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Abstract. We obtain a complete asymptotic expansion of the integrated
density of states of operators of the form H = (−∆)w + B in Rd. Here
w > 0, and B belongs to a wide class of almost-periodic self-adjoint
pseudo-differential operators of order less than 2w. In particular, we
obtain such an expansion for magnetic Schrödinger operators with either
smooth periodic or generic almost-periodic coefficients.
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1. Introduction

In [12], two of the authors of this paper have considered the following problem.
Let

H = −∆ + V (1.1)

be a Schrödinger operator acting in L2(Rd). The potential V = V (x) is as-
sumed to be real, smooth, and either periodic, or almost-periodic; in the
almost-periodic case we assume that all the derivatives of V are almost-
periodic as well. We are interested in the asymptotic behaviour of the (inte-
grated) density of states N(λ) as the spectral parameter λ tends to infinity.

SM and LP were partially supported by the EPSRC grant EP/ F029721/1. SM was also
supported by the Lundbeck Foundation and the European Research Council under the

European Community’s Seventh Framework Program (FP7/2007–2013)/ERC grant agree-

ment 202859. RS was partially supported by the NSF grant DMS-0901015. The authors
would like to thank Gerassimos Barbatis for participation in preliminary discussions which

led to this paper. SM would like to express his thanks for hospitality to the University of
Athens and ESI Vienna, where part of this work was made.



2 S. Morozov, L. Parnovski and R. Shterenberg

The density of states of H can be defined by the formula

N(λ) = N(λ;H) := lim
L→∞

N(λ;H
(L)
D )

(2L)d
. (1.2)

Here, H
(L)
D is the restriction of H to the cube [−L,L]d with the Dirichlet

boundary conditions, and N(λ;A) is the counting function of the discrete
spectrum of A. Later, we will give several equivalent definitions of N(λ)
which are more convenient to work with. If we denote by N0(λ) the density
of states of the unperturbed operator H0 = −∆, one can easily see that for
positive λ one has

N0(λ) = Cdλ
d/2, (1.3)

where

Cd =
wd

(2π)d
and wd =

πd/2

Γ(1 + d/2)
(1.4)

is the volume of the unit ball in Rd. There was a long-standing conjecture
that the density of states of H enjoys the following asymptotic behaviour as
λ→∞:

N(λ) ∼ λd/2
(
Cd +

∞∑
j=1

ejλ
−j
)
, (1.5)

meaning that for each K ∈ N one has

N(λ) = λd/2
(
Cd +

K∑
j=1

ejλ
−j
)

+RK(λ) (1.6)

with RK(λ) = o(λ
d
2−K). In those formulas, ej are real numbers which depend

on the potential V . These numbers can be calculated relatively easily using
the heat kernel invariants (computed in [2]); they are equal to certain integrals
of the potential V and its derivatives. In paper [7], all these coefficients were
computed; in particular, it turns out that, if d is even, then ej vanish whenever
j > d/2.

Until [12], formula (1.5) was proved only in the case d = 1 in [17] for
periodic V and in [14] for almost-periodic V . In [11], this formula was proved
in the case d = 2 and periodic potential. In the periodic case and d > 3, only
partial results were known, see [1], [4], [5], [13], [18], [21]. In particular, in
[4] it was shown that formula (1.6) is valid with K = 1 and R(λ) = O(λ−δ)

with some small positive δ when d = 3 and R(λ) = O(λ
d−3
2 lnλ) when d > 3.

In the multidimensional almost-periodic case, formula (1.6) was known only

with K = 0 and R(λ) = O(λ
d−2
2 ), see [16].

In [12], formula (1.5) was obtained for operators (2.1) assuming that the
real-valued potential V is either smooth periodic, or generic quasi-periodic,
or belongs to a reasonably wide class of almost-periodic functions (see [12]
for a complete set of conditions on V ).

In the case of magnetic Schrödinger operator

H = (−i∇+ A)2 + V,
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one expects the asymptotic formula (1.5) to be still valid (assuming similar
restrictions on the magnetic potential A = A(x) and the electric potential
V = V (x)). However, until now only the partial asymptotic formula (1.6)

with K = 0 and R(λ) = O(λ
d−2+ε

2 ) was known ([8]; see also [6]).
The main aim of the current paper is to obtain the complete asymp-

totic expansion of the integrated density of states for a more general class of
operators than was considered in [12]. This class, in particular, will contain
magnetic Schrödinger operators. We give a detailed description of this new
class in the next section; here, we list the main properties of the operators
belonging to it.

(i) We consider perturbations of the Laplacian, or any positive power
of the Laplacian. More precisely, we work with operators of the form

H = (−∆)w +B,

where B is a differential or pseudo-differential operator of order κ < 2w.
Here H is self-adjoint and belongs to the standard algebra of almost-periodic
pseudo-differential operators, see e.g. [15] and [16].

(ii) If B is a differential operator, we assume that its coefficients sat-
isfy the same conditions the potential V had to satisfy in [12] (for example,
the coefficients can be smooth periodic, or generic quasi-periodic functions).
In particular, periodic magnetic Schrödinger operators are covered by our
results.

(iii) If B is pseudo-differential, we assume that it is a classical pseudo-
differential operator, or, more generally, the operator of classical type. By the
latter we mean that the symbol of B admits an asymptotic decomposition in
powers of |ξ| when |ξ| → ∞; however, these powers do not have to be integer.

Note that operators with the relativistic kinetic energy
√

(−i∇+ A)2 +m2

are admissible for (almost-)periodic smooth A and m > 0.
Under these assumptions we prove that the integrated density of states

N(λ) has the complete asymptotic expansion (2.17). This expansion contains
powers of λ and powers of lnλ; the values of the exponents in the powers of
λ depend on the form of B, whereas logarithms are raised to integer powers
smaller than d.

Our method is not efficient for explicitly calculating the coefficients in
(2.17). However, as soon as the general form of the expansion is established,
the coefficients can sometimes be calculated by, say, comparison with the
expansion for the heat kernel (see [7, 12]). This applies, in particular, to
the case of magnetic Schrödinger operators, for which it turns out that the
logarithmic terms are absent (i.e., the corresponding coefficients are zero).

One immediate and slightly unexpected corollary of (2.17) is as follows:

Corollary 1.1. Suppose, H = (−∆)w + B with B being periodic and either
differential, or pseudo-differential operator of classical type. Then for suffi-
ciently large λ the spectrum of H is purely absolutely continuous.

Proof. Since H is periodic, the general Floquet-Bloch theory implies that
the spectrum of H is absolutely continuous with the possible exception of
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eigenvalues of infinite multiplicity. If λ is such an eigenvalue, the integrated
density of states has a jump at least |Γ†| at λ, where Γ† is the lattice dual to
the lattice of periods of H. Due to (2.17), this cannot happen for large λ.

The approach of our paper is similar to the one of [12]. In particular, we
use the method of gauge transform developed in [19], [20], and [13]. Never-
theless, there are plenty of new (mostly technical, but sometimes ideological)
difficulties arising because the operator B is no longer bounded and no longer
local. One example of the new methods employed in this paper is the proof
of Lemma 10.5: not only this proof works for unbounded B, it also makes
Condition D from [12] redundant. The biggest increase in technical difficul-
ties comes in Section 10 where we express the contribution to the density of
states from various regions in the momentum space as certain complicated
integrals and then try to compute these integrals. As a result, our paper is
technically more complicated than [12] (which already was quite difficult to
read). Thus, we have reluctantly abandoned the idea of making our paper
completely self-contained; we will skip all parts of the argument which are
identical (or close) to corresponding parts of [12] and refer the reader to that
paper. Nevertheless, we will present all the definitions and properties of the
important objects.

Remark 1.2. Throughout the article we employ the convention that, if some
statement is given without a proof, then an analogous statement can be
found in [12], and the proof is the same up to obvious modifications. It comes
without saying that the reader is strongly encouraged to read the article [12]
first, before attempting to read this paper.

2. Preliminaries

For w > 0 we consider the operator

H = (−∆)w +B (2.1)

acting in L2(Rd). The action of the pseudo-differential operator B on func-
tions from the Schwarz class S(Rd) is defined by the formula

(Bf)(x) := (2π)−d/2
∫
b(x, ξ)eiξx(Ff)(ξ)dξ.

Here F is the Fourier transform

(Ff)(ξ) := (2π)−d/2
∫
e−iξxf(x)dx, ξ ∈ Rd,

the integration is over Rd, and b is the symbol of B. We assume that b(x, ξ),
x, ξ ∈ Rd, is a smooth almost-periodic in x complex-valued function and,
moreover, that for some countable set Θ of frequencies we have

b(x, ξ) =
∑
θ∈Θ

b̂(θ, ξ)eθ(x) (2.2)
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where

eθ(x) := eiθx, (2.3)

and

b̂(θ, ξ) := Mx

(
b(x, ξ)e−θ(x)

)
are the Fourier coefficients of b. (For any almost–periodic function f in Rd
its mean Mx

(
f(x)

)
is defined by

Mx

(
f(x)

)
:= lim

L→∞
L−d

∫
[−L/2,L/2)d

f(x)dx.)

We assume that the series (2.2) converges absolutely, and that b satisfies
the symmetry condition

b̂(θ, ξ) = b̂(−θ, ξ + θ),

so that the operator B is formally self-adjoint. For R > 0 let 1BR be the
indicator function of the ball BR :=

{
ξ : |ξ| < R

}
. We assume that there

exists a constant C0 such that

‖b1BC0
‖L∞(Rd×Rd) <∞,

and that (
1− 1BC0

(ξ)
)
b(x, ξ) =

∑
ι∈J
|ξ|ιbι

(
x, ξ/|ξ|

)
, (2.4)

where J is a discrete subset of (−∞,κ] with

0 6 κ < 2w (2.5)

(the first inequality here is assumed for convenience without loss of gener-
ality), and bι(x,η) are smooth functions on Rd × Sd−1 almost-periodic with
respect to x.

Let

w̃ := (w + κ)/2. (2.6)

We introduce χ ∈ C∞(R+) so that

χ(r) =

{
r, r > C0,

0, r 6 C0/2.
(2.7)

Remark 2.1. Increasing C0 if necessary, we can guarantee that for any J̃ ⊂ J
and any Θ̃ ⊂ Θ the operator B̃ with the symbol b̃ given by

b̃(x, ξ) :=
∑
ι∈J̃

(
χ
(
|ξ|
))ι ∑

θ∈Θ̃

b̂ι
(
θ, ξ/|ξ|

)
eθ(x) (2.8)

satisfies

(−∆)w̃ − |B̃| > 0. (2.9)
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We also assume that the coefficients in the expansion

bι(x,η) =
∑
θ∈Θ

b̂ι(θ,η)eθ(x), x ∈ Rd, η ∈ Sd−1, ι ∈ J (2.10)

can be represented by a series

b̂ι(θ, η1, . . . , ηd) =
∑
τ∈Nd0

b̂(τ)
ι (θ)ητ11 · · · η

τd
d (2.11)

which converges absolutely in a ball of radius greater than one of Rd.
Under the above assumptions H is a selfadjoint operator on the Sobolev

space H2w(Rd). We are interested in the asymptotic behaviour of its inte-
grated density of states N(λ) as the spectral parameter λ tends to infinity.

Definition 2.2. Let e(λ; x,y) be the kernel of the spectral projection of H.
We define the integrated density of states as

N(λ) := Mx

(
e(λ; x,x)

)
.

It was proved in Theorem 4.1 of [16] that for differential operators this
definition agrees with the traditional one (at least at its continuity points).
The following lemma is proved at the end of Section 4 of [12].

Lemma 2.3. a. If A > B, then N(λ;A) 6 N(λ;B).
b. Suppose, A = a(x, D) and U = u(x, D) are two pseudo-differential

operators with almost-periodic coefficients. Let operator A be elliptic
self-adjoint and operator U be unitary. Then N(λ;A) = N(λ;U−1AU).

Without loss of generality we assume that Θ (recall (2.2)) spans Rd,
contains 0 and is symmetric about 0; we also put

Θk := Θ + Θ + · · ·+ Θ (2.12)

(algebraic sum taken k times) and Θ∞ := ∪kΘk = Z(Θ), where for a set
S ⊂ Rd by Z(S) we denote the set of all finite linear combinations of elements
in S with integer coefficients. The set Θ∞ is countable and non-discrete
(unless B is periodic). We will need

Condition A. Suppose that θ1, . . . ,θd ∈ Θ∞. Then Z(θ1, . . . ,θd) is discrete.

It is easy to see that this condition can be reformulated like this: sup-
pose that θ1, . . . ,θd ∈ Θ∞. Then either {θj} are linearly independent, or∑d
j=1 njθj = 0, where nj ∈ Z and not all nj are zeros. This reformulation

shows that Condition A is generic: indeed, if we are choosing frequencies of
b one after the other, then on each step we have to avoid choosing a new fre-
quency from a countable set of hyperplanes, and this is obviously a generic
restriction. Condition A is obviously satisfied for periodic B, but it becomes
meaningful if B is quasi-periodic (i.e., if it is a linear combination of finitely
many exponentials).

If Θ and J are finite, Condition A is all we need. If, however, any (or
both) of these sets is infinite, we need other conditions which describe, how
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well B can be approximated by operators with quasi-periodic symbols. In the
proof we are going to work with quasi-periodic approximations of B, and we
need these conditions to make sure that all estimates in the proof are uniform
with respect to these approximations.

We introduce

bι(θ) := sup
|η|=1

∣∣b̂ι(θ,η)
∣∣, θ ∈ Θ.

Condition B. Let k be a positive integer. Then there exists R0 > C0 such that

for each ρ > R0 there exist a finite symmetric set Θ̃ ⊂
(
Θ∩B(ρ1/k)

)
(where

B(r) is the ball of radius r centered at 0) and a finite subset J̃ ⊂ J with

card J̃ 6 ρ1/k (2.13)

such that ∑
(θ,ι)∈(Θ×J)\(Θ̃×J̃)

(
1 + |θ|2

)κ/4|R0|ι−κbι(θ) 6 ρ−k. (2.14)

The last condition we need is a version of the Diophantine condition on
the frequencies of b. First, we need some definitions. We fix a natural number
k̃ (the choice of k̃ will be determined later by the order of the remainder in

the asymptotic expansion) and denote Θ̃
′
k̃ := Θ̃k̃ \ {0} (see (2.12) for the

notation). We say that V is a quasi-lattice subspace of dimension m, if V is

a linear span of m linearly independent vectors θ1, . . . ,θm from Θ̃k̃. Obvi-
ously, the zero space (which we will denote by X) is a quasi-lattice subspace
of dimension 0, and Rd is a quasi-lattice subspace of dimension d. We denote
by Vm the collection of all quasi-lattice subspaces of dimension m and put
V := ∪mVm. If ξ ∈ Rd and V is a linear subspace of Rd, we denote by ξV the
orthogonal projection of ξ onto V, and put V⊥ to be an orthogonal comple-
ment of V, so that ξ = ξV +ξV⊥ . Let V,U ∈ V. We say that these subspaces
are strongly distinct, if neither of them is a subspace of the other one. This
condition is equivalent to stating that if we put W := V ∩ U, then dimW is
strictly less than dimensions of V and U. We put φ = φ(V,U) ∈ [0, π/2] to
be the angle between them, i.e. the angle between V	W and U	W, where
V	W is the orthogonal complement of W in V. This angle is non-zero iff V

and W are strongly distinct. We put s = s(ρ) = s(Θ̃k̃) := inf sin
(
φ(V,U)

)
,

where the infimum is over all strongly distinct pairs of subspaces from V,
R = R(ρ) := supθ∈Θ̃k̃

|θ|, and r = r(ρ) := inf
θ∈Θ̃

′
k̃
|θ|. Obviously,

R(ρ) = O(ρ1/k), (2.15)

where the implied constant can depend on k and k̃.
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Condition C. For each fixed k and k̃ the sets Θ̃k̃ can be chosen in such

a way that for sufficiently large ρ the number of elements in Θ̃k̃ satisfies

card Θ̃k̃ 6 ρ1/k and we have

s(ρ) > ρ−1/k (2.16)

and
r(ρ) > ρ−1/k,

where the implied constant (i.e. how large should ρ be) can depend on k and

k̃.

