OPERATOR THEORY

Solution VI

1. Prove that the norm $\|\cdot\|_p$ on l^p , $p \neq 2$, is not induced by an inner product. (*Hint:* Prove that for $x = (1, 1, 0, ...) \in l^p$ and $y = (1, -1, 0, ...) \in l^p$ the parallelogram law fails.)

Solution

It is easy to see that

$$||x + y||_p = 2 = ||x - y||_p, ||x||_p = 2^{1/p} = ||y||_p.$$

Hence the parallelogram law

$$||x + y||^{2} + ||x - y||^{2} = 2(||x||^{2} + ||y||^{2})$$

is equivalent to $8 = 4 \cdot 2^{2/p}$, i.e. to p = 2. So, if $p \neq 2$, the parallelogram law fails, i.e. the norm $\|\cdot\|_p$ is not induced by an inner product.

2. Prove that the norm $\|\cdot\|_p$, $p \neq 2$ on C([0, 1]) is not induced by an inner product. (*Hint:* Prove that for functions f(t) = 1/2 - t and

$$g(t) = \begin{cases} 1/2 - t & \text{if } 0 \le t \le 1/2 , \\ t - 1/2 & \text{if } 1/2 < t \le 1 , \end{cases}$$

the parallelogram law fails).

Solution

We have

$$f(t) + g(t) = \begin{cases} 1 - 2t & \text{if } 0 \le t \le 1/2 ,\\ 0 & \text{if } 1/2 < t \le 1 , \end{cases}$$
$$f(t) - g(t) = \begin{cases} 0 & \text{if } 0 \le t \le 1/2 ,\\ 1 - 2t & \text{if } 1/2 < t \le 1 , \end{cases}$$

$$\begin{split} \|f+g\|_{p} &= \left(\int_{0}^{1/2} (1-2t)^{p} dt\right)^{1/p} = \frac{1}{(2(p+1))^{1/p}},\\ \|f-g\|_{p} &= \left(\int_{1/2}^{1} |1-2t|^{p} dt\right)^{1/p} = \left(\int_{1/2}^{1} (2t-1)^{p} dt\right)^{1/p} = \\ \frac{1}{(2(p+1))^{1/p}},\\ \|f\|_{p} &= \left(\int_{0}^{1} |1/2-t|^{p} dt\right)^{1/p} = \\ \left(\int_{0}^{1/2} (1/2-t)^{p} dt + \int_{1/2}^{1} (t-1/2)^{p} dt\right)^{1/p} = \left(2\frac{1}{(p+1)2^{p+1}}\right)^{1/p} = \\ \frac{1}{2(p+1)^{1/p}} &= \|g\|_{p}. \end{split}$$

Hence the parallelogram law is equivalent to $2 \cdot 2^{-2/p} = 1$, i.e. to p = 2. So, if $p \neq 2$, the parallelogram law fails, i.e. the norm $\|\cdot\|_p$ is not induced by an inner product.

3. Let $\{e_n\}_{n\in\mathbb{N}}$ be an orthonormal set in an inner product space \mathcal{H} . Prove that

$$\sum_{n=1}^{\infty} |(x, e_n)(y, e_n)| \le ||x|| ||y||, \quad \forall x, y \in \mathcal{H}.$$

Solution

Using the Cauchy–Schwarz inequality for l^2 and Bessel's inequality for \mathcal{H} we obtain

$$\sum_{n=1}^{\infty} |(x, e_n)(y, e_n)| \le \left(\sum_{n=1}^{\infty} |(x, e_n)|^2\right)^{1/2} \left(\sum_{n=1}^{\infty} |(y, e_n)|^2\right)^{1/2} \le ||x|| ||y||.$$

4. Prove that in a complex inner product space $\mathcal H$ the following equalities hold:

$$(x,y) = \frac{1}{N} \sum_{k=1}^{N} ||x + e^{2\pi i k/N} y||^2 e^{2\pi i k/N} \text{ for } N \ge 3,$$
$$(x,y) = \frac{1}{2\pi} \int_0^{2\pi} ||x + e^{i\theta} y||^2 e^{i\theta} d\theta, \quad \forall x, y \in \mathcal{H}.$$

