid

{ξ ∈ Rd : |Fξ| ≤ ρ}, F = G1/2,

E0(ρ) = E(ρ, I). There is a very simple connection between integer
points in the ellipsoid and the eigenvalues of the unperturbed problem.
Indeed, the eigenvalues of the operator H0(k) equal |F(m+k)|2l, which
ensures that

(3.3) N
(
ρ2l; H0(k)

)
= #

(
k; E(ρ)

)
, ρ ≥ 0.

Now we can use known properties of the r.h.s. to get information on
the l.h.s. Precisely, we are interested in the behaviour of the counting
function N(ρ2l; H0(k)) as ρ →∞. Naturally, the leading order is given
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by the volume of the ellipsoid which coincides with the average value
of the counting function:

(3.4)
〈
N(ρ2l; H0)

〉
=

〈
#(E(ρ))

〉
= wd ρd,

where

wd =
Kd√
detG

, Kd =
πd/2

Γ(d/2 + 1)

(Kd is the volume of the unit ball in Rd). We shall need bounds on the
averaged deviation of N(ρ2l; H0(k)) from its leading term. To state the
result introduce the notation

σp(ρ) =
〈∣∣#(

E(ρ)
)
− wd ρd

∣∣p〉, p > 0.

Theorem 3.1. 1. Lower bound: Let the number δ be as de-
fined in (2.3). Then for all sufficiently big ρ the estimate holds:

(3.5) σ1(ρ) ≥ Cρ
d−1
2
−δ,

with a constant C = C(d,G, δ).
2. Upper bounds: For all sufficiently big ρ the estimate holds:

(3.6) σ2(ρ) ≤ Cρd−1,

with a constant C = C(d,G).
Moreover, if d = 1(mod 4), then there exists a sequence ρj →

∞, j →∞ such that

(3.7) σ2(ρj) ≤ Cρd−1
j (ln ρj)

(−1+ε)/d,

where ε > 0 is arbitrary and C = C(d,G, ε).

Note that for the proof of Theorem 2.9 we need only the lower bound
(3.5). The upper bounds (3.6) and (3.7) are given here to demonstrate
the accuracy of (3.5). Indeed, as σ1 ≤ √

σ2, for d 6= 1(mod 4), we
always have

c ≤ ρ−
d−1
2 σ1(ρ) ≤ C.

For the case d = 1(mod 4) the estimate (3.7) shows that the lower
bound (3.5) is precise in the sense that one cannot take δ = 0.

If d 6= 1(mod 4), then Part 1 of Theorem 3.1 can be easily derived
using an argument due to B.E.J. Dahlberg and E. Trubowitz (see [4]
and also [6]). In the case d = 1(mod 4) the lower bound (3.5) calls for
more elaborate considerations and was previously unknown. For the
sake of completeness we shall provide the proof of (3.5) for both these
cases. Also for completeness, we give a proof of the upper bound (3.6),
which was obtained for the first time in [10]. The estimate (3.7) is new
and our proof is original. The proof of Theorem 3.1 will be postponed
until the end of this section.
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Remark 3.2. Using a very simple argument based on the inequality
‖f‖L1 ≤ ‖f‖L∞(see [17]), one can obtain from Theorem 3.1 useful
”pointwise” estimates for the function #(k; E(ρ)). Indeed, suppose
that f = f(k) is a bounded function on O† with a zero average. Then∫

O†
|f |dk = 2

∫
O†

f+dk = 2

∫
O†

f−dk, 2f± = |f | ± f,

so that

2 sup
k

f ≥
∫

O†
|f |dk, 2 inf

k
f ≤ −

∫
O†
|f |dk.

Remembering that the average value of #(k; E(ρ))−wd ρd is zero, it is
now straightforward to deduce from (3.5) that

(3.8)

{
maxk #

(
k; E(ρ)

)
≥ wd ρd + Cρ

d−1
2
−δ,

mink #
(
k; E(ρ)

)
≤ wd ρd − Cρ

d−1
2
−δ,

for sufficiently big ρ. These estimates are consistent with the result
due to E. Hlawka [7]

#
(
0; E(ρ)

)
− wd ρd = Ω

(
ρ

d−1
2

)
.

We should also mention two papers [19], [20] where the bounds (3.8)
were announced to hold with δ = 0 for all dimensions d.

It is natural to ask whether the estimates (3.8) are precise. A partial
answer can be found in the book [2] by J. Beck and W.W.L. Chen
who studied discrepancies of distributions of discrete sets of points in
compact convex bodies. They found lower and upper bounds on the
discrepancies that are consistent with (3.8).

3.2. Technical lemmas. Before we proceed to the proof of Theorem
3.1 we need to establish two preparatory lemmas. For t ∈ R introduce
the notation btc for the distance from the number π−1t to the nearest
integer.

Lemma 3.3. Let Ξ ⊂ Rd be a lattice. Then for any ε > 0 there exist
numbers ρ0 > 0 and α ∈ (0, 1/2) such that for any ρ ≥ ρ0 one can find
an element β ∈ Ξ with the properties |β| ≤ ρε and b|β|ρc ≥ α.