Remark 2.4. Note that Condition C is automatically satisfied for quasi-
periodic and smooth periodic B; see [12] for further discussion of this condi-
tion.

Condition A implies the following statement, which will be used crucially
in our constructions.

Corollary 2.5. Suppose, θ1, . . . ,θl ∈ Θ̃k̃, l 6 d − 1. Let V be the span of

θ1, . . . ,θl. Then each element of the set Θ̃k̃ ∩ V is a linear combination of

θ1, . . . ,θl with rational coefficients. Since the set Θ̃k̃∩V is finite, this implies

that the set Z(Θ̃k̃ ∩V) is discrete and is, therefore, a lattice in V.

From now on, we always assume that B satisfies all the conditions from
this section; we will also denote

ρ := λ1/2w.

Now we can formulate our main theorem.

Theorem 2.6. Let H be an operator (2.1) satisfying Conditions A, B and C.
Then for each K ∈ R there exists a finite positive integer L and a finite subset
J0 ⊂ J such that

N(ρ2w)

=

d−1∑
q=0

L∑
h=0

∑
ι1,...,ιh∈J0

[K+d+(2−2w)h+ι1+···+ιh]∑
j=0

Cι1···ιhq h j ρd+(2−2w)h+ι1+···+ιh−j lnq ρ

+O(ρ−K).

(2.17)

as ρ→∞.

Remark 2.7. The powers of ρ present in (2.17) are equal to d + (2 − 2w)h
+ι1+· · ·+ιh−j, and the first impression is that there are far too many of them
(indeed, a priori the set of all such powers can be dense in R, for instance).
However, many of these powers are, in fact, spurious (i.e. the corresponding
coefficients Cι1···ιhq h j are zero). This happens, for example, when d+ (2− 2w)h

+ι1 + · · ·+ ιh − j > d (for obvious reasons). Equally obviously, these powers
do not ‘multiply’ when we increase K. This means that if K1 < K2, then
expansion (2.17) with K = K2 does not contain extra terms with d + (2
−2w)h+ ι1 + · · ·+ ιh − j > −K1, compared to this expansion for K = K1.
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In the case of magnetic Schrödinger operators, Theorem 2.6 and calcu-
lations similar to those of [2] and [12] imply that most of the terms in (2.17)
will indeed disappear:

Corollary 2.8. Suppose that smooth almost-periodic functions A and V are
such that

H = (−i∇+ A)2 + V =: −∆ +B

satisfies the hypothesis of Theorem 2.6. Then for each K ∈ N we have:

N(λ) = λd/2
(
Cd +

K∑
j=1

ejλ
−j + o(λ−K)

)
(2.18)

as λ→∞.

Remark 2.9. By taking the Laplace transform of (2.17), one can obtain an
asymptotic expansion of the (regularised) heat trace as t → 0. However, it
seems that using the approach of [2] and [3], it is possible to obtain even
stronger results (the pointwise asymptotic expansion of the heat kernel).

Remark 2.10. Of course, formula (2.17) cannot be differentiated; moreover,
we do not even know if in the almost periodic case N(λ) is strictly increasing.
However, in the periodic Schrödinger case there are some results on the high-
energy behaviour of the (non-integrated) density of states, see e. g. [9].

Given Conditions B and C, we want to introduce the following defini-
tion. We say that a non-negative function f = f(ρ) = f(ρ; k, k̃) satisfies the

estimate f(ρ) 6 ρ0+ (resp. f(ρ) > ρ0−), if for each positive ε and for each k̃
we can achieve f(ρ) 6 ρε (resp. f(ρ) > ρ−ε) for sufficiently large ρ by choos-
ing parameter k from Conditions B and C sufficiently large. For example, we
have

R(ρ) 6 ρ0+, (2.19)

card Θ̃ 6 ρ0+, s(ρ) > ρ0−, and r(ρ) > ρ0−.
Throughout the paper, we always assume that the value of k is chosen

sufficiently large so that all inequalities of the form ρ0+ 6 ρε or ρ0− > ρ−ε

we encounter in the proof are satisfied.
The next statement proved in [12] is an example of how this new nota-

tion is used.

Lemma 2.11. Suppose, θ,µ1, . . . ,µd ∈ Θ̃
′
k̃, the set {µj} is linearly indepen-

dent, and θ =
∑d
j=1 cjµj. Then each non-zero coefficient cj satisfies

ρ0− 6 |cj | 6 ρ0+.

In this paper, by C we denote positive constants, the exact value of
which can be different each time they occur in the text, possibly even in
the same formula. On the other hand, the constants which are labeled (like
C1, C2 1, etc) have their values being fixed throughout the text. Given two
positive functions f and g, we say that f & g, or g . f , or g = O(f) if the
ratio g/f is bounded. We say f � g if f & g and f . g.
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We will also need a number of auxiliary constants. Let us choose num-
bers {αj}dj=1, β, ϑ, and ς satisfying

max{1− w + κ/2, 1/2} < β < α1 < α2 < · · · < αd < ϑ < ς < 1 (2.20)

(recall (2.5)), and set

α := κ/β. (2.21)

3. Reduction to a finite interval of spectral parameter

To begin with, we choose sufficiently large ρ0 > C0 (to be fixed later on)
and for n ∈ N put ρn := 2ρn−1 = 2nρ0. We also define the intervals In :=
[ρn, 4ρn]. The proof of Theorem 2.6 will be based on the following lemma:

Lemma 3.1. For each M ∈ R there exist L > 0 and a finite subset J0 ⊂ J
such that for every n ∈ N and ρ ∈ In
N(ρ2w)

=

d−1∑
q=0

L∑
h=0

∑
ι1,...,ιh∈J0

[ d+M1−ς ]∑
j=0

Cι1···ιhq h j (n,M)ρd+(2−2w)h+ι1+···+ιh−j lnq ρ

+O(ρ−Mn ).

(3.1)

Here, Cι1···ιhq h j (n,M) are some real numbers satisfying

Cι1···ιhq h j (n,M) = O(ρ−2βh+ςj
n ). (3.2)

The constants in the O-terms do not depend on n (but they may depend on
M).

Remark 3.2. Note that (3.1) is not a ‘proper’ asymptotic formula, since the
coefficients are allowed to grow with n (and, therefore, with ρ).

Some of the powers of ρ on the right hand side of (3.1) may coincide. In
order to avoid the ambiguity let us redefine coefficients Cι1···ιhq h j (n,M) in such

a way that, for any given values of q and d+(2−2w)h+ι1+· · ·+ιh−j, only the
coefficient with the minimal possible value of h and maximal possible values
of j, ι1, . . . , ιh (in this order) is nonzero. Note that these new coefficients still
satisfy (3.2).

Let us prove Theorem 2.6 assuming that we have proved Lemma 3.1.
Let M be fixed. Denote the sum on the right hand side of (3.1) by Nn(ρ2w).
Then, for n > 1, whenever ρ ∈ In−1 ∩ In = [ρn, 2ρn], we have:

Nn(ρ2w)−Nn−1(ρ2w)

=

d−1∑
q=0

L∑
h=0

∑
ι1,...,ιh∈J0

[ d+M1−ς ]∑
j=0

tι1···ιhq h j (n,M)ρd+(2−2w)h+ι1+···+ιh−j lnq ρ

+O(ρ−Mn ),

(3.3)
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where

tι1···ιhq h j (n,M) := Cι1···ιhq h j (n,M)− Cι1···ιhq h j (n− 1,M).

On the other hand, since for ρ ∈ In−1∩In we have both N(ρ2w) = Nn(ρ2w)+
O(ρ−Mn ) and N(ρ2w) = Nn−1(ρ2w) +O(ρ−Mn ), this implies that

d−1∑
q=0

L∑
h=0

∑
ι1,...,ιh∈J0

[ d+M1−ς ]∑
j=0

tι1···ιhq h j (n,M)ρd+(2−2w)h+ι1+···+ιh−j lnq ρ

= O(ρ−Mn ).

(3.4)

Claim 3.3. For each combination of indices present on the right hand side of
(3.3) we have:

tι1···ιhq h j (n,M) = O(ρj−M−d+(2w−2)h−ι1−···−ιh
n lnd−1−q ρn). (3.5)

Proof. Put y := ρn/ρ and let

τ ι1···ιhp h j (n,M)

:= ρM+d+(2−2w)h+ι1+···+ιh−j
n

d−1∑
q=p

(
q

p

)
(−1)ptι1···ιhq h j (n,M) lnq−p ρn.

(3.6)

Then by (3.4) for y ∈ [1/2, 1]

P (y)

:=

d−1∑
p=0

L∑
h=0

∑
ι1,...,ιh∈J0

[ d+M1−ς ]∑
j=0

τ ι1···ιhp h j (n,M)yj−d+(2w−2)h−ι1−···−ιh lnp y

= O(1) as n→∞.

(3.7)

Let us denote by f1, . . . , fT the functions yj−d+(2w−2)h−ι1−···−ιh lnp y enter-
ing the sum in (3.7) with non-zero coefficients; these functions are linearly
independent on the interval [1/2, 1]. Therefore, there exist points y1, ..., yT ∈
[1/2, 1] such that the determinant of the matrix

(
fj(yl)

)T
j,l=1

is non-zero.

Now (3.7) and the Cramer’s Rule imply that the values of τ ι1···ιhp h j (n,M) are
fractions with a bounded expression in the numerator and a fixed non-zero
number in the denominator. Therefore,

τ ι1···ιhp h j (n,M) = O(1) as n→∞. (3.8)

Thus, choosing p = d− 1 in (3.6), we obtain

tι1···ιhd−1h j(n,M) = O(ρj−M−d+(2w−2)h−ι1−···−ιh
n ).

Now we can put p = d− 2 into (3.8) and obtain

tι1···ιhd−1h j(n,M) = O(ρj−M−d+(2w−2)h−ι1−···−ιh
n ln ρn).

Continuing this process until p = 0, we obtain (3.5).
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Therefore, the series
∑∞
m=0 t

ι1···ιh
q h j (m,M) is absolutely convergent for

j < M + d+ (2− 2w)h+ ι1 + · · ·+ ιh; moreover, for such j we have:

Cι1···ιhq h j (n,M) = Cι1···ιhq h j (0,M) +

n∑
m=1

tι1···ιhq h j (m,M)

= Cι1···ιhq h j (0,M) +

∞∑
m=1

tι1···ιhq h j (m,M)

+O(ρj−M−d+(2w−2)h−ι1−···−ιh
n lnd−1−q ρn)

=: Cι1···ιhq h j (M) +O(ρj−M−d+(2w−2)h−ι1−···−ιh
n lnd−1−q ρn),

where we have denoted Cι1···ιhq h j (M) := Cι1···ιhq h j (0,M) +
∑∞
m=1 t

ι1···ιh
q h j (m,M).

For bigger values of j we use (3.2) and (2.20) to obtain

d−1∑
q=0

L∑
h=0

∑
ι1,...,ιh∈J0

[ d+M1−ς ]∑
j>M+d+(2−2w)h+ι1+···+ιh

∣∣Cι1···ιhq h j (n,M)
∣∣

× ρd+(2−2w)h+ι1+···+ιh−j lnq ρ

.
d−1∑
q=0

L∑
h=0

∑
ι1,...,ιh∈J0

ρςd+(2ς−2β−2ςw+ςκ)h−(1−ς)M
n lnq ρn

. ρςd−(1−ς)M
n lnd−1 ρn.

Thus, when ρ ∈ In, we have:

N(ρ2w) =

d−1∑
q=0

L∑
h=0

∑
ι1,...,ιh∈J0

[M+d+(2−2w)h+ι1+···+ιh]∑
j=0

Cι1···ιhq h j (M)

× ρd+(2−2w)h+ι1+···+ιh−j lnq ρ

+O(ρ−M lnd−1 ρ) +O(ρςd−(1−ς)M lnd−1 ρ).

Since the constants in O terms do not depend on n, it is sufficient to choose

M :=
[
(ςd+K)/(1− ς)

]
+ 1

to get (2.17) for all ρ > ρ0.

Remark 3.4. The main reason why we need the representation (2.4) is to
match the asymptotic expansions in different intervals In. If we did not have
(2.4), we would have obtained the asymptotic expansions containing the gen-
eral ‘phase volumes’ (like in [19]), and it is not clear how to merge the results
for different n.

The rest of the paper is devoted to proving Lemma 3.1. The first step
of the proof is fixing n and fixing large k̃ and k. The precise value of k̃ will
be chosen later; the only restriction on it will be to satisfy inequality (9.9) (it

says that the more asymptotic terms we want to have in (3.1), the bigger k̃

we need to choose; note that the choice of k̃ does not depend on k). We will
have several requirements on how large k should be (most of them will be of
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the form ρ0+
n < ρεn or ρ0−

n > ρ−εn ); each time we have such an inequality, we
assume that k is chosen sufficiently large to satisfy it.

Remark 3.5. Our choice of k will only depend on M , w, κ, and the constants
introduced in (2.20). The set J0 in Lemma 3.1 can be chosen to be

J0 := J ∩ [κ − d−M − 1,κ]. (3.9)

The first requirement on k we have is that

k > d+M + κ(d+M)/(w − κ)− 2w. (3.10)

After fixing k̃ and k we get R0 from Condition B. Then, taking

ρ0 > R0 (3.11)

and fixing n, we choose Θ̃ and J̃ so that Conditions B and C are satisfied

for ρ := 4ρn. Without loss of generality we may assume that J̃ ⊃ J0. Then

we introduce an auxiliary pseudo–differential operator B̃ with the symbol b̃
given by (2.8).

From now on we prove Lemma 3.1 for B = B̃ and with J0 replaced

by J̃ . However, in view of (2.13) and (2.20), the results with J̃ and J0 are
equivalent. Afterwards, in Section 11 we will prove that the asymptotics (3.1)

for the original B follows from Condition B and (3.1) for B̃.

4. Pseudo-differential operators

Most of the material in this and several subsequent sections is very similar
to the corresponding sections of [12] and [13], as are the proofs of most of
the statements. Therefore, we will often omit the proofs, instead referring the
reader to [12], [19], and [13].

4.1. Classes of PDO’s

Before we define the pseudo-differential operators (PDO’s), we introduce the
relevant classes of symbols. Let b = b(x, ξ), x, ξ ∈ Rd, be an almost-periodic

(in x) complex-valued function and, moreover, for some countable set Θ̂ of

frequencies (we always assume that Θ̂ is symmetric and contains 0; starting

from the middle of this section, Θ̂ will be assumed to be finite)

b(x, ξ) =
∑
θ∈Θ̂

b̂(θ, ξ)eθ(x), (4.1)

where

b̂(θ, ξ) := Mx

(
b(x, ξ)e−θ(x)

)
are the Fourier coefficients of b(·, ξ) (recall that M is the mean of an almost-
periodic function). We always assume that (4.1) converges absolutely. Let us
now define the classes of symbols we will consider and operators associated
with them. For ξ ∈ Rd let 〈ξ〉 :=

√
1 + |ξ|2. We notice that

〈ξ + η〉 6 2〈ξ〉〈η〉, ∀ξ,η ∈ Rd. (4.2)
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We say that a symbol b belongs to the class Sα = Sα(β) = Sα(β, Θ̂), if for
any l > 0 and any non-negative s ∈ Z the conditions

b
(α)
l,s := max

|s|6s

∑
θ∈Θ̂

〈θ〉l sup
ξ
〈ξ〉(−α+|s|)β∣∣Ds

ξb̂(θ, ξ)
∣∣ <∞, |s| = s1+s2+· · ·+sd,

(4.3)
are fulfilled. The quantities (4.3) define norms on the class Sα. Note that Sα
is an increasing function of α, i.e. Sα ⊂ Sγ for α < γ.

