
OPERATOR THEORY

Solution VIII

1. Let g ∈ C([0, 1]) be a given function. Consider the operator A ∈
B(L2([0, 1])) defined by the formula

(Au)(s) = g(s)u(s), s ∈ [0, 1].

Find the operator A∗. Under what condition on g is the operator A self-
adjoint?

Solution

(Au, v) =

∫ 1

0

g(s)u(s)v(s)ds =

∫ 1

0

u(s)g(s)v(s)ds = (u,A∗v),

where
(A∗v)(s) = g(s)v(s), s ∈ [0, 1].

It is clear that A is self-adjoint iff g = g, i.e. iff g is real-valued.

2. Let k ∈ C([0, 1] × [0, 1]) be a given function. Consider the operator
B ∈ B(L2([0, 1])) defined by the formula

(Bu)(s) =

∫ 1

0

k(s, t)u(t)dt, s ∈ [0, 1].

Find the operator B∗. Under what condition on k is the operator B self-
adjoint?

Solution

(Bu, v) =

∫ 1

0

(∫ 1

0

k(s, t)u(t)dt

)
v(s)ds =

∫ 1

0

u(t)

∫ 1

0

k(s, t)v(s)ds dt =

(u,B∗v),

where

(B∗v)(t) =

∫ 1

0

k(s, t)v(s)ds, t ∈ [0, 1],
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i.e.

(B∗v)(s) =

∫ 1

0

k(t, s)v(t)dt, s ∈ [0, 1].

It is clear that B is self-adjoint iff k(s, t) = k(t, s), ∀s, t ∈ [0, 1].

3. Let B be defined by

(Bf)(t) = tf(1− t3), ∀f ∈ L2([0, 1]), ∀t ∈ [0, 1].

Prove that B ∈ B(L2([0, 1])) and find B∗, BB∗ and B∗B.

Solution

Using the change of variable τ = 1− t3 we obtain

‖Bf‖2 =

∫ 1

0

t2|f(1− t3)|2dt = −1

3

∫ 0

1

|f(τ)|2dτ =

1

3

∫ 1

0

|f(τ)|2dτ =
1

3
‖f‖2, f ∈ L2([0, 1]).

Hence B ∈ B(L2([0, 1])) and ‖B‖ = 1/
√

3.
Further,

(Bf, g) =

∫ 1

0

tf(1− t3)g(t)dt =
1

3

∫ 1

0

1
3
√

1− τ
f(τ)g

(
3
√

1− τ
)
dτ =

1

3

∫ 1

0

f(τ)
1

3
√

1− τ
g
(

3
√

1− τ
)
dτ = (f,B∗g),

where

(B∗g)(τ) =
1

3 3
√

1− τ
g
(

3
√

1− τ
)
, τ ∈ [0, 1].

Consequently

(BB∗g)(t) = t
1

3 3
√

1− (1− t3)
g
(

3
√

1− (1− t3)
)

=
1

3
g(t), t ∈ [0, 1],

(B∗Bf)(τ) =
1

3 3
√

1− τ
3
√

1− τ f
(

1−
(

3
√

1− τ
)3)

=
1

3
f(τ), τ ∈ [0, 1].

Thus BB∗ = 1
3
I, B∗B = 1

3
I and 1√

3
B : L2([0, 1]) → L2([0, 1]) is a unitary

operator.
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4. Find the numerical range of the operator R : l2 → l2 defined by

Rx = (0, x1, x2, . . . ), x = (x1, x2, . . . ) ∈ l2.

Solution

Take an arbitrary x = (x1, x2, . . . ) ∈ l2 such that ‖x‖ = 1. Then

|(Rx, x)| =

∣∣∣∣∣
∞∑

k=1

xkxk+1

∣∣∣∣∣ ≤
∞∑

k=1

|xk||xk+1| =

1

2

∞∑
k=1

(|xk|2 + |xk+1|2)−
1

2

∞∑
k=1

(|xk| − |xk+1|)2 =

1− 1

2
|x1|2 −

1

2

∞∑
k=1

(|xk| − |xk+1|)2.

The RHS equals 1 iff |x1| = 0 and |xk+1| = |xk|, ∀k ∈ N, i.e. iff x = 0.
Therefore, if ‖x‖ = 1, we obtain |(Rx, x)| < 1, i.e.

Num(R) ⊂ {λ ∈ C : |λ| < 1}.

Take an arbitrary λ ∈ C such that |λ| < 1 and consider

x :=
√

1− |λ|2 (1, λ, λ
2
, λ

3
, . . . ) ∈ l2,

i.e.
x = (x1, x2, . . . ), xk =

√
1− |λ|2 λk−1

, k ∈ N.

It is easy to see that ‖x‖ = 1 and

(Rx, x) =
∞∑

k=1

xkxk+1 = (1− |λ|2)
∞∑

k=1

λ
k−1

λk = (1− |λ|2)λ
∞∑

k=1

|λ|2(k−1) =

(1− |λ|2)λ 1

1− |λ|2
= λ.

Hence λ ∈ Num(R) and

Num(R) = {λ ∈ C : |λ| < 1}.
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5. Let P be a non-trivial orthogonal projection (P 6= 0, I). Find its numeri-
cal range.

Solution

Since Ran(P ) = Ker(P )⊥ = Ran(I − P )⊥, we have for any x such that
‖x‖ = 1,

‖Px‖2 ≤ ‖Px‖2 + ‖(I − P )x‖2 = ‖x‖2 = 1,

(Px, x) = (Px, Px+ (I − P )x) = ‖Px‖2 ∈ [0, 1].

Consequently
Num(P ) ⊂ [0, 1].

Since P is non-trivial, Ran(P ) 6= {0}, Ker(P ) 6= {0} and there exist y ∈
Ran(P ), z ∈ Ker(P ) such that ‖y‖ = 1 = ‖z‖. Take an arbitrary t ∈ [0, 1]
and consider

x :=
√
t y +

√
1− t z.

Since y ⊥ z, it is easy to see that ‖x‖ = 1, Px =
√
t y and

(Px, x) = ‖Px‖2 = t.

Hence t ∈ Num(P ) and
Num(P ) = [0, 1].
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