Spectral Theory

Homework 7

1. Let $g \in C([0,1])$ be a given function. Consider the operator $A \in \mathcal{B}(L_2([0,1]))$ defined by the formula

$$(Au)(s) = g(s)u(s), s \in [0, 1].$$

Find the operator A^* . Under what condition on g is the operator A self-adjoint?

2. Let $k \in C([0,1] \times [0,1])$ be a given function. Consider the operator $B \in \mathcal{B}(L_2([0,1]))$ defined by the formula

$$(Bu)(s) = \int_0^1 k(s,t)u(t)dt, \quad s \in [0,1].$$

Find the operator B^* . Under what condition on k is the operator B self-adjoint?

3. Let B be defined by

$$(Bf)(t) = tf(1-t^3), \forall f \in L_2([0,1]), \forall t \in [0,1].$$

Prove that $B \in \mathcal{B}(L_2([0,1]))$ and find B^* , BB^* and B^*B .

4. Find the numerical range of the operator $R: l^2 \to l^2$ defined by

$$Rx = (0, x_1, x_2, \dots), \quad x = (x_1, x_2, \dots) \in l^2.$$

5. Let P be a non-trivial orthogonal projection $(P \neq 0, I)$. Find its numerical range.