Given θ ∈ Rd, let us introduce a linear map ∇θ on symbols which acts
according to the rule

(̂∇θa)(φ, ξ) := â(φ, ξ + θ)− â(φ, ξ). (4.4)

If the Fourier transform of the symbol is factorized, i.e.

â(φ, ξ) =

Q∏
q=1

âq(φ, ξ),

then the action of ∇θ can be written as a sum of actions on each factor
separately:

(̂∇θa)(φ, ξ) =

Q∑
q=1

q−1∏
l=1

âl(φ, ξ + θ) ̂(∇θaq)(φ, ξ)

Q∏
s=q−1

âs(φ, ξ). (4.5)

For later reference we mention here the following convenient bound that
follows from definition (4.3) and property (4.2):∑

θ∈Θ̂

〈θ〉l sup
ξ
〈ξ〉(−α+s+1)β

(∣∣Ds
ξ (̂∇ηb)(θ, ξ)

∣∣)
6 C b

(α)
l,s+1〈η〉

|α−s−1|β |η|, s = |s|,
(4.6)

with a constant C depending only on α, s, and β. The estimate (4.6) implies
that for all η with |η| 6 C we have a uniform bound

∇ηb
(α−1)
l,s 6 C b

(α)
l,s+1|η|.

Now we define the PDO Op(b) in the usual way:

Op(b)u(x) = (2π)−d/2
∫
b(x, ξ)eiξx(Fu)(ξ)dξ, (4.7)

the integral being over Rd. Under the condition b ∈ Sα the integral on the
r.h.s. is clearly finite for any u from the Schwarz class S(Rd). Moreover,
the property b ∈ S0 guarantees the boundedness of Op(b) in L2(Rd), see
Proposition 4.1. Unless otherwise stated, from now on S(Rd) is taken as a
natural domain for all PDO’s when they act in L2(Rd).

Applying the standard regularization procedures to definition (4.7) (see,
e.g., [15]), we can also consider the action of Op(b) on the exponentials eν ,
ν ∈ Rd. Namely, we have

Op(b)eν =
∑
θ∈Θ̂

b̂(θ,ν)eν+θ.
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This action can be extended by linearity to all quasi-periodic functions (i.e.
finite linear combinations of eν with different ν). By taking the closure, we
can extend this action of Op(b) to the Besicovitch space B2(Rd). This is the
space of all formal sums

∞∑
j=1

ajeθj (x), with

∞∑
j=1

|aj |2 < +∞.

It is known (see [15]) that the spectra of Op(b) acting in L2(Rd) and B2(Rd)
are the same, although the types of the spectra can be entirely different. It
is very convenient, when working with the gauge transform constructions, to
assume that all the operators involved act in B2(Rd), although in the end we
will return to operators acting in L2(Rd). This trick (working with operators
acting in B2(Rd)) is similar to working with fibre operators in the periodic
case in the sense that we can freely consider the action of an operator on one,
or finitely many, exponentials (2.3), despite the fact that these exponentials
do not belong to our original function space.

Moreover, if the order α = 0 then by continuity this action can be
extended to all of B2(Rd), and the extension has the same norm as Op(b)
acting in L2 (see [15]). Thus, in what follows, when we speak about a pseudo-
differential operator with almost-periodic symbol acting in B2, we mean that
its domain is either whole B2 (when the order is non-positive), or the space
of all quasi-periodic functions (for operators with positive order). And, when
we make a statement about the norm of a pseudo-differential operator with
almost-periodic symbol, we will not specify whether the operator acts in
L2(Rd) or B2(Rd), since these norms are the same.

4.2. Some basic results on the calculus of almost-periodic PDO’s

We begin by listing some elementary results for almost-periodic PDO’s. The
proofs are very similar (with obvious changes) to the proof of analogous
statements in [19].

Proposition 4.1. Suppose that b satisfies (4.1) and that b
(0)
0,0 < ∞. Then

Op(b) is bounded in both L2(Rd) and B2(Rd) and
∥∥Op(b)

∥∥ 6 b
(0)
0,0.

In what follows, if we need to calculate a product of two (or more)

operators with some symbols bj ∈ Sαj (Θ̂j) we will always consider that

bj ∈ Sαj (
∑
j Θ̂j) where, of course, all extra terms are assumed to have zero

coefficients in front of them.

Since Op(b)u ∈ S(Rd) for any b ∈ Sα and u ∈ S(Rd), the product

Op(b) Op(g), b ∈ Sα(Θ̂1), g ∈ Sγ(Θ̂2), is well defined on S(Rd). A straight-
forward calculation leads to the following formula for the symbol b ◦ g of the
product Op(b) Op(g):

(b ◦ g)(x, ξ) =
∑

θ∈Θ̂1,φ∈Θ̂2

b̂(θ, ξ + φ)ĝ(φ, ξ)ei(θ+φ)x,
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and hence

(̂b ◦ g)(χ, ξ) =
∑

θ+φ=χ

b̂(θ, ξ + φ)ĝ(φ, ξ), χ ∈ Θ̂1 + Θ̂2, ξ ∈ Rd. (4.8)

We have

Proposition 4.2. Let b ∈ Sα(Θ̂1), g ∈ Sγ(Θ̂2). Then b ◦ g ∈ Sα+γ(Θ̂1 + Θ̂2)
and

b ◦ g (α+γ)
l,s 6 C b

(α)
l,s g

(γ)
l+(|α|+s)β,s,

with the constant C depending only on l, α, and s.

We are also interested in the estimates for symbols of commutators. For
PDO’s A,Ψl, l = 1, 2, . . . , N , denote

ad(A; Ψ1,Ψ2, . . . ,ΨN ) := i
[
ad(A; Ψ1,Ψ2, . . . ,ΨN−1),ΨN

]
,

ad(A; Ψ) := i[A,Ψ], adN (A; Ψ) := ad(A; Ψ,Ψ, . . . ,Ψ), ad0(A; Ψ) := A.

For the sake of convenience, we use the notation ad(a;ψ1, ψ2, . . . , ψN ) and

adN (a, ψ) for the symbols of multiple commutators.
Let

supp b̂ :=
{
θ ∈ Rd : b̂(θ, ·) 6≡ 0

}
.

It follows from (4.8) that the Fourier coefficients of the symbol ad(b, g) are
given by

̂ad(b, g)(χ, ξ)

= i
∑

θ∈(supp b̂)∪(χ−supp ĝ)

[ ̂(∇χ−θb)(θ, ξ)ĝ(χ− θ, ξ)− b̂(θ, ξ)(̂∇θg)(χ− θ, ξ)
]
. (4.9)

Proposition 4.3. Let b ∈ Sα(Θ̂) and gj ∈ Sγj (Θ̂j), j = 1, 2, . . . , N . Then

ad(b; g1, . . . , gN ) ∈ Sγ(Θ̂ +
∑
j Θ̂j) with

γ = α+

N∑
j=1

(γj − 1),

and

ad(b; g1, . . . , gN )
(γ)
l,s 6 C b

(α)
p,s+N

N∏
j=1

gj
(γj)
p,s+N−j+1,

where C and p depend on l, s,N, α and γj.

5. Resonant regions

We now define resonant regions and mention some of their properties. This
material is essentially identical to Section 5 of [12], where the reader can find
the proofs of all the statements of this section.

Recall the definition of the set Θ = Θ̃ as well as of the quasi-lattice
subspaces from Section 2. As before, by Θk̃ we denote the algebraic sum of k̃

copies of Θ; remember that we consider k̃ fixed. We also put Θ′
k̃

:= Θk̃ \{0}.
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For each V ∈ V we put SV :=
{
ξ ∈ V, |ξ| = 1

}
. For each non-zero θ ∈ Rd

we put n(θ) := θ|θ|−1.
Let V ∈ Vm. We say that F is a flag generated by V, if F is a sequence

Vj ∈ Vj (j = 0, 1, . . . ,m) such that Vj−1 ⊂ Vj and Vm = V. We say
that {νj}mj=1 is a sequence generated by F if νj ∈ Vj 	Vj−1 and ‖νj‖ = 1
(obviously, this condition determines each νj up to multiplication by −1).
We denote by F(V) the collection of all flags generated by V. We put

Lj := ραjn , (5.1)

recall (2.20).
Let θ ∈ Θ′

k̃
. The resonant region generated by θ is defined as

Λ(θ) :=
{
ξ ∈ Rd,

∣∣〈ξ,n(θ)〉
∣∣ 6 L1

}
. (5.2)

Suppose, F ∈ F(V) is a flag and {νj}mj=1 is a sequence generated by F. We
define

Λ(F) :=
{
ξ ∈ Rd,

∣∣〈ξ,νj〉∣∣ 6 Lj

}
. (5.3)

If dimV = 1, definition (5.3) is reduced to (5.2). Obviously, if F1 ⊂ F2, then
Λ(F2) ⊂ Λ(F1).

Suppose, V ∈ Vj . We denote

Ξ1(V) := ∪F∈F(V)Λ(F).

Note that Ξ1(X) = Rd and Ξ1(V) = Λ(θ) if V ∈ V1 is spanned by θ. Finally,
we put

Ξ(V) := Ξ1(V) \
(
∪U)V Ξ1(U)

)
= Ξ1(V) \

(
∪U)V ∪F∈F(U)Λ(F)

)
. (5.4)

We call Ξ(V) the resonance region generated by V. Very often, the region
Ξ(X) is called the non-resonance region. We, however, will omit using this
terminology since we will treat all regions Ξ(V) in the same way.

The first set of properties follows immediately from the definitions.

Lemma 5.1. (i) We have

∪V∈VΞ(V) = Rd.

(ii) ξ ∈ Ξ1(V) iff ξV ∈ Ω(V), where Ω(V) ⊂ V is a certain bounded
set (more precisely, Ω(V) = Ξ1(V) ∩V ⊂ B(mLm) if dimV = m).

(iii) Ξ1(Rd) = Ξ(Rd) is a bounded set, Ξ(Rd) ⊂ B(dLd); all other sets
Ξ1(V) are unbounded.

Now we move to slightly less obvious properties. From now on we al-
ways assume that ρ0 (and thus ρn) is sufficiently large. We also assume, as
we always do, that the value of k is sufficiently large so that, for example,
Ljρ

0+
n < Lj+1.

Lemma 5.2. Let V,U ∈ V. Then
(
Ξ1(V) ∩Ξ1(U)

)
⊂ Ξ1(W),

where W := V + U (algebraic sum).
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Corollary 5.3. (i) We can re-write definition (5.4) like this:

Ξ(V) := Ξ1(V) \
(
∪U 6⊂V Ξ1(U)

)
.

(ii) If V 6= U, then Ξ(V) ∩Ξ(U) = ∅.
(iii) We have Rd = tV∈VΞ(V) (the disjoint union).

Lemma 5.4. Let V ∈ Vm and V ⊂ W ∈ Vm+1. Let µ be (any) unit vector
from W 	 V. Then, for ξ ∈ Ξ1(V), we have ξ ∈ Ξ1(W) if and only if the
estimate

∣∣〈ξ,µ〉∣∣ =
∣∣〈ξV⊥ ,µ〉∣∣ 6 Lm+1 holds.

Lemma 5.5. We have

Ξ1(V) ∩ ∪U)VΞ1(U) = Ξ1(V) ∩ ∪W)V, dimW=1+dimVΞ1(W).

Corollary 5.6. We can re-write (5.4) as

Ξ(V) := Ξ1(V) \
(
∪W)V,dimW=1+dimV Ξ1(W)

)
. (5.5)

Lemma 5.7. Let V ∈ V and θ ∈ Θk̃. Suppose that ξ ∈ Ξ(V) and both points
ξ and ξ + θ are inside Λ(θ). Then θ ∈ V and ξ + θ ∈ Ξ(V).

Definition 5.8. Let θ,θ1,θ2, . . . ,θl be some vectors from Θ′
k̃
, which are not

necessarily distinct.

a. We say that two vectors ξ,η ∈ Rd are θ-resonant congruent if both ξ
and η are inside Λ(θ) and (ξ−η) = lθ with l ∈ Z. In this case we write
ξ ↔ η mod θ.

b. For each ξ ∈ Rd we denote by Υθ(ξ) the set of all points which are θ-
resonant congruent to ξ. For θ 6= 0 we say that Υθ(ξ) = ∅ if ξ /∈ Λ(θ).

c. We say that ξ and η are θ1,θ2, . . . ,θl-resonant congruent, if there exists
a sequence ξj ∈ Rd, j = 0, 1, . . . , l such that ξ0 = ξ, ξl = η, and
ξj ∈ Υθj (ξj−1) for j = 1, 2, . . . , l.

d. We say that η ∈ Rd and ξ ∈ Rd are resonant congruent, if either ξ = η or
ξ and η are θ1,θ2, . . . ,θl-resonant congruent with some θ1,θ2, . . . ,θl ∈
Θ′
k̃
. The set of all points, resonant congruent to ξ, is denoted by Υ(ξ).

For points η ∈ Υ(ξ) (note that this condition is equivalent to ξ ∈ Υ(η))
we write η ↔ ξ.

Note that Υ(ξ) = {ξ} for any ξ ∈ Ξ(X). Now Lemma 5.7 immediately
implies

Corollary 5.9. For each ξ ∈ Ξ(V) we have Υ(ξ) ⊂ Ξ(V) and thus

Ξ(V) = tξ∈Ξ(V)Υ(ξ).

Lemma 5.10. The diameter of Υ(ξ) is bounded above by mLm, if ξ ∈ Ξ(V),
V ∈ Vm.

Lemma 5.11. For each ξ ∈ Ξ(V), V 6= Rd, the set Υ(ξ) is finite, and
card Υ(ξ) is bounded uniformly in ξ ∈ Rd \Ξ(Rd).
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6. Description of the approach

We first prove (3.1) assuming that the symbol b of B is replaced by b̃ which
satisfies (2.8). In particular, it belongs to the class Sα. At the end, in Sec-
tion 11, we will use (2.14) to show that Theorem 2.6 holds as stated.

For any set C ⊂ Rd by P(C) we denote the orthogonal projection onto
span{eξ}ξ∈C in B2(Rd) and by PL(C) the same projection considered in
L2(Rd), i.e.

PL(C) = F∗ 1C F, (6.1)

where F is the Fourier transform and 1C is the operator of multiplication by
the indicator function of C. Obviously, PL(C) is a well-defined (respectively,
non-zero) projection iff C is measurable (respectively, has non-zero measure).
Let us fix sufficiently large n, and denote (recall that λn = ρ2w

n )

Xn :=
{
ξ ∈ Rd, |ξ|2w ∈

[
(5/6)2wλn, 5

2wλn
]}
. (6.2)

We also put
A = An := ∪ξ∈XnΥ(ξ).