Proof. Let e1, e2 ∈ Ξ be an arbitrary pair of basis vectors. Without
loss of generality we can assume that |e1| = 1. Introduce two integer
parameters n = n(ρ, ε), k0 = k0(ε) whose precise values will be specified
later. Consider the sequence of points βk = ne1 +ke2, k = 0, 1, . . . , k0.
Then the length of each βk is given by

B(k) = |βk| =
√

(n + pk)2 + qk2, p = e1e2, q = |e2|2 − |e1e2|2.
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We shall show that for any ε > 0 there are real numbers ρ0 > 0, α ∈
(0, 1/2) and a positive integer k0 such that for any ρ ≥ ρ0 one can find
an n ≤ ρε and an integer k ∈ [0, k0] with the property

(3.9) bB(k)ρc ≥ α.

Suppose the converse, i.e. that for some ε > 0 and any ρ0, α ∈
(0, 1/2), k0 there exists a ρ ≥ ρ0 such that for all n ≤ ρε and k ∈ [0, k0]
the inequality bB(k)ρc < α holds. Denote B(1)(k) = B(k + 1) −
B(k), k ∈ [0, k0 − 1] and B(m)(k) = B(m−1)(k + 1) − B(m−1)(k), k ∈
[0, k0 −m], m = 1, 2, . . . , k0. Since bB(k)ρc < α, we then have

(3.10) bB(m)(k)ρc < 2mα, ∀k ∈ [0, k0 −m], m = 1, 2, . . . , k0.

To find a contradiction, it will be convenient to consider B(k) as a
function of the continuous variable k ∈ [0, k0]. Let us show that there
exist two infinite sequences mj and Aj 6= 0 , such that

(3.11)
dmlB(k)

dkml
nml−1 = Al + O(n−1), n →∞,∀l,

uniformly in k ∈ [0, k0]. Notice that

B(k) = nB̃(k/n), B̃(t) =
√

(1 + pt)2 + qt2.

As q 6= 0, the function B̃ is not a polynomial, so that the series

B̃(t) =
∞∑

s=0

zst
s, zs = zs(p, q)

contains an infinite set of non-zero coefficients zs. Denote the sequence
of numbers s for which zs 6= 0 by mj and set Aj = mj!zmj

. Then

dmj B̃(k/n)

dkmj
nmj = Aj + O(n−1),

uniformly in k ∈ [0, k0]. This implies (3.11).
It is clear that

B(m)(k) =

∫ k+1

k

∫ k1+1

k1

· · ·
∫ km−1+1

km−1

dmB(km)

dkm
m

dkm . . . dk1.

In view of (3.11)

B(mj)(k) = Ajn
1−mj(1 + O(n−1)),∀k ∈ [0, k0 −mj].

Let now j be the smallest integer such that mj ≥ ε−1 + 2. Define
k0 = mj and let

n =
[(

2|Aj|π−1ρ
)1/(mj−1)] ≤ ρ

−ε2/(1+ε)
0

(
2|Aj|π−1

)ε
ρε.
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Then B(mj)(0)ρ → signAj π/2, ρ → ∞, so that bB(mj)(0)ρc = 1/2 +
o(1), ρ → ∞. Choosing α and ρ0 so that 2mjα < 1/2 and n ≤ ρε, we
obtain a contradiction with (3.10).

To complete the proof it remains to take βk = ne1 + ke2 satisfying
(3.9). �

In order to prove (3.7) we shall use the following variant of Dirichlet’s
Theorem on simultaneous rational approximations of real numbers (see,
e.g., [15]):

Lemma 3.4. Let α1, α2, . . . , αn be real numbers. Then for any positive
integer Q there exist integers p1, p2, . . . , pn, q with Q ≤ q < Qn+1 such
that

|αjq − pj| <
1

Q
.

Proof. Throughout this proof we use the notation {x} = x − [x] for
the fractional part of x. Let K := [0, 1)n be the unit cube in Rn.
Let us cut K into Qn smaller cubes, each with sides of length Q−1,
i.e. K =

⋃Qn

j=1 Kj, where Kj are small cubes, numbered in arbitrary

way. Consider the points a` ∈ K, ` = 0, ..., Qn+1 given by the formula
a` = ({`α1}, ..., {`αn}). There are Qn+1 + 1 such points, and hence,
the pigeonhole principle implies that there is a number j0 such that the
cube Kj0 contains at least Q + 1 points a`:

a`0 , . . . , a`Q
∈ Kj0 .

We can also assume that `0 < `1 < · · · < `Q, so that `Q − `0 ≥ Q. The
fact that a`0 and a`Q

belong to the same cube Kj0 implies that

|{`Qαm} − {`0αm}| ≤
1

Q
, m = 1, . . . , n.

This, in turn, means that

|(`Q − `0)αm −
(
[`Qαm]− [`0αm]

)
| ≤ 1

Q
, m = 1, . . . , n.

Now we denote q := `Q − `0, pm := [`Qαm]− [`0αm], and the Lemma is
proved. �

3.3. Proof of Theorem 3.1. Lower bounds. Denote

N(ρ,k) = #
(
k; E(ρ)

)
.

Just as in [4] and [10] we easily conclude that for any b ∈ Γ

N̂(ρ;b) =

∫
O†

N(ρ,k)eibkdk =
1

detF

∫
|k|≤ρ

eiβkdk, β = F−1b,
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and in particular,

N̂(ρ; 0) = wd ρd.

