SPECTRAL THEORY

HOMEWORK 8

1. Suppose, H is a Hilbert space and $P_j = P_{V_j}$, j = 1, 2 are orthogonal projections with $\operatorname{Ran} P_j = V_j$. Prove that the following statements are equivalent:

(i) $P := P_1 - P_2$ is an orthogonal projection;

(ii) P is a positive operator (meaning its quadratic form takes only non-negative values);

(iii) $V_2 \subset V_1$.

Prove that under these conditions we have $\operatorname{Ran} P = V_1 \ominus V_2 := V_1 \cap V_2^{\perp}$.

2. Suppose, H is a Hilbert space and $P_j = P_{V_j}$, j = 1, 2 are orthogonal projections with $\operatorname{Ran} P_j = V_j$. Denote $V := V_1 \cap V_2$. Prove that the following statements are equivalent:

(i) $P := P_1 P_2$ is an orthogonal projection;

(ii) P_1 and P_2 commute;

(iii) $(V_2 \ominus V) \perp (V_1 \ominus V)$.

Prove that under these conditions we have $\operatorname{Ran} P = V$.

3. Suppose, $H = V \oplus N$, and the operator U satisfies the following conditions: (i) for $x \in V$ we have ||Ux|| = ||x||;

(ii) for $y \in N$ we have Ay = 0.

(such operators U are called partial isometries). Prove that $U^*U = P_V$ and $UU^* = P_{\text{Ran}U}$.