Lemma 5.10 implies that, if ρ0 is big enough,

for each ξ ∈ A we have |ξ|2w ∈
[
(2/3)2wλn, 6

2wλn
]
. (6.3)

In particular, we have
A ∩Ξ(Rd) = ∅. (6.4)

Let us define
Â :=

{
ξ 6∈ A, |ξ|2w < λn

}
and

Ǎ :=
{
ξ 6∈ A, |ξ|2w > λn

}
. (6.5)

We now plan to apply the gauge transform as in Sections 8 and 9 of [12]
to the operatorH. The details of this procedure will be explained in Sections 8
and 9; here, we just mention that we are going to introduce two operators: H1

and H2. The operator H1 is unitary equivalent to H: H1 = U−1HU , where
U = eiΨ with a bounded pseudo-differential operator Ψ with almost-periodic
coefficients (then Lemma 2.3 implies that the densities of states of H and H1

are the same). Moreover, H1 = H2 +Rk̃, where

‖Rk̃‖ . ρ−M+2w−d
n (6.6)

and H2 = (−∆)w + Wk̃ is a self-adjoint pseudo-differential operator with
symbol |ξ|2w + wk̃(x, ξ) which satisfies the following property:

ŵk̃(θ, ξ) = 0, if
(
ξ 6∈ Λ(θ) & ξ ∈ A

)
, or

(
ξ+θ 6∈ Λ(θ) & ξ ∈ A

)
, or (θ 6∈ Θk̃).

(6.7)
We can now use a simple statement which follows from Lemma 2.3 and

Remark 2.7:

Lemma 6.1. Suppose, H1 and H2 are two elliptic self-adjoint pseudo-diffe-
rential operators with almost-periodic coefficients such that ‖H1 − H2‖ .
ρ−M+2w−d
n . Suppose that N(H2; ρ2w) satisfies asymptotic expansion (3.1).

Then N(H1; ρ2w) also satisfies (3.1) with the same coefficients.
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This means that it is enough to establish the asymptotic expansion (3.1)
for the operator H2 instead of H. Condition (6.7) implies that for each ξ ∈ A

the subspace P
(
Υ(ξ)

)
B2(Rd) is an invariant subspace of H2; its dimension is

finite by Lemma 5.11. We put

H2(ξ) := H2|P(Υ(ξ))B2(Rd).

Note that the subspaces P(Â)B2(Rd) and P(Ǎ)B2(Rd) are invariant as well;

by H2(Â) and H2(Ǎ) we denote the restrictions of H2 to these subspaces;
we also denote by H2(A) the restriction of H2 to P(A)B2(Rd). If we con-

sider the operator H2 acting in L2(Rd), then PL(Â)L2(Rd), PL(Ǎ)L2(Rd),
and PL(A)L2(Rd) are still invariant subspaces. It follows from (6.2) – (6.5)

that UH2(Â)U∗ < (5/6)2wλnI and UH2(Ǎ)U∗ > 52wλnI.

For each ξ ∈ A the operatorH2(ξ) is a finite-dimensional self-adjoint op-
erator, so its spectrum is purely discrete; we denote its eigenvalues (counting
multiplicities) by λ1(ξ) 6 λ2(ξ) 6 . . . 6 λcard Υ(ξ)(ξ). Next, we list all points
η ∈ Υ(ξ) in increasing order of their absolute values; thus, we have put into
correspondence to each point η ∈ Υ(ξ) a natural number t = t(η) so that
t(η) < t(η′) if |η| < |η′|. If two points η = (η1, . . . , ηd) and η′ = (η′1, . . . , η

′
d)

have the same absolute values, we put them in the lexicographic order of
their coordinates, i.e. we say that t(η) < t(η′) if η1 < η′1, or η1 = η′1 and
η2 < η′2, etc. Now we define the map g : A → R which to each point η ∈ A

brings into correspondence the number λt(η)

(
Υ(η)

)
. This map is an injection

from A onto the set of eigenvalues of H2, counting multiplicities (recall that
we consider the operator H2 acting in B2(Rd), so there is nothing miraculous
about its spectrum consisting of eigenvalues and their limit points). More-
over, all eigenvalues of H2 inside the interval

[
(7/8)2wλn, (9/2)2wλn

]
have a

pre-image under g. We define

g(ξ) := |ξ|2w, for ξ ∈ Rd \A. (6.8)

Arguments similar to the ones used in [13] show that g is a measurable
function.

We introduce

Gλ :=
{
ξ ∈ Rd, g(ξ) 6 λ

}
.

Lemma 6.2. For λ ∈ [λn, 4
2wλn] being a continuity point of N(λ;H2) we

have:

N(λ;H2) = (2π)−d volGλ. (6.9)

Since points of continuity of N(λ) are dense, the asymptotic expansion
proven for such λ can be extended to all λ ∈ [λn, 4

2wλn] by taking the limit.
Thus, our next task is to compute volGλ. Let us put

A+(ρ) :=
{
ξ ∈ Rd, g(ξ) < ρ2w < |ξ|2w

}
and

A−(ρ) :=
{
ξ ∈ Rd, |ξ|2w < ρ2w < g(ξ)

}
.
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Lemma 6.3.

vol(Gλ) = ωdρ
d + volA+(ρ)− volA−(ρ), (6.10)

where ωd is the volume of the unit ball in Rd.

Proof. We obviously have Gλ = B(ρ) ∪ A+(ρ) \ A−(ρ). Since A−(ρ) ⊂ B(ρ)
and A+(ρ) ∩B(ρ) = ∅, this implies (6.10).

Remark 6.4. Properties of the mapping g imply that A+(ρ) ∪ A−(ρ) ⊂ A.
Thus, in order to compute N(λ), we need to analyze the behavior of g only
inside A.

We will compute volumes of A±(ρ) by means of integrating their char-
acteristic functions in a specially chosen set of coordinates. The next section
is devoted to introducing these coordinates.

7. Coordinates

In this section, we do some preparatory work before computing volA±(ρ).
Namely, we are going to introduce a convenient set of coordinates in Ξ(V).
Let V ∈ Vm be fixed; since A±(ρ) ∩Ξ(Rd) = ∅, we will assume that m < d.
Then, as we have seen, ξ ∈ Ξ1(V) if and only if ξV ∈ Ω(V). Let {Uj}
be a collection of all subspaces Uj ∈ Vm+1 such that each Uj contains V.
Let µj = µj(V) be (any) unit vector from Uj 	 V. Then it follows from
Lemma 5.4 that for ξ ∈ Ξ1(V), we have ξ ∈ Ξ1(Uj) if and only if the
estimate

∣∣〈ξ,µj〉∣∣ =
∣∣〈ξV⊥ ,µj〉∣∣ 6 Lm+1 holds. Thus, formula (5.5) implies

that

Ξ(V) =
{
ξ ∈ Rd, ξV ∈ Ω(V) & ∀j

∣∣〈ξV⊥ ,µj(V)〉
∣∣ > Lm+1

}
.

The collection
{
µj(V)

}
obviously coincides with{

n(θV⊥), θ ∈ Θk̃ \V
}
.

The set Ξ(V) is, in general, disconnected; it consists of several connected

components which we will denote by
{
Ξ(V)p

}P
p=1

. Let us fix a connected

component Ξ(V)p. Then for some vectors
{
µ̃j(p)

}Jp
j=1
⊂ {±µj} we have

Ξ(V)p =
{
ξ ∈ Rd, ξV ∈ Ω(V) & ∀j 〈ξV⊥ , µ̃j(p)〉 > Lm+1

}
;

we assume that
{
µ̃j(p)

}Jp
j=1

is the minimal set with this property, so that

each hyperplane{
ξ ∈ Rd, ξV ∈ Ω(V) & 〈ξV⊥ , µ̃j(p)〉 = Lm+1

}
, j = 1, . . . , Jp

has a non-empty intersection with the boundary of Ξ(V)p. It is not hard
to see that Jp > d − m. Indeed, otherwise Ξ(V)p would have non-empty
intersection with Ξ1(V′) for some V′, V ( V′. We also introduce

Ξ̃(V)p :=
{
ξ ∈ V⊥, ∀j 〈ξ, µ̃j(p)〉 > 0

}
.
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Note that our assumption that Ξ(V)p is a connected component of Ξ(V)

implies that for any ξ ∈ Ξ̃(V)p and any θ ∈ Θk̃ \V we have

〈ξ,θ〉 = 〈ξ,θV⊥〉 6= 0.

We also put

K := d−m− 1.

Without loss of generality we may (and will) assume that the number
Jp of ‘defining planes’ is the minimal possible, i.e. Jp = K + 1. Indeed, the
argument presented in Section 11 of [12] explains how to derive the result for
arbitrary Ξ(V)p, assuming we have proved it in the case Jp = K + 1.

If Jp = K + 1, then the set
{
µ̃j(p)

}K+1

j=1
is linearly independent. Let

a = a(p) be a unique point from V⊥ satisfying the following conditions:
〈a, µ̃j(p)〉 = Lm+1, j = 1, . . . ,K + 1. Then, since the determinant of the

Gram matrix of vectors µ̃j(p) is & ρ0−
n by (2.16), we have

|a| . Lm+1ρ
0+
n = ραm+1+0+

n . (7.1)

We introduce shifted cylindrical coordinates in Ξ(V)p. These coordinates will
be denoted by ξ = (r; Φ; X). Here, X = (X1, . . . , Xm) is an arbitrary set of
cartesian coordinates in Ω(V). These coordinates do not depend on the choice
of the connected component Ξ(V)p. The rest of the coordinates (r,Φ) are
shifted spherical coordinates in V⊥, centered at a. This means that

r(ξ) = |ξV⊥ − a|
and

Φ = n(ξV⊥ − a) ∈ SV⊥ .

More precisely, Φ ∈ Mp, where Mp :=
{
n(ξV⊥ − a), ξ ∈ Ξ(V)p

}
⊂ SV⊥ is

a K-dimensional spherical simplex with K + 1 sides. Note that

Mp =
{
n(ξV⊥ − a), ξ ∈ Ξ(V)p

}
=
{
n(ξV⊥ − a), ∀j 〈ξV⊥ , µ̃j(p)〉 > Lm+1

}
=
{
n(η), η := ξV⊥ − a ∈ V⊥, ∀j 〈η, µ̃j(p)〉 > 0

}
= SV⊥ ∩ Ξ̃(V)p.

We will denote by dΦ the spherical Lebesgue measure on Mp. For each non-
zero vector µ ∈ V⊥, we denote

W(µ) :=
{
η ∈ V⊥, 〈η,µ〉 = 0

}
.

Thus, the sides of the simplex Mp are intersections of W
(
µ̃j(p)

)
with the

sphere SV⊥ . Each vertex v = vt, t = 1, . . . ,K + 1 of Mp is an intersection of
SV⊥ with K hyperplanes W

(
µ̃j(p)

)
, j = 1, . . . ,K+1, j 6= t. This means that

vt is a unit vector from V⊥ which is orthogonal to
{
µ̃j(p)

}
, j = 1, . . . ,K+1,

j 6= t; this defines v up to a multiplication by −1.

Lemma 7.1. Let U1 and U2 be two strongly distinct subspaces each of which
is a linear combination of some of the vectors from

{
µ̃j(p)

}
. Then the angle

between them is not smaller than s(ρn). In particular, all non-zero angles
between two sides of any dimensions of Mp as well as all the distances between
two vertexes vt and vτ , t 6= τ , are bounded below by s(ρn).
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Lemma 7.2. Let p be fixed. Suppose, θ ∈ Θk̃ \V and θV⊥ =
∑K+1
j=1 cjµ̃j(p).

Then either all coefficients cj are non-positive, or all of them are non-negative.

By taking sufficiently large k̃ we can assure that the diameter of Mp does
not exceed (100d2)−1. We put Φq := π

2 −φ
(
ξV⊥−a, µ̃q(p)

)
, q = 1, . . . ,K+1.

The geometrical meaning of these coordinates is simple: Φq is the spherical
distance between Φ = n(ξV⊥ − a) and W

(
µ̃q(p)

)
. The reason why we have

introduced Φq is that in these coordinates some important objects will be
especially simple (see e.g. Lemma 7.5 below) which is very convenient for
integration. At the same time, the set of coordinates

(
r, {Φq}

)
contains K+2

variables, whereas we only need K+ 1 coordinates in V⊥. Thus, we have one
constraint for variables Φj . Namely, let {hj}, j = 1, . . . ,K + 1 be a fixed
orthonormal basis in V⊥ chosen in such a way that theK+1-st axis is directed

along a, and thus passes through Mp. Then we have hj =
∑K+1
l=1 ajlµ̃l with

some matrix {ajl}, j, l = 1, . . . ,K+ 1, and µ̃l = µ̃l(p). Therefore (recall that
we denote η := ξV⊥ − a),

ηj = 〈η,hj〉 = r

K+1∑
q=1

ajq sin Φq

and, since r2(ξ) = |η|2 =
∑K+1
j=1 η2

j , this implies that

K+1∑
j=1

(K+1∑
q=1

ajq sin Φq

)2

= 1,

which is our constraint.

Let us also put

η′j :=
ηj
|η|

=

K+1∑
q=1

ajq sin Φq. (7.2)

Then we can write the surface element dΦ in the coordinates {η′j} as

dΦ =
dη′1 . . . dη

′
K

ηK+1
=

dη′1 . . . dη
′
K(

1−
∑K
j=1(η′j)

2
)1/2 ,

where the denominator is bounded below by 1/2 by our choice of the basis
{hj}. It follows from our choice of the coordinates and (7.2) that

〈a,Φ〉 = 〈a,n(η)〉 = |a|η′K+1 = |a|
K+1∑
q=1

aK+1 q sin Φq. (7.3)

Lemma 7.3. For each p, l we have |apl| 6 s(ρn)−1.

Lemma 7.4. We have maxj sin Φj(η) > s(ρn)d−3/2.

The next lemma describes the dependence on r of all possible inner
products 〈ξ,θ〉, θ ∈ Θk̃, ξ ∈ Ξ(V)p.
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Lemma 7.5. Let ξ ∈ Ξ(V)p, V ∈ Vm, and θ ∈ Θk̃.

(i) If θ ∈ V, then 〈ξ,θ〉 does not depend on r.

(ii) If θ 6∈ V and θV⊥ =
∑
q cqµ̃q(p), then

〈ξ,θ〉 = 〈X,θV〉+ Lm+1

∑
q

cq + r(ξ)
∑
q

cq sin Φq.

In the case (ii) all the coefficients cq are either non-positive or non-
negative and each non-zero coefficient cq satisfies

ρ0−
n . |cq| . ρ0+

n . (7.4)

8. Partition of the perturbation

The symbols we are going to construct in this section will depend on ρn; this
dependence will usually be omitted from the notation.

Let $ ∈ C∞(R) be such that

0 6 $ 6 1, $(z) =

{
1, z 6 1;

0, z > 21/20.
(8.1)

For θ ∈ Θ′ we define several C∞-cut-off functions:
eθ(ξ) := $

(∣∣2|2ξ + θ|/ρn − 15
∣∣/13

)
,

`>θ (ξ) := 1−$
((

2|2ξ + θ|/ρn − 15
)
/13
)
,

`<θ (ξ) := 1−$
((

15− 2|2ξ + θ|/ρn
)
/13
)
,

(8.2)

and ζθ(ξ) := $

(∣∣〈θ, ξ + θ/2〉
∣∣

ρβn|θ|

)
,

ϕθ(ξ) := 1− ζθ(ξ).

(8.3)

Remark 8.1. Note that eθ + `>θ + `<θ = 1. The function `>θ is supported on
the set |ξ+θ/2| > 7ρn, and `<θ is supported on the set |ξ+θ/2| 6 ρn/2. The
function eθ is supported in the shell ρn/3 6 |ξ + θ/2| 6 8ρn.

Using the notation `θ for any of the functions `>θ or `<θ , we point out
that {

eθ(ξ) = e−θ(ξ + θ), `θ(ξ) = `−θ(ξ + θ),

ϕθ(ξ) = ϕ−θ(ξ + θ), ζθ(ξ) = ζ−θ(ξ + θ).

