SPECTRAL THEORY

HOMEWORK 8

- 1. Suppose, H is a Hilbert space and $P_j = P_{V_j}$, j = 1, 2 are orthogonal projections with $\operatorname{Ran} P_j = V_j$. Prove that the following statements are equivalent:
- (i) $P := P_1 + P_2$ is an orthogonal projection;
- (ii) $P_1P_2 = 0$
- (iii) $V_2 \perp V_1$ (meaning that any vector from V_1 is orthogonal to any vector from V_2)

Under these conditions we have $\operatorname{Ran} P = V_1 \oplus V_2$.

- 2. Suppose, H is a Hilbert space and $P_j = P_{V_j}$, j = 1, 2 are orthogonal projections with $\operatorname{Ran} P_j = V_j$. Prove that the following statements are equivalent:
- (i) $P := P_1 P_2$ is an orthogonal projection;
- (ii) P is a positive operator (meaning its quadratic form takes only non-negative values);
- (iii) $V_2 \subset V_1$.

Under these conditions we have $\operatorname{Ran} P = V_1 \ominus V_2 := V_1 \cap V_2^{\perp}$.

- 3. Suppose, H is a Hilbert space and $P_j = P_{V_j}$, j = 1, 2 are orthogonal projections with $\operatorname{Ran} P_j = V_j$. Denote $V := V_1 \cap V_2$. Prove that the following statements are equivalent:
- (i) $P := P_1 P_2$ is an orthogonal projection;
- (ii) P_1 and P_2 commute;
- (iii) $(V_2 \ominus V) \perp (V_1 \ominus V)$.

Under these conditions we have Ran P = V.

- 4. Suppose, $H = V \oplus N$, and the operator U satisfies the following conditions:
- (i) for $x \in V$ we have ||Ux|| = ||x||;
- (ii) for $y \in N$ we have Uy = 0.

(such operators U are called partial isometries). Prove that $U^*U = P_V$ (orthogonal projection with range equal to V) and $UU^* = P_{Ran}U$.