Solution

$$\begin{split} \frac{1}{N} \sum_{k=1}^{N} \|x + e^{2\pi i k/N} y\|^2 e^{2\pi i k/N} &= \frac{1}{N} \sum_{k=1}^{N} (x + e^{2\pi i k/N} y, x + e^{2\pi i k/N} y) e^{2\pi i k/N} = \\ \frac{1}{N} \sum_{k=1}^{N} \left(\|x\|^2 e^{2\pi i k/N} + (y, x) e^{4\pi i k/N} + (x, y) + \|y\|^2 e^{2\pi i k/N} \right) = \\ \frac{1}{N} \|x\|^2 \frac{e^{2\pi i (N+1)/N} - e^{2\pi i/N}}{e^{2\pi i/N} - 1} + \frac{1}{N} (y, x) \frac{e^{4\pi i (N+1)/N} - e^{4\pi i/N}}{e^{4\pi i/N} - 1} + (x, y) + \\ \frac{1}{N} \|y\|^2 \frac{e^{2\pi i (N+1)/N} - e^{2\pi i/N}}{e^{2\pi i/N} - 1} = (x, y), \end{split}$$

since $e^{2\pi i/N} \neq 1$ and $e^{4\pi i/N} \neq 1$ for $N \geq 3$. Similarly

$$\frac{1}{2\pi} \int_0^{2\pi} \|x + e^{i\theta}y\|^2 e^{i\theta} d\theta = \frac{1}{2\pi} \int_0^{2\pi} (x + e^{i\theta}y, x + e^{i\theta}y) e^{i\theta} d\theta = \frac{1}{2\pi} \|x\|^2 \int_0^{2\pi} e^{i\theta} d\theta + \frac{1}{2\pi} (y, x) \int_0^{2\pi} e^{2i\theta} d\theta + \frac{1}{2\pi} (x, y) \int_0^{2\pi} 1 d\theta + \frac{1}{2\pi} \|y\|^2 \int_0^{2\pi} e^{i\theta} d\theta = (x, y).$$

5. Show that $A^{\perp\perp} = \operatorname{span} A$ for any subset of a Hilbert space.

Solution

<u>Claim I:</u> For any subset M of a Hilbert space \mathcal{H} the orthogonal complement M^{\perp} is a closed linear subspace of \mathcal{H} (see Proposition 3.15(i)). Indeed, if $z_1, z_2 \in M^{\perp}$, then

$$(\alpha z_1 + \beta z_2, y) = \alpha(z_1, y) + \beta(z_2, y) = \alpha 0 + \beta 0 = 0, \quad \forall y \in M, \quad \forall \alpha, \beta \in \mathbb{F}$$

and hence, $\alpha z_1 + \beta z_2 \in M^{\perp}$. So, M^{\perp} is a linear subspace of \mathcal{H} . Suppose $z \in \operatorname{Cl}(M^{\perp})$. Then there exist $z_n \in M^{\perp}$, $n \in \mathbb{N}$ such that $z_n \to z$ as $n \to +\infty$. Therefore

$$(z,y) = \lim_{n \to +\infty} (z_n, y) = \lim_{n \to +\infty} 0 = 0, \quad \forall y \in M,$$

i.e. $z \in M^{\perp}$. Thus M^{\perp} is a closed linear subspace of \mathcal{H} . <u>Claim II:</u> $A \subset A^{\perp \perp}$ (see Proposition 3.15(ii)). Indeed, for any $x \in A$ we have

$$(x,y)=\overline{(y,x)}=0, \ \, \forall y\in A^{\perp},$$

i.e. $x \in A^{\perp \perp}$.