Note that

(3.12) σ1(ρ) =

∫
O†
|N(ρ,k)− N̂(ρ; 0)|dk ≥ |N̂(ρ;b)|, ∀b ∈ Γ \ {0}.

Computing the Fourier coefficient, we obtain that

(3.13) detF N̂(ρ;b) = (2π)d/2β−d/2ρd/2Jd/2(ρβ), β = |β| 6= 0.

To prove (3.5) for d 6= 1(mod 4) we point out the following elementary
property of Bessel functions:

(3.14) |Jν(z)|+ |Jν(2z)| ≥ cνz
−1/2, 2ν 6= 1(mod 4)

for all sufficiently big z > 0. Indeed, the Bessel function has the as-
ymptotics (see [1])

(3.15) Jν(z) = −
√

2

πz
g(z) + O(z−3/2),

with

g(z) = sin(z + aπ), a = −2ν − 1

4
.

The required estimate will be proved if we show that

(3.16) |g(z)|+ |g(2z)| ≥ c, z ≥ z0.

for some z0 > 0. The roots of g(z) and g(2z) are −aπ + πn and
−aπ/2 + πm/2, m, n ∈ Z respectively. Since a is not integer, these
roots never coincide. This proves (3.16) and (3.14).

Now (3.14) and (3.12) immediately yield the required lower bound
(3.5) for d 6= 1(mod 4).

Suppose now that d = 1(mod 4). Then the asymptotics (3.15) gives
that

(3.17)

detF N̂(ρ;b) = −(−1)(d−1)/4

√
2

π
(2π)d/2β−(d+1)/2ρ(d−1)/2 sin(ρβ)

+ O(ρ(d−3)/2β−(d+3)/2), β = |β|.

Choosing β as in Lemma 3.3, we see that | sin(ρβ)| = | sin(πbρβc)| ≥ c
and hence

|N̂(ρ;Fβ)| ≥ cερ
(d−1)/2−(d+1)ε/2.

Using (3.12), we obtain (3.5).
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Upper bounds. By virtue of Parseval’s identity and (3.13), we
have

σ2(ρ) = (2π)dρd
∑
b∈Γ

|F−1b|−dJ2
d/2(ρ|F−1b|)

≤ Cρd−1
∑

0 6=m∈Zd

|m|−d−1 ≤ Cρd−1.

Here we have used the estimate |J2
ν (z)| ≤ C|z|−1. This proves (3.6).

Let us now prove (3.7). Let j > 0 be a natural number and let
M = Mj ⊂ R be the set

Mj = {|F−1m| : m ∈ Zd \ {0} & |m| ≤ j}.
It is clear that nj, the number of elements in M , does not exceed 2djd.
Applying Lemma 3.4 to the set M we conclude that for any Q > 0 one
can find a natural number q = ρ = ρj such that

(3.18) Q ≤ ρj < Qnj+1

and

| sin(2πρ|F−1m|)| ≤ Q−1, ∀|m| ≤ j.

Using again Parseval’s identity and the asymptotics (3.17) we arrive at
the estimate

σ2(ρj) ≤
1

π2
ρd−1

j

∑
0<|m|≤j

|F−1m|−(d+1)| sin(2πρj|F−1m|)|2

+ Cρd−1
j

∑
|m|>j

|m|−d−1 + O(ρd−2
j )

≤ Cρd−1
j

(
Q−2 + j−1

)
+ O(ρd−2

j ).

Let Q = j1/2. Then the right inequality in (3.18) and the estimate
nj ≤ 2djd imply that

j ≥ cε(ln ρj)
1−ε

d , ∀ε > 0.

Hence, the following upper bound holds:

σ2(ρj) ≤ Cρd−1
j (ln ρj)

−1+ε
d , ∀ε > 0.

It remains to observe that in view of the left inequality (3.18), ρj →∞
as j →∞. �

In conclusion we remind that the number of points #(k; E(ρ)) also
satisfies the well-known upper bound

(3.19) |#(k; E(ρ))− wd ρd| ≤ Cρd−2+2b, b =
1

d + 1
, d ≥ 2,
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uniformly in k ∈ O† (see [7]). For k = 0 one can take a smaller value
of b (see [11]). Moreover, it is shown in [3] that b = 0 for d ≥ 9. For
discussion anf further references we refer to [5].

While the lower bound from Theorem 3.1 will be used to establish the
lower bounds (2.4) for the functions m(λ) and ζ(λ), the estimate (3.19)
can be used to prove the following upper bounds for these quantities:

m(λ) ≤ Cλ
d−2+2b

2l , ζ(λ) ≤ Cλ1− 1−b
l .

The proof of these estimates simply follows the lines of [17], and we do
not go into details.

4. Proof of Theorems 2.1 and 2.2

Theorems 2.1 and 2.2 will be deduced from the following Lemma
showing how to extract the information on the functions m(λ) and
ζ(λ) from the upper and lower bounds on the counting function.

Lemma 4.1. Let l > 0 and d ≥ 2. Let B(k) be a family of bounded
self-adjoint operators in H depending continuously on k ∈ Rd. Suppose
that for all ρ ≥ ρ0 > 0 and some β ∈ (0, d) the counting function
N(ρ2l; H(k)), H(k) = H0(k) + B(k) obeys the estimates

(4.1)

{
maxk N

(
ρ2l; H(k)

)
≥ wd ρd + Cρβ,

mink N
(
ρ2l; H(k)

)
≤ wd ρd − Cρβ.