Note that the above functions satisfy the estimates{∣∣Ds
ξeθ(ξ)

∣∣+
∣∣Ds

ξ`θ(ξ)
∣∣ . ρ

−|s|
n ,∣∣Ds

ξϕθ(ξ)
∣∣+
∣∣Ds

ξζθ(ξ)
∣∣ . ρ

−β|s|
n .

(8.4)
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Now for any symbol b ∈ Sα(β) we introduce five new symbols:

bLE(x, ξ; ρn) :=
∑
θ∈Θ′

b̂(θ, ξ)`>θ (ξ)eiθx,

bNR(x, ξ; ρn) :=
∑
θ∈Θ′

b̂(θ, ξ)ϕθ(ξ)eθ(ξ)eiθx,

bR(x, ξ; ρn) :=
∑
θ∈Θ′

b̂(θ, ξ)ζθ(ξ)eθ(ξ)eiθx,

bSE(x, ξ; ρn) :=
∑
θ∈Θ′

b̂(θ, ξ)`<θ (ξ)eiθx,

bo(x, ξ; ρn) = bo(ξ; ρn) := b̂(0, ξ).

The superscripts here are chosen to mean, respectively: ‘large energy’, ‘non-
resonant’, ‘resonant’, ‘small energy’ and 0-th Fourier coefficient. The corre-
sponding operators are denoted by BLE, BNR, BR, BSE, and Bo. By defini-
tions (8.1), (8.2) and (8.3)

b = bo + bSE + bR + bNR + bLE. (8.5)

The role of each of these operators is easy to explain. Note that on the support

of the functions b̂NR(θ, ·; ρn) and b̂R(θ, ·; ρn) we have (using (2.19))

ρn/3−O(ρ0+
n ) 6 |ξ| 6 8ρn +O(ρ0+

n ).

On the support of bSE(θ, ·; ρn) we have

|ξ| 6 ρn/2 +O(ρ0+
n ). (8.6)

On the support of bLE(θ, · ; ρn) we have

|ξ| > 7ρn −O(ρ0+
n ). (8.7)

The introduced symbols play a central role in the proof of Lemma 3.1. As
we have seen in Section 6, due to (8.6) and (8.7) the symbols bSE and bLE

make only a negligible contribution to the spectrum of the operator H near
λ = ρ2w for ρ ∈ In. The only significant components of b are the symbols
bNR, bR and bo. The symbol bo will remain as it is, and the symbol bNR will
be transformed in the next section to another symbol, independent of x.

Under the condition b ∈ Sα(β) the above symbols belong to the same
class Sα(β) and the following bounds hold:

bR
(α)
l,s + bNR (α)

l,s + bLE (α)
l,s + bo

(α)
l,s + bSE

(α)
l,s . b

(α)
l,s .

If b symmetric, then so are the symbols on the right hand side of (8.5).

Let us mention some other elementary properties of the introduced op-
erators. In the lemma below we use the projection P(C), C ⊂ Rd which was
defined in Section 6.

Lemma 8.2. Let b ∈ Sα(β) with some α ∈ R. Then:
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(i) The operator BSE is bounded and

‖BSE‖ . b
(α)
0,0 ρ

βmax(α,0)
n .

Moreover,(
I − P

(
B(2ρn/3)

))
BSE = BSE

(
I − P

(
B(2ρn/3)

))
= 0.

(ii) The operator BR satisfies the relations

P
(
B(ρn/6)

)
BR = BRP

(
B(ρn/6)

)
=
(
I − P

(
B(9ρn)

))
BR = BR

(
I − P

(
9ρn)

))
= 0,

and similar relations hold for the operator BNR as well. Moreover,
bNR, bR ∈ Sγ for any γ ∈ R, and for all l and s

bNR (γ)
l,s + bR

(γ)
l,s . ρβ(α−γ)

n b
(α)
l,s ,

with the implied constant independent of b and n > 1. In particular, the
operators BNR, BR are bounded and

‖BNR‖+ ‖BR‖ . ρβαn b
(α)
0,0 .

(iii)

P
(
B(6ρn)

)
BLE = BLEP

(
B(6ρn)

)
= 0.

9. Operators H1 and H2

9.1. Preparation

As mentioned at the end of Section 3, we assume that the symbol b of B
satisfies (2.8), and thus belongs to the class Sα(β) with α defined in (2.21).
Our strategy is to find a unitary operator which reduces H = H0 +B, H0 :=
(−∆)w, to another PDO, whose symbol, essentially, depends only on ξ. More
precisely, we want to find operators H1 and H2 with the properties discussed
in Section 6.

Repeating the calculations of Subsection 9.1 of [12] we find that H is
unitarily equivalent to

H1 = H0 + Y
(o)

k̃
+ Y R

k̃
+ Y SE,LE

k̃
+Rk̃, (9.1)
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where

Yk̃ :=

k̃∑
l=1

Bl +

k̃∑
l=2

Tl, (9.2)

B1 := Op(b),

Bl :=

l−1∑
j=1

1

j!

∑
k1+k2+···+kj=l−1

ad
(

Op(b); Ψk1 ,Ψk2 , . . . ,Ψkj

)
, l > 2, (9.3)

Tl :=

l∑
j=2

1

j!

∑
k1+k2+···+kj=l

ad(H0; Ψk1 ,Ψk2 , . . . ,Ψkj ), l > 2, (9.4)

Rk̃ :=

∫ 1

0

dt1

∫ t1

0

dt2 · · ·
∫ tk̃

0

exp(−itΨ) adk̃+1(H; Ψ) exp(itΨ)dt

+

k̃∑
j=1

1

j!

∑
k1+k2+···+kj>k̃+1,

kq6k̃, q=1,...,j

ad(H; Ψk1 ,Ψk2 , . . . ,Ψkj ),

Ψ :=

k̃∑
p=1

Ψp.

The symbols ψj of PDO Ψj are found from the following system of
commutator equations:

ad(H0; Ψ1) +BNR
1 = 0, (9.5)

ad(H0; Ψl) +BNR
l + TNR

l = 0, l > 2. (9.6)

By Lemma 8.2(ii), the operators BNR
l , TNR

l are bounded. This, in view of
(9.5) and (9.6), implies boudedness of the commutators ad(H0; Ψl), l > 1.
Below we denote by yk̃ the symbol of the PDO Yk̃.

9.2. Commutator equations

Put
χ̃θ(ξ) := eθ(ξ)ϕθ(ξ)

(
|ξ + θ|2w − |ξ|2w

)−1
(9.7)

when θ 6= 0, and χ̃0(ξ) := 0.
We have

Lemma 9.1. Let A = Op(a) be a symmetric PDO with a ∈ Sω. Then the
PDO Ψ with the Fourier coefficients of the symbol ψ(x, ξ) given by

ψ̂(θ, ξ) := i â(θ, ξ)χ̃θ(ξ) (9.8)

solves the equation
ad(H0; Ψ) + Op(aNR) = 0.

Moreover, the operator Ψ is bounded and self-adjoint, its symbol ψ belongs to
Sγ with any γ ∈ R and the following bound holds:

ψ
(γ)
l,s . ρβ(ω−γ−1)−2w+2

n r(ρn)−1 a
(ω)
l−1,s . ρβ(ω−γ−1)−2w+2+0+

n a
(ω)
l−1,s.
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The proof of this lemma is analogous to that of Lemma 4.1 of [13] and
is based on the estimate

|ξ + θ|2w − |ξ|2w = |ξ|2w
((

1 + |ξ|−2(2ξ + θ) · θ
)w − 1

)
� ρ2w−2

∣∣θ · (ξ + θ/2)
∣∣

which holds for ξ in the support of eθϕθ.
Using Propositions 4.1, 4.2, 4.3, Lemma 9.1, and repeating arguments

from the proof of Lemma 4.2 from [13] (with σj := j
(
α−2−(2w−2)β−1

)
+1),

we obtain the following

Lemma 9.2. Let b ∈ Sα(β) be a symmetric symbol. Suppose that k is large

enough so that r(ρn)−1 . ρ0+
n . ρ

w+β−αβ2 −1
n and k̃ satisfies

k̃ > 2(M + αβ + d− 2w)/(2w + 2β − αβ − 2). (9.9)

Then ψj , bj , tj ∈ Sγ(β) for any γ ∈ R and there exists sufficiently large ρ0,
such that

‖Rk̃‖ . ρ−M+2w−d
n . (9.10)

Remark 9.3. Note that the expression in the denominator of (9.9) is positive
by (2.20) and (2.21).

Now Lemmas 6.1 and 9.2 imply that the contribution of Rk̃ to the
integrated density of states can be neglected. More precisely, let Wk̃ be the
operator with symbol

wk̃(x, ξ) := yk̃(x, ξ)− yNR

k̃
(x, ξ),

i.e. ŵk̃(θ, ξ) = ŷk̃(θ, ξ)
(
1− eθ(ξ)ϕθ(ξ)

)
.

(9.11)

We introduce H2 := (−∆)w + Wk̃. Then, by (9.1) and (9.10), ‖H1 −H2‖ .
ρ−M+2w−d
n and, moreover, the symbol wk̃ satisfies (6.7). This means that all

the constructions of Section 6 are valid, and all we need to do is to compute
volGλ.

Until this point, the material in our paper was quite similar to the
corresponding parts of [12]. From now on, the differences will be substantial.

9.3. Computing the symbol of the operator after gauge transform

The following lemma provides us with a more explicit form of the symbol ŷk̃.

Lemma 9.4. We have ŷk̃(θ, ξ) = 0 for θ 6∈ Θk̃. Otherwise,

ŷk̃(θ, ξ) = b̂(θ, ξ)

+

k̃−1∑
s=1

∑
θj ,θs+1∈Θ

φj ,φs+1,φ
′
j∈Θs+1

θ′j∈Θ′s+1

16j6s

s∑
p=1

∑
θ′′q ,φ

′′
q∈Θ′s+1

16q6p−1

∑
ν1,...,ν2s+p>0∑

νi=s

p−1∏
q=1

̂(∇νqeθ′′q ϕθ′′q
)(ξ + φ′′q )

× (̂∇νpb)(θs+1, ξ + φs+1)

s∏
j=1

̂(∇νp+j b)(θj , ξ + φj)
̂(∇νp+s+j χ̃θ′j

)(ξ + φ′j).

(9.12)
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Here for ν ∈ N

∇ν :=
∑

η1,...,ην∈Θ

C(s,p)
η1,...,ην

(
{θ,φ}

)
∇η1
· · · ∇ην ;

∇0 := C(s,p)
(
{θ,φ}

)
,

(9.13)

and, for θ ∈ Rd, the action of ∇θ on symbols of PDO is defined in (4.4),
whereas for any function f on Rd

(∇θf)(ξ) := f(ξ + θ)− f(ξ).

The coefficients C(s,p)
(
{θ,φ}

)
and C

(s,p)
η1,...,ην

(
{θ,φ}

)
depend on s, p

and all vectors θ, θj, θs+1, φj, φs+1, θ′j, φ
′
j, θ

′′
q , φ′′q (and on η1, . . . ,ην if

these subscripts are present). Moreover, these coefficients can differ for each
particular ∇ν , ν ∈ N0. At the same time, they are uniformly bounded by a
constant which depends on k̃ only.

We apply the convention that
∏0
q=1

̂(∇νqeθ′′q ϕθ′′q
)(ξ + φ′′q ) = 1.

Proof. We will prove the lemma by induction. Namely, let ` > 2. We claim
that:

1) For any m = 1, . . . , `− 1, ψ̂m(θ, ξ) = 0 for θ 6∈ Θm. Otherwise,

ψ̂m(θ, ξ)

=
∑
θj∈Θ

φj ,φ
′
j∈Θm

θ′j∈Θ′m
16j6m

m∑
p=1

∑
θ′′q ,φ

′′
q∈Θ′m

16q6p−1

∑
ν1,...,ν2m+p−1>0∑

νi=m−1

p−1∏
q=1

̂(∇νqeθ′′q ϕθ′′q
)(ξ + φ′′q )

×
m∏
j=1

̂(∇νp−1+j b)(θj , ξ + φj)
̂(∇νp−1+m+j χ̃θ′j

)(ξ + φ′j).

(9.14)

2) For any s = 1, . . . , `− 1 and any k1, . . . , kp (p > 1) such that

k1+· · ·+kp = s, ̂ad
(

Op(b); Ψk1 , . . . ,Ψkp

)
(θ, ξ) = 0 for θ 6∈ Θs+1. Otherwise,

̂ad
(

Op(b); Ψk1 , . . . ,Ψkp

)
(θ, ξ)

=
∑

θj ,θs+1∈Θ

φj ,φs+1,φ
′
j∈Θs+1

θ′j∈Θ′s+1

16j6s

s∑
p=1

∑
θ′′q ,φ

′′
q∈Θ′s+1

16q6p−1

∑
ν1,...,ν2s+p>0∑

νi=s

p−1∏
q=1

̂(∇νqeθ′′q ϕθ′′q
)(ξ + φ′′q )(̂∇νpb)(θs+1, ξ + φs+1)

×
s∏
j=1

̂(∇νp+j b)(θj , ξ + φj)
̂(∇νp+s+j χ̃θ′j

)(ξ + φ′j).

(9.15)



30 S. Morozov, L. Parnovski and R. Shterenberg

3) For any s = 2, . . . , ` and any k1, . . . , kp (p > 2) such that

k1 + · · ·+ kp = s, ̂ad(H0; Ψk1 , . . . ,Ψkp)(θ, ξ) = 0 for θ 6∈ Θs. Otherwise,

̂ad(H0; Ψk1 , . . . ,Ψkp)(θ, ξ)

=
∑

θj ,θs∈Θ

φj ,φs,φ
′
j∈Θs

θ′j∈Θ′s
16j6s−1

s∑
p=1

∑
θ′′q ,φ

′′
q∈Θs

16q6p−1

∑
ν1,...,ν2s+p−2>0∑

νi=s−1

p−1∏
q=1

̂(∇νqeθ′′q ϕθ′′q
)(ξ + φ′′q )(̂∇νpb)(θs, ξ + φs)

×
s−1∏
j=1

̂(∇νp+j b)(θj , ξ + φj)
̂(∇νp+s−1+j χ̃θ′j

)(ξ + φ′j).

(9.16)

For ` = 2 assumptions 1)–3) can be easily checked. Indeed, by (9.8),
(4.9) and (4.5),

ψ̂1(θ, ξ) = ib̂(θ, ξ)χ̃θ(ξ),

̂ad
(

Op(b); Ψ1

)
(θ, ξ) =

∑
χ∈Θ∪(θ−Θ)

(
b̂(θ, ξ)b̂(θ − χ, ξ + χ) ̂(∇χχ̃θ−χ)(ξ)

+ b̂(θ, ξ)(̂∇χb)(θ − χ, ξ)χ̃θ−χ(ξ)− ̂(∇θ−χb)(χ, ξ)b̂(θ − χ, ξ)χ̃θ−χ(ξ)
)
,

̂ad(H0; Ψ1,Ψ1)(θ, ξ)

=
∑

χ∈Θ∪(θ−Θ)

(
b̂(χ, ξ + θ − χ) ̂(∇θ−χϕχeχ)(ξ)b̂(θ − χ, ξ)χ̃θ−χ(ξ)

+ ̂(∇θ−χb)(χ, ξ)ϕχ(ξ)eχ(ξ)b̂(θ − χ, ξ)χ̃θ−χ(ξ)

− ϕθ(ξ)eθ(ξ)b̂(θ, ξ)b̂(θ − χ, ξ + χ) ̂(∇χχ̃θ−χ)(ξ)

− ϕθ(ξ)eθ(ξ)b̂(θ, ξ)(̂∇χb)(θ − χ, ξ)χ̃θ−χ(ξ)
)
.

