SPECTRAL THEORY

HOMEWORK 3

1. Let X be a Banach space and $A, B \in \mathcal{B}(X)$.
(a) Show that if $I-A B$ is invertible, then $I-B A$ is also invertible. [Hint: consider $B(I-A B)^{-1} A+I$.]
(b) Prove that if $\lambda \in \sigma(A B)$ and $\lambda \neq 0$, then $\lambda \in \sigma(B A)$.
(c) Give an example of operators A and B such that $0 \in \sigma(A B)$ but $0 \notin$ $\sigma(B A)$.
(d) Show that $\sigma(A B) \bigcup\{0\}=\sigma(B A) \bigcup\{0\}$.
(e) Prove that $r(A B)=r(B A)$.
2. Let X be a Banach space and let operators $A, B \in \mathcal{B}(X)$ commute: $A B=B A$. Prove that $r(A+B) \leq r(A)+r(B)$.
3. Let $k \in C([0,1] \times[0,1])$ be a given function. Consider the operator $B \in \mathcal{B}(C([0,1]))$ defined by the formula

$$
(B u)(s)=\int_{0}^{s} k(s, t) u(t) d t
$$

Find the spectral radius of B. What is the spectrum of B ? [Hint: prove by induction that

$$
\left|\left(B^{n} u\right)(s)\right| \leq \frac{M^{n}}{n!} s^{n}\|u\|_{\infty}, \quad \forall n \in \mathbb{N}
$$

for some constant $M>0$.]