Then the functions m(λ) and ζ(λ) satisfy the lower bounds

(4.2) m(λ) ≥ c0λ
β
2l , ζ(λ) ≥ c0λ

1− d−β
2l

for all λ ≥ (2ρ0)
2l.

In the proof of this Lemma and throughout the rest of the paper
we shall be using the following elementary two-sided estimates for the
function h±(t) = (1± t)γ, 0 ≤ t ≤ 1/2:

(4.3) 1± d
(±)
l t ≤ h±(t) ≤ 1± d(±)

u t

Here the constants d
(±)
l and d(±)

u depend on γ and are given by the
formulae

d
(±)
l = γ; d(+)

u = γ(3/2)γ−1, d(−)
u = γ(1/2)γ−1, if γ ≥ 1;

d(±)
u = γ; d

(+)
l = γ(2/3)1−γ, d

(−)
l = γ21−γ, if γ < 1.
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Proof of Lemma 4.1. According to (4.1) and (4.3), for all non-negative
t ≤ ρ2l/2 we have

N+(ρ2l − t) ≥ wd(ρ
2l − t)

d
2l + C(ρ2l − t)

β
2l

≥ wd ρd + Cρβ − ctρd−2l, ∀ρ ≥ 2ρ0.

Similarly,

N−(ρ2l + t) ≤ wd(ρ
2l + t)

d
2l − C(ρ2l + t)

d
2l

≤ wd ρd − Cρβ + ctρd−2l, ∀ρ ≥ ρ0.

Now one concludes from (2.10) that

m(ρ2l) ≥ N+(ρ2l)−N−(ρ2l) ≥ 2Cρβ, ∀ρ ≥ 2ρ0,

and hence (4.2) holds for all λ ≥ λl = (2ρ0)
2l. This completes the proof

of the lower bound for m(λ). To estimate ζ(λ) write

N+(ρ2l − t)−N−(ρ2l + t) ≥ 2Cρβ − 2ctρd−2l.

From the formula (2.9) one can now infer (4.2) for ζ(λ), λ ≥ (2ρ0)
2l. �

4.1. Proof of main results. Here we complete the proof of Theorem
2.1 and show how to deduce Theorem 2.2 from Theorem 2.9.

Proof of Theorem 2.1. In view of (3.8) and the relation (3.3), the
counting function N(ρ2l; H0(k)) of the unperturbed operator satisfies
(4.1) with β = (d − 1)/2 − δ (see (2.3) for definition of δ) for all
sufficiently large ρ > 0. This fact in combination with (4.3), implies
that for any ρ2l ≥ 4v, v = maxk ‖B(k)‖ we have

N+

(
ρ2l; H(k)

)
≥ max

k
N

(
ρ2l − v; H0(k)

)
≥ wd ρd + Cρβ − cvρd−2l;

N−
(
ρ2l; H(k)

)
≤ min

k
N

(
ρ2l + v; H0(k)

)
≤ wd ρd − Cρβ + cvρd−2l.

Under the condition 4l > d + 1 + δ we have β > d − 2l, so that these
estimates yield the bounds (4.1) for N(ρ2l; H(k)). Now Lemma 4.1
leads to Statement 1 of Theorem 2.1.

To prove Statement 2 recall that if d 6= 1(mod 4) and 4l = d + 1,
then δ = 0 and β = d − 2l. Again, the bounds (4.1) follow from the
above inequalities as v is assumed to be sufficiently small. �

Proof of Theorem 2.2. We use Theorem 2.9 with β = (d− 1)/2− δ.
Let us prove Parts 1 and 2 of Theorem 2.2 first. To this end observe
that under the conditions of Part 1(resp. Part 2) Condition 2.6(resp.
2.7) is fulfilled. Indeed, if 4l ≤ d + 1, 6l > d + 2 and V ∈ Hα(Td)
with an α satisfying (2.6), then for sufficiently small δ we have β ∈
(d − 3l + 1/2, d − 2l], and (2.12) is satisfied. Also, if d = 2 then
ν = 6l − 4 ≤ 1. Furthermore, if d 6= 1(mod 4), 4l = d + 1 and V is
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continuous, then β = d− 2l, l > 1/2. Consequently, Part 1 of Theorem
2.9 is applicable. According to (2.13) and (3.4),

(4.4) lim ρ−
d−1
2

+δ
∣∣〈H(ρ2l; H)〉 − wd ρd

∣∣ = 0, ρ →∞.

Hence the inequalities〈
|N(λ; H)− 〈N(λ; H)〉|

〉
≥

〈
|N(λ; H0)− wd ρd|

〉
−

〈
|N(λ; H)−N(λ; H0)|

〉
− |〈N(λ; H)〉 − wd ρd|, λ = ρ2l,

the estimate (2.13), and Theorem 3.1 yield that〈∣∣N(ρ2l; H)− 〈N(ρ2l; H)〉
∣∣〉 ≥ cρ

d−1
2
−δ,

for sufficiently large ρ. Applying the same argument as in Remark 3.2,
we now see that

max
k

N
(
ρ2l; H(k)

)
≥ 〈N(ρ2l; H)〉+ cρ

d−1
2
−δ,

min
k

N
(
ρ2l; H(k)

)
≤ 〈N(ρ2l; H)〉 − cρ

d−1
2
−δ.