Now, we complete the induction in several steps.

Step 1. First of all, notice that due to (9.3), (9.4), for any m = 2, . . . , `
the symbol of Bm admits a representation of the form (9.15) with s = m− 1,
and symbol of Tm admits a representation of the form (9.16) with s = m.
Then it follows from Lemma 9.1 and (9.6) that Ψ` admits a representation
of the form (9.14).

Step 2. Proof of (9.15) with s = `. Let k1 + · · ·+ kp = `. If p > 2. Then

ad
(

Op(b); Ψk1 , . . . ,Ψkp

)
= ad

(
ad
(

Op(b); Ψk1 , . . . ,Ψkp−1

)
; Ψkp

)
.

Since k1 + · · ·+ kp−1 6 `− 1 and kp 6 `− 1 we can apply (9.14) and (9.15).
Combined with (4.9) it gives a representation of the form (9.15). If p = 1
then ad

(
Op(b); Ψ`

)
satisfies (9.15) because of (4.9) and step 1.
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Step 3. Proof of (9.16) with s = `+ 1. Let k1 + · · ·+ kp = `+ 1, p > 2.
If p > 3, then (cf. step 2)

ad(H0; Ψk1 , . . . ,Ψkp) = ad
(

ad(H0; Ψk1 , . . . ,Ψkp−1
); Ψkp

)
.

Since k1 + · · · + kp−1 6 `, p − 1 > 2 and kp 6 ` − 1 we can apply (9.14)
and (9.16). Together with (4.9) it gives a representation of the form (9.16).
If p = 2 then (see (9.6))

ad(H0; Ψk1 ,Ψk2) = ad
(

ad(H0; Ψk1); Ψk2

)
= − ad(BNR

k1 + TNR
k1 ; Ψk2).

Since k1 6 ` and k2 6 `, the representation of the form (9.16) follows from
(4.9) and step 1. (Formally exceptional case k1 = 1, k2 = ` can be treated
separately in the same way using (9.5) instead of (9.6).)

Induction is complete.
Now, (9.15), (9.16) and (9.2), (9.3), (9.4) prove the lemma.

10. Contribution from various resonant regions

Let us fix a subspace V ∈ Vm, m < d, and a component Ξp of the resonant
region Ξ(V). Our aim is to compute the contribution to the density of states
from each component Ξp. Therefore, we define

A+
p (ρ) := A+(ρ) ∩Ξp and A−p (ρ) := A−(ρ) ∩Ξp (10.1)

and try to compute

volA+
p (ρ)− volA−p (ρ). (10.2)

Since formulas (6.10) and (6.4) obviously imply that

vol(Gλ) = ωdρ
d +

d−1∑
m=0

∑
V∈Vm

∑
p

(
volA+

p (ρ)− volA−p (ρ)
)
, (10.3)

Lemma 3.1 would be proved if we manage to compute (10.2) (or at least
prove that this expression admits a complete asymptotic expansion in ρ).

Note that if ξ ∈ Ξp, then we also have that Υ(ξ) ⊂ Ξp. We denote

H2(ξ) := H2|Hξ
, Hξ := P

(
Υ(ξ)

)
B2(Rd)

(recall that Hξ is an invariant subspace of H2 acting in B2(Rd)). Suppose now
that two points ξ and η have the same coordinates X and Φ and different
coordinates r. Then ξ ∈ Ξp implies η ∈ Ξp and Υ(η) = Υ(ξ) + (η−ξ). This
shows that two spaces Hξ and Hη have the same dimension and, moreover,
there is a natural isometry Fξ,η : Hξ → Hη given by F : eν 7→ eν+(η−ξ),
ν ∈ Υ(ξ). This isometry allows us to ‘compare’ operators acting in Hξ and
Hη. Thus, abusing slightly our notation, we can assume that H2(ξ) and H2(η)
act in the same (finite dimensional) Hilbert space H(X,Φ). We will fix the
values (X,Φ) and study how these operators depend on r. Thus, we denote
by H2(r) = H2(r; X,Φ) the operator H2(ξ) with ξ = (X, r,Φ), acting in
H(X,Φ).
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LetWk̃(r) be the operator in H(X,Φ) with the symbol wk̃
(
x, ξ(X, r,Φ)

)
.

According to formula (7.3), for any s 6 k̃ − 1 and θ ∈ Θs+1

|ξ + φ|2 = r2 + 2r|a|
K+1∑
q=1

aK+1 q sin Φq + 2〈ξ,φ〉+ |X|2 + |a|2 + |φ|2. (10.4)

This, together with (2.4), (2.10) and (2.11), implies that for |ξ+φ| > C0 the

coefficients b̂(θ, ξ+φ) can be represented as the absolutely convergent series

b̂(θ, ξ + φ) =
∑
ι∈J̃

∞∑
l=0

∑
n1,...,nK+1>0
n1+···+nK+16l
j1,...,jd>0
j1+···+jd6l

Cι j1···jdl n1···nK+1
(X;θ)rι−lφj11 · · ·φ

jd
d

K+1∏
a=1

(sin Φa)na ,

(10.5)

where the coefficients satisfy∣∣Cι j1···jdl n1···nK+1
(X;θ)

∣∣ . ρ(l−j1−···−jd)(αm+1+0+)
n

In the next lemma, to facilitate the expansion of the RHS of (9.12) in
a suitable form, we transform the denominator of χ̃θ′ (recall (9.7)).

In the subsequent calculations we will use the generalized binomial co-
efficeints: (

p

j

)
:=


1, j = 0;

1

j!

j−1∏
k=0

(p− k), j ∈ N.
(10.6)

Lemma 10.1. For s 6 k̃ − 1, φ′ ∈ Θs+1, θ′ ∈ Θ′s+1, and ξ in the support of
eθ′ϕθ′ let

D :=
1

w

∞∑
j=2

(
w

j

)
r2−2j

j−1∑
k=0

(
j

k

)

×
(

2r|a|
K+1∑
q=1

aK+1 q sin Φq + 2〈ξ,φ′〉+ |X|2 + |a|2 + |φ′|2
)k

×
(
2〈ξ,θ′〉+ 2〈φ′,θ′〉+ |θ′|2

)j−k−1
.

Then |D| . ρ
−1+αm+1+0+
n and(

|ξ + φ′ + θ′|2w − |ξ + φ′|2w
)−1

= w−1r2−2w
(
2〈ξ,θ′〉+ 2〈φ′,θ′〉+ |θ′|2

)−1
∞∑
a=0

(−D)a.
(10.7)
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Proof. We introduce a shorthand

N := 2r|a|
K+1∑
q=1

aK+1 q sin Φq + 2〈ξ,φ′〉+ |X|2 + |a|2 + |φ′|2.

Then by (generalized) binomial formula and (10.4) we obtain

|ξ + φ′ + θ′|2w − |ξ + φ′|2w

=
(
|ξ|2 + 2〈ξ,φ′ + θ′〉+ |φ′ + θ′|2

)w − (|ξ|2 + 2〈ξ,φ′〉+ |φ′|2
)w

=
(
r2 +N + 2〈ξ,θ′〉+ 2〈φ′,θ′〉+ |θ′|2

)w − (r2 +N)w

= r2w
∞∑
j=1

(
w

j

)
r−2j

((
N + 2〈ξ,θ′〉+ 2〈φ′,θ′〉+ |θ′|2

)j −N j
)

= wr2w−2
(
2〈ξ,θ′〉+ 2〈φ′,θ′〉+ |θ′|2

)
(1 +D).

(10.8)

The estimate on |D| follows from estimates (2.19) and (7.1), and Lemmas 7.3
and 5.1. Now (10.7) follows from (10.8).

As we have seen from the previous sections, the symbol of the operator
H2 satisfies

h2(x, ξ) = |ξ|2w+wk̃(x, ξ) =
(
r2+2r〈a,Φ〉+|a|2+|X|2

)w
+wk̃(x, ξ), (10.9)

where wk̃ are given by (9.11) and (9.12).

Remark 10.2. In this section we assume that ξ ∈ A, so by (6.3) we have
2ρn/3 6 |ξ| 6 6ρn, and by Remark 8.1 all functions eθ(ξ+ ·) from (9.11) and
(9.12) are equal to 1. Note that if θ ∈ Θk̃, φ ∈ Θk̃, and θ 6∈ V, then (see
Lemma 7.5 and (8.3)) ϕθ(ξ + φ) = 1. This means that all cut-off functions
from (9.11) and (9.12) are equal to 1 unless θ ∈ V. If, on the other hand,
θ ∈ V, then ϕθ(ξ + φ) depends only on the projection ξV and thus is a
function only of the coordinates X.

By Proposition 4.1, (9.11), Lemma 9.4, formulas (10.5) and (10.7),
Lemma 7.5, and Remark 10.2, for r � ρn∥∥∥ dl

drl
Wk̃(r)

∥∥∥ . ρκ−l+0+
n , l > 0. (10.10)

This, together with (10.9), implies

Lemma 10.3. The operator H2(r) is monotonically increasing in r; in partic-
ular, all its eigenvalues λj

(
H2(r)

)
are increasing in r.

Thus the function g
(
ξ(X, r,Φ)

)
(defined in Section 6) is an increasing

function of r if we fix the other coordinates of ξ, so the equation

g(ξ) = ρ2w

has a unique solution for fixed values of X and Φ; we denote the r-coordinate
of this solution by τ = τ(ρ) = τ(ρ; X,Φ), so that

g
(
ξ(X, τ,Φ)

)
= ρ2w. (10.11)
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By τ0 = τ0(ρ) = τ0(ρ; X,Φ) we denote the value of τ for (−∆)w, i.e. τ0 is a
unique solution of the equation∣∣ξ(X, τ0,Φ)

∣∣ = ρ.

Obviously, we can write down a precise analytic expression for τ0 (and we
have done this in [11] in the two-dimensional case) and show that it allows
an expansion in powers of ρ and ln ρ, but we will not need it. The definition
(10.1) of the sets A±p (ρ) implies that the intersection

A+
p (ρ) ∩

{
ξ(X, r,Φ), r ∈ R+

}
consists of points with r-coordinate belonging to the interval

[
τ0(ρ), τ(ρ)

]
(where we assume the interval to be empty if τ0 > τ). Similarly, the intersec-
tion

A−p (ρ) ∩
{
ξ(X, r,Φ), r ∈ R+

}
consists of points with r-coordinate belonging to the interval

[
τ(ρ), τ0(ρ)

]
.

Therefore,

A+
p (ρ) =

{
ξ = ξ(X, r,Φ),X ∈ Ω(V),Φ ∈Mp, r ∈

[
τ0(ρ; X,Φ), τ(ρ; X,Φ)

]}
and

A−p (ρ) =
{
ξ = ξ(X, r,Φ),X ∈ Ω(V),Φ ∈Mp, r ∈

[
τ(ρ; X,Φ), τ0(ρ; X,Φ)

]}
.

This implies that (recall that K = d−m− 1)

volA+
p (ρ)− volA−p (ρ) =

∫
Ω(V)

dX

∫
Mp

dΦ

∫ τ(ρ;X,Φ)

τ0(ρ;X,Φ)

rKdr

= (K + 1)−1

∫
Mp

dΦ

∫
Ω(V)

dX
(
τ(ρ; X,Φ)K+1 − τ0(ρ; X,Φ)K+1

)
.

(10.12)

Remark 10.4. Note that in the case K = 0 the simplex Mp is degenerate and
there is no integration in dΦ.

Obviously, it is enough to compute the part of (10.12) containing τ ,
since the second part (containing τ0) can be computed analogously. We start
by considering ∫

Ω(V)

τ(ρ; X,Φ)K+1dX. (10.13)

First of all, we notice that if ξ,η ∈ Ξ(V) are resonant congruent points then,
according to Lemma 5.7, all vectors θj from Definition 5.8 of equivalence
belong to V. This naturally leads to the definition of equivalence for projec-
tions ξV and ηV. Namely, we say that two points ν and µ from Ω(V) are
V-equivalent (and write ν ↔V µ) if ν and µ are equivalent in the sense of
Definition 5.8 with an additional requirement that all θj ∈ V. Then ξ ↔ η
implies ξV ↔V ηV. For ν ∈ Ω(V) we denote by ΥV(ν) the class of equiva-
lence of ν generated by ↔V. Then ΥV(ξV) is a projection of Υ(ξ) to V and
is, therefore, finite.
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Since ΥV(ν) is a finite set for each ν ∈ Ω(V), we can re-write (10.13)
as ∫

Ω(V)

τ(ρ; X,Φ)K+1dX

=

∫
Ω(V)

(
card ΥV(ν)

)−1 ∑
X∈ΥV(ν)

τ(ρ; X,Φ)K+1dν
(10.14)

and try to compute ∑
X∈ΥV(ν)

τ(ρ; X,Φ)K+1.

Remark 10.2, together with equations (10.9), (9.11), and (9.12), shows
that H2(r) depends on r analytically, so we can and will consider the family
H2(z) with complex values of the parameter z with <e z � ρ. Likewise, we
analytically continue the function ξ(X, r,Φ) to

ξ(X, z,Φ) := X + a + zΦ. (10.15)

We also introduce the analytic continuation | · |C of the modulus of vectors,
so that

|ξ|2C := z2 + 2z〈a,Φ〉+ |a|2 + |X|2. (10.16)

Formulas (9.11) and (9.12) give matrix elements of H2(z) in an orthonormal
basis even for complex z.

We choose a contour

γ :=

{
z ∈ C : |z − ρ| = tρn :=

(
8 max

{
(2w − 2)/3, 1

})−1

ρn

}
(10.17)

to be a circle in the complex plane going in the positive direction.
Estimates (10.10) remain valid after the analytic continuation: for all z

inside and on γ ∥∥∥ dl
dzl

Wk̃(z)
∥∥∥ . ρκ−l+0+

n , l > 0. (10.18)

Lemma 10.5. For ρ ∈ In = [ρn, 4ρn] all τ(ρ; X,Φ) lie inside γ. These are the
only zeros of the function det

(
H2(z)− ρ2wI

)
inside the contour.

Proof. Let r := <e z, y := =m z. For y = 0 the operator H2(r) is self-adjoint.
Thus it has card ΥV(ν) real eigenvalues.

Now for r > ρ+ tρn > (1 + t/4)ρ relations (10.9), (7.1), Lemma 5.1(ii),
and (10.18) imply

H2(r) >
((

(1 + t/4)ρ
)2w(

1−O(ραm+1−1+0+)
)
−O(ρκ+0+)

)
I.

Thus by (2.20) and (2.21) for big ρ no eigenvalue of H2(r) can coincide with
ρ2w.

Likewise for r 6 ρ− tρn 6 (1− t/4)ρ for big ρ we have

H2(r) 6
((

(1− t/4)ρ
)2w(

1 +O(ραm+1−1+0+)
)

+O(ρκ+0+)
)
I,
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and no eigenvalue of H2(r) can coincide with ρ2w. This implies that all the
eigenvalues of H2(r) lie in the real interval (ρ− tρn, ρ+ tρn). By (10.11) and
Lemma 10.3 these eigenvalues coincide with

{
τ(ρ; X,Φ) : X ∈ ΥV(ν)

}
.

It remains to show that H2(r + iy) is invertible for any nonzero y such
that r+ iy is inside or on γ. Relation (10.15), Lemma 5.1(ii), definition (5.1),
and bound (7.1) imply that inside and on the contour

ξ = (r + iy)
(
1 +O(ρ−1+αm+1+0+

n )
)

and

arg |ξ|C 6
(
1 + o(1)

)
arcsin(tρn/ρ) 6

(
1 + o(1)

)
arcsin t 6 t

(
1 + o(1)

)
.

