SPECTRAL THEORY

HOMEWORK 4

- 1. Suppose X is a Banach space and let $A \in \mathcal{B}(X)$ be nilpotent, i.e. $A^n = 0$ for some $n \in \mathbb{N}$. Find $\sigma(A)$.
- 2. Show that the range of the operator $B: l^p \to l^p, 1 \le p < \infty$,

$$(Bx)_n := \frac{1}{1+n^2} x_n, \quad n \in \mathbb{N}, \quad x = (x_1, x_2, \dots),$$

is not closed.

- 3. Let $P \in \mathcal{B}(X)$ be a projection, i.e. $P^2 = P$. Construct $R(P; \lambda)$.
- 4. Let $A_l^{-1} \in \mathcal{B}(Y,X)$ be a left inverse of $A \in \mathcal{B}(X,Y)$, i.e. $A_l^{-1}A = I_X$.

Find $\sigma(AA_l^{-1})$. Let $B_r^{-1} \in \mathcal{B}(Y,X)$ be a right inverse of $B \in \mathcal{B}(X,Y)$, i.e. $BB_r^{-1} = I_Y$. Find $\sigma(B_r^{-1}B)$.