Referring again to (4.4), one concludes that the counting function of
H(k) satisfies (4.1) with β = (d − 1)/2 − δ. Now Lemma 4.1 implies
Parts 1 and 2 of Theorem 2.2.

Let d 6= 1(mod 4), 6l = d + 2 and V be a trigonometric polynomial.
As β = d−3l+1/2, the conditions of Part 2 of Theorem 2.9 are fulfilled,
so that (2.14) holds. Assuming that the number g0 > 0 is sufficiently
small, one proves as above that the counting function N(ρ2l, H0(k) +
gV ), |g| ≤ g0, satisfies the estimates (4.1) with β = (d − 1)/2, which
implies Part 3 of Theorem 2.2. �

4.2. Proof of Theorem 2.5. Let v = ‖B‖ = max ‖B(k)‖ and λ =
ρ2l. By a straightforward perturbation argument

〈N(λ− v; H0)〉 ≤ 〈N(λ; H0 + B)〉 ≤ 〈N(λ + v; H0)〉.

Note that〈
|N(λ± v; H0)−N(λ; H0)|

〉
= |

〈
N(λ± v; H0)〉 − 〈N(λ; H0)〉

∣∣.
By virtue of (3.4) and (4.3) the r.h.s. does not exceed

wd |(ρ2l ± v)d/2l − ρd| ≤ Cvρd−2l.

This completes the proof. �
The rest of the paper is devoted to the proof of Theorem 2.9.
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5. Reduction of the operator H(k)

The idea of the proof is to bring the operator H(k), by a series
of transformations, as close as possible to the unperturbed operator
H0(k), controlling on each step the counting function N(λ). A re-
duction of H(k) will be done in two steps that are described below.
Although our ultimate goal is to prove Theorem 2.9, we do not need to
assume that all its conditions are fulfilled for each intermediary result
obtained in this section. In particular, the conclusions of Subsection
5.1 below are true for arbitrary bounded self-adjoint perturbation B
and do not need the locality of B.

Introduce necessary notation. For any (measurable) set C ∈ Rd

we denote by P(C) the orthogonal projection in H = L2(O) onto the
subspace spanned by the exponentials

1

(2π)d/2
eimx, m ∈ C ∩ Zd.

As a rule we also use the notation P(k)(C) = P(C(k)) (see (3.1) for the
definition of C(k)). From now on, slightly abusing notation, we shall
use the symbol N(λ; H0(k)P(k)) to denote the counting function of the
operator H0(k) restricted to the range of the projection P(k).

In what follows we shall be using a number of parameters depending
on β, l and d. For reader’s convenience we list them all below, including
the parameters ν and γ defined in (2.11):

(5.1)


ν = 6l + 2β − 2d− 1,

γ = d− 2l − β,

η = d− 4l − β + 1.

5.1. Step 1. Suppose that B = B(k) is a family of bounded self-
adjoint operators in H, norm-continuous in k ∈ Rd. Denote F = G1/2

and define the shell

S(ρ, r) = {ξ ∈ Rd :
∣∣|Fξ| − ρ

∣∣ ≤ r}, 0 < r ≤ ρ.

In the operator H(k) = H0(k) + B(k) we split B in the sum of two
operators:

W = W (ρ, r;k) = P(k)BP(k),

W̃ = W̃ (ρ, r;k) = Q(k)BP(k) + P(k)BQ(k) + Q(k)BQ(k),

where we have denoted

P(k) = P
(
S(k)(ρ, r)

)
, Q(k) = I − P(k).



THE BETHE-SOMMERFELD CONJECTURE 21

We are going to show that the counting function N
(
ρ2l; H(k)

)
is de-

termined by N(ρ2l; H) with the “effective” operator

(5.2) H = H(ρ, r;k) = H0(k) + W (ρ, r;k).

Sometimes, if necessary, we also reflect the dependence of H on the
operator B and write H(ρ, r;k, B).

Theorem 5.1. Let B(k) be as above and ‖B‖ = max ‖B(k)‖ = v.
Let β ∈ (d − 4l, d − 2l], ω > 0 be arbitrary numbers, and let γ, η be
as defined in (5.1). Then there exist a constant A > 0 and a number
ρ1 = ρ1(v, ω) > 0 such that for r = Avω−1ρη and ρ ≥ ρ1 one has
ρ ≥ 2r and

(5.3) N
(
ρ2l − vωρ−γ; H(ρ, r;k)

)
≤ N

(
ρ2l; H(k)

)
≤ N

(
ρ2l + vωρ−γ; H(ρ, r;k)

)
,

uniformly in k ∈ O†.

The proof of this Theorem is very simple: it requires only some basic
knowledge of perturbation theory.

Proof of Theorem 5.1. Denote for brevity P = P(k), Q = Q(k). Let
us estimate the contribution of W̃ to the spectrum of H. For any
u ∈ L2(O) we have

|(PBQu, u)|+ |(QBPu, u)| ≤ vωρ−γ‖Pu‖2 + vω−1ργ‖Qu‖2.

Consequently

H ≤ (H +vωρ−γ)P + (H0 + vω−1ργ + v)Q,

H ≥ (H−vωρ−γ)P + (H0 − vω−1ργ − v)Q.
(5.4)

Denote
H± = (H0 ± vω−1ργ ± v)Q.