Hence

∣∣|ξ|2wC ∣∣ =
∣∣|ξ|2C∣∣w � ρ2w and arg |ξ|2wC = w arcsin

2y
(
r + 〈a,Φ〉

)∣∣|ξ|2C∣∣ � yρ−1,

which implies that ∣∣∣Im(|ξ|2wC )∣∣∣ & |y|ρ2w−1. (10.19)

Now for any Ψ ∈ H(X,Φ) with ‖Ψ‖ = 1 we have by (10.19) and (10.18)∥∥∥(H2(z)− ρ2wI
)
Ψ
∥∥∥ >

∣∣∣Im〈(H2(z)− ρ2wI
)
Ψ,Ψ〉

∣∣∣
>
∣∣∣Im(|ξ|2wC )∣∣∣− |y| sup

t∈[0,y]

∥∥W ′(r + it)
∥∥ & |y|ρ2w−1,

where we have used that for y = 0 the quadratic form of W (z) is real-valued.
So the kernel of H2(r + iy)− ρ2w is trivial for y 6= 0.

Lemma 10.6. For z ∈ γ and l ∈ N

(z2w − ρ2w)−l = ρ−2wl
∞∑
j=0

Al j

(z − ρ
ρ

)j−l
, (10.20)

where Al 0 := (2w)−l and for j > 0

Al j :=
1

(2w)l

j∑
p=1

1

(2w)p

(
−l
p

) ∑
q1,...,qp>1
q1+···+qp=j

(
2w

q1 + 1

)(
2w

q2 + 1

)
· · ·
(

2w

qp + 1

)
.

The series in (10.20) converges absolutely.
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Proof. A striaghtforward calculation gives

(z2w − ρ2w)−l

=
1

ρ2wl

((
1 +

z − ρ
ρ

)2w

− 1

)−l
=

1

ρ2wl

( ∞∑
q=1

(
2w

q

)(z − ρ
ρ

)q)−l

=
ρ−2wl

(2w)l

(z − ρ
ρ

)−l(
1 +

1

2w

∞∑
q=1

(
2w

q + 1

)(z − ρ
ρ

)q)−l
.

(10.21)

If 2w ∈ N, then the series on the right hand side is finite. Otherwise, by (10.17)
and (10.6), for z ∈ γ the ratio of absolute values of any two sequential terms
of the series satisfies∣∣∣∣z − ρρ

(
2w

q + 2

)(
2w

q + 1

)−1∣∣∣∣ =
∣∣∣z − ρ

ρ

∣∣∣ |2w − q − 1|
q + 2

6
1

8
, q > 1.

So, again by (10.17) and (10.6), we have∣∣∣∣ ∞∑
q=1

(
2w

q + 1

)(z − ρ
ρ

)q∣∣∣∣ < ∣∣∣∣(2w

2

)∣∣∣∣ |z − ρ|ρ

∞∑
q=0

1

8q
6

4w

7
.

Thus we can decompose the expression on the right hand side of (10.21) into
an absolutely converging series obtaining

(z2w − ρ2w)−l =
ρ−2wl

(2w)l

(z − ρ
ρ

)−l ∞∑
p=0

(
−l
p

)
1

(2w)p

( ∞∑
q=1

(
2w

q + 1

)(z − ρ
ρ

)q)p
=
ρ−2wl

(2w)l

(z − ρ
ρ

)−l
×
(

1 +

∞∑
j=1

(z − ρ
ρ

)j j∑
p=1

1

(2w)p

(
−l
p

) ∑
q1,...,qp>1
q1+···+qp=j

(
2w

q1 + 1

)
· · ·
(

2w

qp + 1

))
,

which finishes the proof.

Let S(z) := H2(z)− z2wI in H(X,Φ). Then by (10.9) on γ the symbol
of S(z) admits the representaion

s(z) =

∞∑
v=1

(
w

v

)
z2w−v

(
2〈a,Φ〉+ z−1

(
|a|2 + |X|2

))v
+ wk̃(z). (10.22)

Relations (10.22), (10.18), (7.1), Lemma 5.1(ii), and (2.20) imply that
everywhere inside and on γ∥∥∥ dl

dzl
S(z)

∥∥∥ . ρ2w−1+αm+1−l+0+
n , l > 0. (10.23)
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A version of the Jacobi’s formula states that for any differentiable in-
vertible matrix-valued function F (z) we have

tr
[
F ′(z)F−1(z)

]
=
(

det
[
F (z)

])′(
det
[
F (z)

])−1

(it can be proved, for example, using the expansion of the determinant along
rows and the induction in the size of F ).

Then by Lemma 10.6 and the residue theorem∑
X∈ΥV(ν)

τ(ρ; X,Φ)K+1

=
1

2πi

∮
γ

zK+1
(

det
[
H2(z)− ρ2wI

])′(
det
[
H2(z)− ρ2wI

])−1

dz

=
1

2πi

∮
γ

tr
[
zK+1H ′2(z)

(
H2(z)− ρ2wI

)−1
]
dz

=
1

2πi

∮
γ

tr
[(

2wz2w+KI + zK+1S′(z)
)

×
∞∑
l=0

(−1)lSl(z)(z2w − ρ2w)−1−l
]
dz

=
1

2πi

∮
γ

tr
[(

2wz2w+KI + zK+1S′(z)
) ∞∑
l=−∞

(z − ρ)−1−l

×
∞∑
j=0

(−1)l+jA1+l+j jρ
1+l−2w(1+l+j)Sl+j(z)

]
dz

=

∞∑
l=0

1

l!
tr

dl

drl

[(
2wr2w+KI + rK+1S′(r)

)
×
∞∑
j=0

(−1)l+jA1+l+j jρ
1+l−2w(1+l+j)Sl+j(r)

]∣∣∣
r=ρ

.

(10.24)

We can restrict the summation on the RHS of (10.24) to

l + j 6 l0 :=
(
M +K + d+ 1 + (d− 1)αd−1 − 2w

)
/(1− αm+1).

Indeed, using the trivial fact that for any linear operator A in the finite
dimensional Hilbert space spanned by eθ with θ ∈ ΥV(ν)

| trA| 6 ‖A‖ card ΥV(ν),

estimate (10.23), and relation (2.20) we can see that the sum of the terms in
(10.24) with l+j > l0 contributes only to the order O(ρ−M+2w−d

n ) in (10.14),
and thus after integration in Φ the corresponding term can be included into
the remainder Rk̃ of Section 6.

Formula (10.12) shows that in order to compute the contribution to the
density of states from Ξ(V)p, we need to integrate the RHS of (10.24) against
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dν and dΦ. We are going to integrate against dΦ first:∫
Mp

dΦ

∫
Ω(V)

(
card ΥV(ν)

)−1 ∑
X∈ΥV(ν)

τ(ρ; X,Φ)K+1

=

∫
Ω(V)

dν

card ΥV(ν)

l0∑
l=0

l0−l∑
j=0

(−1)l+j

l!
A1+l+j jρ

1+l−2w(1+l+j)

× tr
dl

drl

[ ∫
Mp

dΦ
(
2wr2w+KI + rK+1S′(r)

)
Sl+j(r)

]∣∣∣
r=ρ

+O(ρ−M+2w−d
n )

= O(ρ−M+2w−d
n )

+

∫
Ω(V)

dν

card ΥV(ν)

l0∑
l=0

l0−l∑
j=0

(−1)l+j

l!
A1+l+j jρ

1+l−2w(1+l+j)

× tr

[
dl

drl

(
2wr2w+K

∫
Mp

Sl+j(r)dΦ

− (K + 1)rK

l + j + 1

∫
Mp

Sl+j+1(r)dΦ
)

+
dl+1

drl+1

( rK+1

l + j + 1

∫
Mp

Sl+j+1(r)dΦ
)]∣∣∣∣

r=ρ

.

(10.25)

We will prove that the integrand of the exterior integral in (10.25) is
a convergent series of products of powers of ρ and ln ρ. The coefficients in
front of all terms will be bounded functions of X, so afterwards we will just
integrate these coefficients to obtain the desired asymptotic expansion.

Let us discuss, how S(r) depends on ρ, X and Φ. In order to do this, we
first look again at (9.12). As follows from Remark 10.2, the product eθ′′q ϕθ′′q

does not depend on r and Φ, and by (8.4)

‖ ̂∇νeθ′′q ϕθ′′q
‖L∞(Rd) . ρ−νβn . (10.26)

For any η ∈ Θs+1 the application of the finite difference operator ∇η to a
polynomial decreases its degree by 1. Hence formula (10.5) ensures that

(̂∇νb)(θ, ξ + φ) =
∑
ι∈J̃

∞∑
i=ν

∑
n1,...,nK+1>0
n1+···+nK+16i
j1,...,jd>0

j1+···+jd6i−ν

C̃ι j1···jdi n1···nK+1
(X;θ)rι−iφj11 · · ·φ

jd
d

K+1∏
a=1

(sin Φa)na .

(10.27)

Here C̃ι j1···jdi n1···nK+1
(X;θ) depend on the coefficients of (9.13) and satisfy a uni-

form estimate ∣∣C̃ι j1···jdi n1···nK+1
(X;θ)

∣∣ . ρ(i−ν−j1−···−jd)(αm+1+0+)
n .
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Now

̂(∇ν χ̃θ)(ξ) =

ν∑
ν̃=0

̂(∇ν̃eθϕθ)
(
ξ +

ν̃∑
p=1

ηk

) ̂(
∇ν−ν̃

(
| ·+θ|2wC − | · |2wC

)−1
)

(ξ).

The factors ̂(∇ν̃eθϕθ) satisfy the estimate (10.26). For η ∈ Θs+1 we have

̂(
∇η

(
| ·+θ|2wC − | · |2wC

)−1
)

(ξ)

=
(
|ξ + η + θ|2wC − |ξ + η|2wC

)−1(|ξ + θ|2wC − |ξ|2wC
)−1

G(ξ;θ,η),

where

G(ξ;θ,η) := |ξ + θ|2wC − |ξ|2wC − |ξ + η + θ|2wC + |ξ + η|2wC
= −2w〈η,θ〉|ξ|2w−2

C

+

∞∑
j=2

(
w

j

)
|ξ|2w−2j

C

((
2〈ξ,θ〉+ |θ|2

)j
−
(
2〈ξ,η + θ〉+ |η + θ|2

)j
+
(
2〈ξ,η〉+ |η|2

)j)
.

In analogy to (10.27) we have

̂(
∇νG(·;θ,η)

)
(ξ)

=

∞∑
i=ν

∑
n1,...,nK+1>0

n1+···+nK+16i+2

C̃in1···nK+1
(X;θ,η)r2w−2−i

K+1∏
a=1

(sin Φa)na ,

with ∣∣C̃in1···nK+1
(X;θ,η)

∣∣ . ρ(i−ν)(αm+1+0+)+0+
n . (10.28)

Altogether, applying relations (10.26) – (10.28) to (9.11) and (9.12) we obtain

wk̃(θ, ξ)

=

k̃−1∑
s=0

∑
ι0,...,ιs∈J̃

s∑
µ=0

∑
η1,...,ηs+µ∈Θs+1

θ1,...,θs+µ∈Θ′s+1

s−µ∑
p=0

∞∑
i=0

∑
n1,...,nK+1>0

n1+···+nK+162µ+p+i

C
η1···ηs+µ θ1···θs+µ
s µ p i ι0···ιs n1···nK+1

(X;θ)r(2w−2)µ+ι0+···+ιs−p−i

×
K+1∏
a=1

(sin Φa)na
s+µ∏
v=1

(
|ξ + ηv + θv|2wC − |ξ + ηv|2wC

)−1
,

(10.29)

where ∣∣Cη1···ηs+µ θ1···θs+µ
s µ p i ι0···ιs n1···nK+1

(X;θ)
∣∣ . ρi(αm+1+0+)−(s−µ−p)β+0+

n .
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According to Lemma 10.1,

(
|ξ + ηv + θv|2wC − |ξ + ηv|2wC

)−1

= r2−2w
(
2〈ξ,θv〉+ 2〈ηv,θv〉+ |θv|2

)−1

×
∞∑
i=0

∑
n1,...,nK+1>0
n1+···+nK+16i

Cin1···nK+1
(X;ηv,θv)r

−i
K+1∏
a=1

(sin Φa)na ,

(10.30)

and here ∣∣Cin1···nK+1
(X;ηv,θv)

∣∣ . ρi(αm+1+0+)
n .

If now subsitute (10.30) to (10.29), we obtain

wk̃(θ, ξ)

=

k̃−1∑
s=0

∑
ι0,...,ιs∈J̃

s∑
µ=0

∑
η1,...,ηs+µ∈Θs+1

θ1,...,θs+µ∈Θ′s+1

s−µ∑
p=0

∞∑
i=0

∑
n1,...,nK+1>0
n1+···+nK+1

62µ+p+i

C
η1···ηs+µ θ1···θs+µ
s µ p i ι0···ιs n1···nK+1

(X;θ,ηv,θv)r
(2−2w)s+ι0+···+ιs−p−i

×
K+1∏
a=1

(sin Φa)na
s+µ∏
v=1

(
2〈ξ,θv〉+ 2〈ηv,θv〉+ |θv|2

)−1
,

(10.31)

with

∣∣Cη1···ηs+µ θ1···θs+µ
s µ p i ι0···ιs n1···nK+1

(X;θ,ηv,θv)
∣∣ . ρi(αm+1+0+)−(s−µ−p)β+0+

n .

The first sum in (10.22) can be written in the form

∞∑
v=1

(
w

v

)
z2w−v

(
2〈a,Φ〉+ z−1

(
|a|2 + |X|2

))v
=

∞∑
i=0

∑
n1,...,nK+1>0

n1+···+nK+16i+1

Cin1···nK+1
(X)z2w−1−i

K+1∏
a=1

(sin Φa)na ,
(10.32)

where ∣∣Cin1···nK+1
(X)

∣∣ . ρ(i+1)(αm+1+0+)
n .
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Substituting (10.31) and (10.32) into (10.22) we can calculate the series
for the symbol of the operator Sf for f ∈ N:

ŝf (θ, ξ) =
∑

θ1,...,θf∈Θk̃
φ1,...,φf∈Θk̃

C
θ1···θf
φ1···φf

(θ)

f∏
g=1

ŝ(θg, ξ + φg)

=

f∑
ν=0

νk̃∑
h=ν

∑
ι1,...,ιh∈J̃

h−ν∑
µ=0

∑
φ1,...,φh−ν+µ∈Θk̃

θ1,...,θh−ν+µ∈Θ′
k̃

h−ν−µ∑
p=0

∞∑
i=0

∑
n1,...,nK+1>0

n1+···+nK+162µ+p+i+f−ν

C(X;θ, . . . )r(2−2w)h+(2w−1)f−ν+ι1+···+ιh−p−i

×
K+1∏
a=1

(sin Φa)na
h−ν+µ∏
v=1

(
2〈ξ,θv〉+ 2〈φv,θv〉+ |θv|2

)−1
,

(10.33)

with ∣∣C(X;θ, . . . )
∣∣ . ρ(f−ν+i)(αm+1+0+)−(h−ν−µ−p)β+0+

n .

Note that the last product on the right hand side of (10.33) is of the
form

T∏
t=1

(
lt + ρ

∑
q

ctq sin Φq

)−kt
.