It is clear that

(5.5) N(λ; H±) = N(λ∓ vω−1ργ ∓ v; H0Q), λ = ρ2l.

By definition of Q the operator H0Q has no spectrum in the interval
I(ρ, r) =

(
(ρ − r)2l, (ρ + r)2l

)
. Assuming that 2r ≤ ρ and using (4.3)

we also conclude that H0Q has no spectrum in the interval(
ρ2l − d rρ2l−1, ρ2l + d rρ2l−1

)
⊂ I(ρ, r), d = min{d(−)

u , d
(+)
l }.

Set
r = 4 d−1 vω−1ργ+1−2l.

Since γ > 0, the numbers ρ2l ∓ vω−1ργ ∓ v lie inside the above interval
for all ρ ≥ ρ1 with a sufficiently large ρ1 = ρ1(v, ω). Consequently
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the r.h.s. of the equality (5.5) equals N(λ; H0Q). In combination with
(5.4) this yields (5.3). Precisely, the first equation from (5.4) implies

N
(
ρ2l; H

)
≥ N

(
ρ2l; (H +vωρ−γ)P

)
+ N

(
ρ2l; H0Q

)
≥ N

(
ρ2l − vωρ−γ; H P

)
+ N

(
ρ2l − vωρ−γ; H0Q

)
= N

(
ρ2l − vωρ−γ; H(ρ, r;k)

)
.

(5.6)

The upper bound is proved in the same way.
It remains to check the validity of the assumption ρ ≥ 2r above.

Notice that γ + 1 − 2l = η. In view of the condition β > d − 4l
the exponent η is always strictly less than 1. Therefore, increasing, if
necessary, the number ρ1 = ρ1(v, ω) we may indeed assume that ρ ≥ 2r
for ρ ≥ ρ1. �

5.2. Step 2. Effective part of the local operator H(k). On this
step we have to assume that B is the multiplication by a function
V = V (x). We begin with introducing a convenient representation for
V . Write

(5.7)

{
V (x) = (2π)−d/2

∑
θ∈Θ V̂ (θ)eiθx =

∑
θ∈Θ Vθ,

Vθ(x) = (2π)−d/2 Re
(
V̂ (θ)eiθx

)
,

where Θ is defined in (2.7). Recall that 0 /∈ Θ in view of (2.5). The
conditions on V which will be specified later, guarantee that the series
(5.7) converges absolutely. For each θ ∈ Θ decompose the shell S =
S(ρ, r), with r defined in Theorem 5.1, into two disjoint sets: S =
Λθ ∪ Ωθ depending on the scalar parameter σ > 0:

Λθ = Λθ(ρ, r, σ) = {ξ ∈ S(ρ, r) :

|θG(ξ + θ/2)| ≤ σρη+1

or |θG(ξ − θ/2)| ≤ σρη+1},(5.8)

Ωθ = Ωθ(ρ, r, σ) = S(ρ, r) \ Λθ(ρ, r, σ).

Lemma 5.2. Let r be as defined in Theorem 5.1, and let ρ ≥ ρ1(v, ω).
Then for any σ ≥ 3Avω−1 one has

P(k)(Ωθ)VθP
(k)(S) = 0, ∀θ ∈ Θ.

Proof. It will suffice to show that if for any ξ ∈ S = S(ρ, r) the point
ξ± θ also belongs to S then ξ± θ ∈ Λθ. Let ξ ∈ S and ξ± θ ∈ S. As
ρ ≥ 2r, we have

ρ2 − 3ρr < |Fξ|2 < ρ2 + 3ρr,

ρ2 − 3ρr < |F(ξ ± θ)|2 = |Fξ|2 ± 2θG(ξ ± θ/2) < ρ2 + 3ρr,
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which implies that

|θG(ξ ± θ/2)| ≤ 3ρr = 3Avω−1ρη+1,

or that ξ ± θ ∈ Λθ(ρ, r, σ), ∀σ ≥ 3Avω−1. �

This Lemma immediately implies that

(5.9) H = H0 + W [, W [ =
∑

θ

P(k)(Λθ)VθP
(k)(Λθ),

if σ ≥ 3Avω−1.
As the next theorem shows, the counting functions of H and H0

are already sufficiently close, so that we do not need to reduce H any
further.

Theorem 5.3. Suppose that V is a periodic real-valued function, sat-
isfying (2.5). Let β ≤ d− 2l and λ ∈ [ρ2l − κρ−γ, ρ2l + κρ−γ] with an
arbitrary fixed κ > 0.

(1) Suppose that V is a trigonometric polynomial (5.7), and that
Θ ⊂ E0(ρ/2) for d = 2. Then for any α > d/2

(5.10)
〈∣∣N(

λ; H(ρ, r)
)
−N(ρ2l; H0)

∣∣〉
≤ Cρβ(κ + ‖V ‖Hαω−1M(Θ)ρ−ν),

with ν and M(Θ) defined in (2.11) and (2.8) respectively.
(2) Suppose that one of the Conditions 2.6 or 2.7 is fulfilled. Then

(5.11) lim sup

[
ρ−β

〈∣∣N(
λ; H(ρ, r)

)
−N(ρ2l; H0)

∣∣〉] ≤ Cκ,

as ρ →∞.