Here we have expanded the inner products 〈ξ,θv〉 using Lemma 7.5(ii). The
coefficients {ctq} in the decomposition (θv)V⊥ =

∑
q c
t
qµ̃q are all of the same

sign and satisfy (7.4). Without loss of generality we may assume that all ctq
are non-negative. The numbers

lt = l(ct1, . . . , c
t
K+1) := 2Lm+1

∑
q

ctq + 2〈X, (θv)V〉+ 2〈φv,θv〉+ |θv|2

satisfy ρ
αm+1
n ρ0−

n . lt . ρ
αm+1
n ρ0+

n , since∣∣2〈X, (θv)V〉+ 2〈φv,θv〉+ |θv|2
∣∣ . ραm+0+

n .

This numbers depend on X, but not on Φ or ρ. The numbers
kt = k(ct1, . . . , c

t
K+1) are positive, integer, and independent of ξ.

The following lemma is identical to Lemma 10.4 of [12], where for our
purposes we have replaced the explicit constants 1/2 and 2/3 by ϑ and ς,
respectively.

Lemma 10.7. For 1 6 K 6 d − 1; n1, . . . , nK+1 ∈ N0; k1, . . . , kT ∈ N let

Q :=
∑T
t=1 kt,

ĴK :=

∫
Mp

(sin Φ1)n1 . . . (sin ΦK)nK (sin ΦK+1)nK+1 dΦ∏T
t=1

(
lt + ρ

∑K+1
j=1 ctj sin Φj

)kt .
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Then there exist positive numbers δ0, pK , and qK depending only on the
constants (2.20) and K such that

ĴK =

K∑
q=0

(ln ρ)q
∞∑
p=0

e(p, q)ρ−p,

where ∣∣e(p, q)∣∣ . ρ(ς−pK)p
n ρ−Qβn .

These estimates are uniform in the following regions of variables:

ρβn . lt . ρϑn, ρ−δ0n . ctj . ρδ0n , ρς−qKn < ρ.

Now using Lemma 10.7 we can compute the integrals of (10.33) over
the domain {Φ ∈ Mp} (recall that this integration is not needed for K = 0
by Remark 10.4). Substituting the result into (10.25), integrating in dν over
Ω(V), and taking into account (10.12) and (10.14) we obtain in the region
2ρn/3 < ρ < 6ρn

volA+
p (ρ)− volA−p (ρ)

=

K∑
q=0

(l0+1)k̃∑
h=0

∑
ι1,...,ιh∈J̃

∞∑
j=0

Cι1···ιhq h j ρK+1+(2−2w)h+ι1+···+ιh−j(ln ρ)q

+O(ρ−M+2w−d
n ),

with the coefficients satisfying

|Cι1···ιhq h j | . ρ−2βh+ςj
n .

This, together with equations (10.3), (6.9), Lemma 6.1, relation (2.20), Sec-
tion 11 of [12], and the observation that the number of different quasi-lattice
subspaces V is . ρ0+

n , completes the proof of Lemma 3.1 and, thus, of our

main theorem in the case of B = B̃ with the symbol satisfying (2.8). As

explained at the end of Section 3, the summation over J̃ may be replaced by
summation over J0.

It remains to relax the assumptions on B. This will be done in the
subsequent section.

11. Approximation

In this section we prove Lemma 3.1 and thus Theorem 2.6 for general B

using the fact that the proof is complete for B̃ whose symbol fulfills the extra
assumption (2.8).



44 S. Morozov, L. Parnovski and R. Shterenberg

1. Given B satisfying the hypothesis of Theorem 2.6 and the number M ,
we fix the values of k and k̃ in such a way that Lemma 3.1 holds true for

H = (−∆)w + B̃, where the symbol b̃ of B̃ satisfying (2.8) is constructed at
the end of Section 3. For R > 0 let us define (recall (6.1))

PR := PL(BR), PcR := PL(Rd \BR)

We start by estimating the quadratic form of B − B̃.
For any ψ ∈ H2w(Rd)∣∣〈ψ, (B − B̃)ψ〉

∣∣ 6 ∣∣〈ψ,PR0(B − B̃)PR0ψ〉
∣∣+
∣∣〈ψ,PR0(B − B̃)PcR0

ψ〉
∣∣

+
∣∣〈ψ,PcR0

(B − B̃)PR0
ψ〉
∣∣+
∣∣〈ψ,PcR0

(B − B̃)PcR0
ψ〉
∣∣.

(11.1)

By Condition (2.14), the symbol of (B − B̃)PcR0
satisfies

(b− b̃)1Rd\BR0

(κ/β)

κ/2, 0 < ρ−kn .

Now Propositions 4.1 and 4.2 imply that∥∥(−∆ + 1)−κ/4(B − B̃)(−∆ + 1)−κ/4PcR0

∥∥ 6 Cρ−kn . (11.2)

Hence∣∣〈ψ,PR0
(B − B̃)PcR0

ψ〉
∣∣

=
∣∣〈(−∆ + 1)κ/4ψ,

PR0
(−∆ + 1)−κ/4(B − B̃)PcR0

(−∆ + 1)−κ/4(−∆ + 1)κ/4ψ〉
∣∣

6 Cρ−kn 〈ψ, (−∆ + 1)κ/2ψ〉,
(11.3)

and the analogous estimates hold for the last two terms in (11.1). Thus (11.1)
implies

|B − B̃| 6 B(k), (11.4)

where B(k) is the operator of multiplication by the function

b(k)(ξ) :=

{
‖b‖L∞(Rd×BR0

) + ‖b̃‖L∞(Rd×BR0
), |ξ| 6 R0,

Cρ−kn
(
1 + |ξ|2

)κ/2
, |ξ| > R0

(11.5)

in the momentum space.
In view of Lemma 2.3(a), we conclude that

N
(
(−∆)w +B, λ

)
≷ N

(
(−∆)w + B̃ ±B(k), λ

)
. (11.6)

So to prove (3.1) it will be sufficient to show that for ρ ∈ In (which we
assume everywhere below) the right hand side of (11.6) does not differ from

N
(
(−∆)w + B̃, ρ2w

)
by more than O(ρ−Mn ). By (3.1) and Remark 2.7, it is

enough to prove that

N
(
(−∆)w + B̃ ±B(k), λ

)
= N

(
(−∆)w + B̃, λ+O(ρ2w−d−M

n )
)
. (11.7)
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2. We note that for
R∗ := (4ρd+M

n )1/(w−κ) (11.8)

we have

N
(
(−∆)w + B̃ ±B(k), λ

)
= N

(
(−∆)w + B̃ ± PR0B

(k) ± PcR∗B
(k), λ+O(ρ2w−d−M

n )
)
.

(11.9)

Indeed, ∥∥(PR∗ − PR0)B(k)
∥∥ = Cρ−kn (1 +R2

∗)
κ/2 = O(ρ2w−d−M

n )

in view of (3.10).
3. Now we are going to prove that

N
(
(−∆)w + B̃ ± PR0

B(k) ± PcR∗B
(k), λ

)
= N

(
(−∆)w + B̃ ± PcR∗B

(k), λ+O(ρ2w−d−M
n )

)
.

(11.10)

This will be done with the help of the following lemma, which is a development
of Lemma 3.1 from [10].

Lemma 11.1. Let H0, V , A be pseudo–differential operators with almost–
periodic coefficients. Suppose that H := H0 + V is elliptic, selfadjoint and
bounded below, and there exists a collection of orthogonal projections {Pl}Ll=0

commuting with H0 such that

L∑
l=0

Pl = I and Vn l := PnV Pl = 0 for |l − n| > 1. (11.11)

Suppose that A = P0A and that

a := ‖A‖ <∞.
At last, suppose that for λ ∈ R

Dl := dist
(
λ, σ(PlHPl)

)
− (4 + 25−L)a > 0, l = 0, . . . , L− 1 (11.12)

and
max

06l6L−1

(
a+ ‖Vl l−1‖+ ‖Vl l+1‖

)
/Dl 6 1/4. (11.13)

Then for
ε := 24−La (11.14)

we have
N(H,λ− ε) 6 N(H +A, λ) 6 N(H,λ+ ε). (11.15)

Proof. We will prove the first inequality; the second follows by interchanging
the roles of H0 and H0 +A. Let Eλ be the spectral projection of (−∞, λ] for
H. By Lemma 4.1 of [12] it is enough to prove that

〈φ, (H +A)φ〉 6 λ‖φ‖2 for every φ ∈ Eλ−εL2(Rd). (11.16)

Let
δ := min{a, 2−3−L min

06l6L−1
Dl}, K := [2a/δ] + 2, (11.17)

so that
2a 6 (K − 1)δ 6 3a (11.18)
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and by (11.13)

K − 1 6 3a/δ 6 3 max{1, 2L+3a/ min
06l6L−1

Dl} 6 2L+3. (11.19)

For φ ∈ Eλ−ε introduce

φk := (Eλ−ε−(k−1)δ − Eλ−ε−kδ)φ, k = 1, . . . ,K − 1,

φK := Eλ−ε−(K−1)δφ, φ′ := φ− φK =

K−1∑
k=1

φk.

Then φ =
∑K
k=1⊕φk and, letting

ηk := Hφk −
(
λ− ε− (k − 1)δ

)
φk, k = 1, . . . ,K − 1, (11.20)

we have
‖ηk‖ 6 δ‖φk‖. (11.21)

Let P−1 := PL+1 := 0. Projecting (11.20) with Pl we obtain

ηkl = Vl l−1φ
k
l−1 +

(
PlHPl−

(
λ−ε− (k−1)δ

))
φkl +Vl l+1φ

k
l+1, l = 0, . . . , L,

and thus by (11.13), (11.17) and (11.21)

‖φkl ‖ 6
(
‖ηkl ‖+ ‖Vl l−1‖‖φkl−1‖+ ‖Vl l+1‖‖φkl+1‖

)
/Dl

6 2−3−L‖φk‖+ ‖φkl−1‖/4 + ‖φkl+1‖/4, l = 0, . . . , L− 1.

By induction, starting from l = 0 we obtain

‖φkl ‖ 6 2−2−L‖φk‖+ 3‖φkl+1‖/8, l = 0, . . . , L− 1.

Again by induction, using that ‖φkL‖ 6 ‖φk‖, we get ‖φkl ‖ 6 2l−L‖φk‖,
l = 1, . . . , L and thus ‖φk0‖ 6 2−L‖φk‖. Therefore, for k = 1, . . . ,K − 1,

‖Aφk‖ = ‖Aφk0‖ 6 2−La‖φk‖,
and thus

‖Aφ′‖ 6
K−1∑
k=1

‖Aφk‖ 6 2−L
√
K − 1a‖φ′‖

and ∣∣〈φ′, Aφ′〉∣∣ =
∣∣∣ K−1∑
k,m=1

〈φk0 , Aφm0 〉
∣∣∣ 6 2−2L(K − 1)a‖φ′‖2.

Hence

〈φ, (H +A)φ〉
= 〈φ′, Hφ′〉+ 〈φ′, Aφ′〉+ 2<〈φK , Aφ′〉+ 〈φK , HφK〉+ 〈φK , AφK〉

6 (λ− ε)‖φ′‖2 + 2−2L(K − 1)a‖φ′‖2 + 21−L√K − 1a‖φ′‖‖φK‖
+
(
λ− ε− (K − 1)δ

)
‖φK‖2 + a‖φK‖2

6
(
λ− ε+ 21−2L(K − 1)a

)
‖φ′‖2 +

(
λ− ε− (K − 1)δ + 2a

)
‖φK‖2

6 λ‖φ‖2,
where the last inequality follows from (11.18) and (11.19).
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We now want to apply Lemma 11.1 to

H±0 := (−∆)w ± PcR∗B
(k), V := B̃, A± := ±PR0

B(k).

Note that

a := ‖b‖L∞(Rd×BR0
) + ‖b̃‖L∞(Rd×BR0

) (11.22)

does not depend on ρn. For

L :=
[
4 + log2 a+ (M + d− 2w) log2 ρn

]
+ 1 (11.23)

we let

Rl := R0 + lρ2/k
n , l = 0, . . . , L− 1, (11.24)

and introduce a family of projections

P0 := PR0
, Pl := PRl − PRl−1

, l = 1, . . . , L− 1, PL := PcRL−1
. (11.25)

Let us check that the hypothesis of Lemma 11.1 is satisfied. Relation (11.11)
follows from (2.15) and (11.24). It follows from (2.9) that for l 6 L− 1

‖PlHPl‖ 6
∥∥∥PL−1

(
(−∆)w + B̃

)
PL−1

∥∥∥
6 2
∥∥PL−1(−∆)wPL−1

∥∥ 6 2(RL−1)2w.
(11.26)

Also, for l 6 L− 1

‖Vl l−1‖+ ‖Vl l+1‖ 6 2(RL−1 + ρ2/k
n )2w̃. (11.27)

Since by (11.23) and (11.24) we have

RL−1 = R0 +
[
4 + log2 a+ (M + d− 2w) log2 ρn

]
ρ2/k
n . ρ2/k

n log ρn, (11.28)

relations (11.12) and (11.13) follow from (11.26) and (11.27) if ρn is big
enough.

Applying Lemma 11.1, we get (11.15) with

ε = 24−La 6 ρ−M+2w−d
n ,

which implies (11.10).
4. It remains to prove that

N
(
(−∆)w + B̃ ± PcR∗B

(k), λ
)

= N
(
(−∆)w + B̃, λ+O(ρ2w−d−M

n )
)
. (11.29)

Choose

ε := ρ−d−Mn . (11.30)

In view of (2.9), we have

(−∆)w̃ + B̃ ≶ PR∗(1± ε)
(
(−∆)w̃ + B̃

)
PR∗ ⊕PcR∗(1± 1/ε)

(
(−∆)w̃ + B̃

)
PcR∗ .

Therefore,

(−∆)w + B̃ ± PcR∗B
(k)

≶ PR∗
(
(−∆)w ± ε(−∆)w̃ + (1± ε)B̃

)
PR∗

⊕ PcR∗
(
(−∆)w ± (−∆)w̃/ε+ (1± 1/ε)B̃ ±B(k)

)
PcR∗ .

(11.31)
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Using (2.9) again and recalling the definitions (11.30), (11.5) and (11.8), we
can estimate the last term on the right hand side of (11.31) from below:

PcR∗
(
(−∆)w ± (−∆)w̃/ε+ (1± 1/ε)B̃ ±B(k)

)
PcR∗

>
(
(−∆)w − 2(−∆)w̃/ε

)
PcR∗ > (R2w

∗ − 2R2w̃
∗ /ε)PcR∗ > (5ρn)2wPcR∗ ,

so it does not contribute to the density of states for ρ ∈ In. For the first term
we have

PR∗
(
(−∆)w ± ε(−∆)w̃ + (1± ε)B̃

)
PR∗ ≶ PR∗(1± ε)

(
(−∆)w + B̃

)
PR∗ ,

so

N
(

(−∆)w + B̃ ± PcR∗B
(k), λ

)
≷ N

(
PR∗

(
(−∆)w ± ε(−∆)w̃ + (1± ε)B̃

)∣∣
PR∗L2(Rd)

, λ
)

≷ N
(
PR∗

(
(−∆)w + B̃

)∣∣
PR∗L2(Rd)

, λ/(1± ε)
)
,

(11.32)

and the same estimates hold true for B(k) replaced by 0. Combining these
two versions of (11.32), we obtain

N
(
(−∆)w + B̃, λ

)
≶ N

(
(−∆)w + B̃ ∓ PcR∗B

(k), λ
)

≶ N
(
PR∗

(
(−∆)w + B̃

)∣∣
PR∗L2(Rd)

, λ/(1∓ ε)
)

≶ N
(
(−∆)w + B̃, (1± ε)λ/(1∓ ε)

)
.

(11.33)

Recalling that λ = ρ2w 6 (4ρn)2w and (11.30), we arrive at (11.29).
Combining (11.9), (11.10) and (11.29), we get (11.7).
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