The constant C in (5.10), (5.11) is independent of V, κ and ω.

Recall that under Condition 2.6 or 2.7 the parameter ν defined in
(2.11) is strictly positive.

Theorem 5.3 will be proved in the next section.

6. Proof of Theorems 5.3 and 2.9

To study the spectrum of H we first investigate an auxiliary problem.

6.1. Auxiliary problem. For a set C ⊂ Rd and a number g ∈ R
define on H the operator

(6.1) X(k) = Xg(k) = H0(k) + gP(k)(C), k ∈ O†.
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Denote ρ = λ1/2l, ρ′ = (λ− g)1/2l, λ ≥ |α|. The study of the counting
function N(λ; X(k)) will involve the set

D(λ) =

{ (
E(ρ) \ E(ρ′)

)
∩ C, g ≥ 0;(

E(ρ′) \ E(ρ)
)
∩ C, g < 0.

Denote

ω(λ) = vol
(
D(λ)

)
.

Lemma 6.1. Let X(k) be as defined above. Then for any λ = ρ2l ≥ |g|,

(6.2)
〈∣∣N(λ; X)−#

(
E(ρ)

)∣∣〉 = ω(λ).

Proof. Denote P = P(k)(C), Q = I − P(k)(C). Since

X = H0Q⊕ PXP,

it is clear that

N
(
λ; X(k)

)
= N

(
λ; H0(k)Q

)
+ N

(
λ; X(k)P

)
= N

(
λ; H0(k)Q

)
+ N

(
λ− g; H0(k)P

)
.

Using the definition of P it is straightforward to rewrite this formula
as follows:

(6.3) N
(
λ; X(k)

)
= #

(
k; C′(λ)

)
,

with

C′ = C′(λ) =
(
E(ρ) \ C

) ⋃(
E(ρ′) ∩ C

)
, ρ = λ1/2l, ρ′ = (λ− g)1/2l.

Let us rewrite C′ in a different form using the set D(λ) defined before
the lemma:

C′ =

{
E(ρ) ∪D(λ), g < 0;

E(ρ) \D(λ), g ≥ 0.

As D(λ) ⊂ E(ρ), g ≥ 0 and D(λ) ∩ E(ρ) = ∅, g < 0, one can write

#
(
k; C′(λ)

)
= #

(
k; E(ρ)

)
+ M(k; λ),(6.4)

M(k; λ) = ∓#
(
k; D(λ)

)
, ±g ≥ 0.

In view of (3.2) 〈|M(λ)|〉 = ω(λ), so that (6.4) and (6.3) lead to (6.2).
�

Let us apply this Lemma to the set ∪θ∈ΘΛθ(ρ, σ), where the sets Λθ

are defined in (5.8).
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Corollary 6.2. Suppose that Θ is a finite set and that Θ ⊂ E0(ρ/2)
for d = 2. Let C = ∪θ∈ΘΛθ(ρ, σ). Then for any λ ∈ [ρ2l − κρ−γ, ρ2l +
κρ−γ], κ > 0, one has

(6.5)
〈∣∣N(λ; Xg)−#

(
E(ρ)

)∣∣〉 ≤ Cρβ
(
κ + σ|g|M(Θ)ρ−ν

)
,

where ν is defined in (2.11).

Proof. Let λ = τ 2l and τ± = (λ± |g|)1/2l. It is obvious that

D(λ) ⊂ ∪θDθ(λ), Dθ(λ) =
(
E(τ+) \ E(τ−)

)
∩ Λθ, θ ∈ Zd \ {0}.

Let us estimate ω(λ) first. By (4.3) and definition (5.8), we get for all
λ ≥ 2|g| that

Dθ(λ) ⊂ {ξ ∈ Rd : τ − C|g|τ 1−2l ≤ |Fξ| ≤ τ + C|g|τ 1−2l,

|θG(ξ + θ/2)| ≤ σρη+1 or |θG(ξ − θ/2)| ≤ σρη+1}.
An elementary geometric argument shows that the volume of this set
does not exceed

vol
(
Dθ(λ)

)
≤ Cσ|g|τ d−1−2lρη+1|θ|−1 ≤ C|g|σ|θ|−1ρd−2l+η.

If d ≥ 3, then this is true without any restrictions on the finite set Θ.
If d = 2 then this is true under the condition |θ|ρ−1 ≤ c < 1, ∀θ ∈ Θ,
which is satisfied in view of the assumption |θ| ≤ ρ/2.

Since D(λ) ⊂ ∪Dθ(λ), we conclude that

ω(λ) ≤
∑

θ

vol
(
Dθ(λ)

)
≤ Cσ|g|ρd−2l+ηM(Θ),

so that by Lemma 6.1

(6.6)
〈∣∣N(λ; Xg)−#

(
E(τ)

)∣∣〉 ≤ Cσ|g|ρd−2l+ηM(Θ),

for all λ satisfying the conditions of this corollary.
Now note that for any positive ρ and τ such that |ρ2l − τ 2l| ≤ t for

some t ≥ 0, one has in view of (3.4),

〈
∣∣#(E(ρ))−#(E(τ))

∣∣〉 =
∣∣〈#(E(ρ))〉 − 〈#(E(τ))〉

∣∣ ≤ Ctρd−2l,

Setting t = κρ−γ, we obtain from this inequality and (6.6) that〈∣∣N(λ; X)−#
(
E(ρ)

)∣∣〉 ≤ 〈∣∣N(λ; X)−#
(
E(τ)

)∣∣〉
+

〈∣∣#(
E(τ)

)
−#

(
E(ρ)

)∣∣〉
≤ Cσ|g|ρd−2l+ηM(Θ) + Cκρβ.

It remains to notice that by (2.11)

d− 2l + η = 2d− 6l − β + 1 = −ν + β,

which completes the proof. �
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6.2. Proof of Theorem 5.3. Assume that V is a trigonometric poly-
nomial. To apply Lemma 6.1 and Corollary 6.2 set first of all C =
∪θ∈ΘΛθ(ρ, σ) and σ = 3Avω−1. By (5.9) we have

H = H0 + P(k)(C)W [P(k)(C).

Furthermore, by virtue of (5.7)

−g ≤ W [ ≤ g,

g = (2π)−d/2
∑
θ∈Θ

|V̂ (θ)| ≤ Cα‖V ‖Hα , ∀α > d/2.

Consequently

X−g(k) ≤ H(k) ≤ Xg(k),

where Xg and X−g are the operators of the form (6.1). Applying Corol-
lary 6.2 we conclude that the counting functions of both operators
Xg, X−g fulfill (6.5). This implies (5.10).

To prove Statement 2 of the Theorem, suppose first that Condition
2.6 is satisfied, and hence ν > 0. Split V into the sum V = V1 + V2

with

(2π)d/2V1(x) =
∑
|θ|≤R

V̂ (θ)eiθx,

(2π)d/2V2(x) =
∑
|θ|>R

V̂ (θ)eiθx

with an R > 0. Using the property V ∈ Hα we see that

‖V2‖2 ≤ (2π)d

[∑
θ

|V̂ (θ)|
]2

≤ ‖V ‖2
Hα

∑
|θ|>R

|θ|−2α ≤ C‖V ‖2
HαR−2α+d.

Assuming that

(6.7) R =
[
‖V ‖Hακ−1ργ

](α−d/2)−1

,

it is straightforward to check that ‖V2‖ ≤ Cκρ−γ. Therefore, by a
simple perturbation argument,

(6.8)
∣∣N(

λ; H(ρ, r;k, V )
)
−N(ρ2l; H0(k))

∣∣
≤

∑
±

∣∣N(
ρ2l ± Cκρ−γ; H(ρ, r;k, V1)

)
−N(ρ2l; H0(k))

∣∣.
Since V1 is a trigonometric polynomial, we may try to use (5.10). How-
ever, in order to do so we need to check that if d = 2 then R ≤ ρ/2.
As α obeys (2.6), we have γ(α− 1)−1 < ν ≤ 1. By definition (6.7) this
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implies that Rρ−1 → 0 as ρ → ∞. Therefore, applying (5.10) to the
r.h.s. of (6.8), we get

(6.9)
〈∣∣N(

λ; H(ρ, r)
)
−N(ρ2l; H0)

∣∣〉
≤ Cρβ

(
κ + ω−1‖V ‖HαM

(
E0(R) \ {0}

)
ρ−ν

)
,

for sufficiently large ρ. By (2.6), the power of ρ in the r.h.s. of the
inequality

M
(
E0(R) \ {0}

)
≤ CRd−1

= C
[
‖V ‖Hακ−1

](d−1)(α−d/2)−1

ργ(d−1)(α−d/2)−1

,

is strictly less than ν. Now (6.9) leads to (5.11).
Under Condition 2.7 the Theorem is proved in a similar way with the

following minor alteration. As V is continuous, it can be approximated
by a trigonometric polynomial V1 such that ‖V − V1‖ ≤ κ. It remains
to observe that if β = d− 2l, l > 1/2, then γ = 0, ν = 2l − 1 > 0, and
follow the above proof. �

6.3. Proof of Theorem 2.9. As ν ≥ 0 and β ≤ d − 2l, the parame-
ter β belongs to the interval (d − 4l, d − 2l], so that Theorem 5.1 is
applicable. It follows from (5.3) that

(6.10) N
(
λ−; H(ρ, r;k)

)
≤ N

(
ρ2l; H(k)

)
≤ N

(
λ+; H(ρ, r;k)

)
, λ± = ρ2l ± vωρ−γ,

where v = maxx |V (x)|. Let Condition 2.8 be satisfied. As ν = 0, it
follows from (6.10) and (5.10) that

T (ρ, V ) =
〈∣∣N(

ρ2l; H
)
−N(ρ2l; H0)

∣∣〉
≤ Cρβ

(
vω + ω−1‖V ‖HαM(Θ)

)
.

Now (2.14) follows if we set ω = M(Θ)1/2 and recall that v ≤ ‖V ‖Hα .
Part 1 of Theorem 2.9 is a consequence of (5.11). Precisely, (6.10)

and (5.11) with κ = vω ensure that

lim sup

[
ρ−β

〈∣∣N(ρ2l; H)−N(ρ2l; H0)
∣∣〉] ≤ Cvω, ρ →∞.

Since ω > 0 is arbitrary and the l.h.s. does not depend on ω, we obtain
(2.13).

Proof of Theorem 2.9 is completed.
As explained in Subsection 4.1, Theorem 2.9 leads to Theorem 2.2.
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