Since $A^{\perp\perp} = (A^{\perp})^{\perp}$ is a closed linear subspace of \mathcal{H} , we obtain

 $\operatorname{span} A \subset A^{\perp \perp}.$

Now, take any $x \in A^{\perp \perp}$. Since $\mathcal{H} = \operatorname{span} A \oplus (\operatorname{span} A)^{\perp}$, we have

 $x = z + y, \ z \in \operatorname{span} A, \ y \in (\operatorname{span} A)^{\perp},$

and therefore, $(x, y) = (z, y) + ||y||^2$. Since $y \in A^{\perp}$, we obtain $0 = ||y||^2$, i.e. y = 0, i.e. x = z, i.e. $x \in \text{span}A$. Consequently $A^{\perp \perp} \subset \text{span}A$. Finally,

$$A^{\perp\perp} = \mathrm{span}A.$$

6. Let M and N be closed subspaces of a Hilbert space. Show that $(M+N)^{\perp} = M^{\perp} \cap N^{\perp}, \quad (M \cap N)^{\perp} = \operatorname{Cl}(M^{\perp} + N^{\perp}).$

Solution

Let $z \in (M+N)^{\perp}$, i.e.

$$(z, x + y) = 0, \quad \forall x \in M, \ \forall y \in N.$$
(1)

Taking x = 0 or y = 0 we obtain

$$(z,x) = 0, \ \forall x \in M, \quad (z,y) = 0, \ \forall y \in N,$$

$$(2)$$

i.e. $z \in M^{\perp} \cap N^{\perp}$. Hence $(M + N)^{\perp} \subset M^{\perp} \cap N^{\perp}$. Suppose now $z \in M^{\perp} \cap N^{\perp}$, i.e. (2) holds. Then obviously, (1) holds, i.e $z \in (M + N)^{\perp}$. Therefore $M^{\perp} \cap N^{\perp} \subset (M + N)^{\perp}$. Thus

$$(M+N)^{\perp} = M^{\perp} \cap N^{\perp}.$$
 (3)

Writing (3) for M^{\perp} and N^{\perp} instead of M and N and using Exercise 5, we obtain

$$(M^{\perp} + N^{\perp})^{\perp} = M^{\perp \perp} \cap N^{\perp \perp} = M \cap N,$$

since M and N are closed linear subspaces. Taking the orthogonal complements of the LHS and the RHS and using Exercise 5 again, we arrive at

$$\operatorname{Cl}(M^{\perp} + N^{\perp}) = (M \cap N)^{\perp},$$

since $M^{\perp} + N^{\perp}$ is a linear subspace.

7. Show that $M := \{x = (x_n) \in l^2 : x_{2n} = 0, \forall n \in \mathbb{N}\}$ is a closed subspace of l^2 . Find M^{\perp} .

Solution

Take any $x, y \in M$. It is clear that for any $\alpha, \beta \in \mathbb{F}$

$$(\alpha x + \beta y)_{2n} = \alpha x_{2n} + \beta y_{2n} = 0,$$

i.e. $\alpha x + \beta y \in M$. Hence M is a linear subspace of l^2 . Let us prove that it is closed.

Take any $x \in Cl(M)$. There exist $x^{(k)} \in M$ such that $x^{(k)} \to x$ as $k \to +\infty$. Since $x_{2n}^{(k)} = 0$, we obtain

$$x_{2n} = \lim_{k \to +\infty} x_{2n}^{(k)} = 0,$$

i.e. $x \in M$. Hence M is closed. Further,

$$z \in M^{\perp} \iff (z, x) = 0, \ \forall x \in M \iff$$
$$\sum_{n=0}^{\infty} z_{2n+1} \overline{x_{2n+1}} = 0 \quad \text{for all} \ x_{2n+1} \in \mathbb{F}, \ n \in \mathbb{N},$$
such that
$$\sum_{n=0}^{\infty} |x_{2n+1}|^2 < +\infty \iff$$
$$z_{2n+1} = 0, \ \forall n = 0, 1, \dots$$

Therefore

$$M^{\perp} = \{ z = (z_n) \in l^2 : z_{2n+1} = 0, \forall n = 0, 1, \dots \}.$$

8. Show that vectors x_1, \ldots, x_N in an inner product space \mathcal{H} are linearly independent iff their *Gram matrix* $(a_{jk})_{j,k=1}^N = ((x_k, x_j))_{j,k=1}^N$ is nonsingular, i.e. iff the corresponding *Gram determinant* det $((x_k, x_j))$ does not equal zero. Take an arbitrary $x \in \mathcal{H}$ and set $b_j = (x, x_j)$. Show that, whether or not x_j are linearly independent, the system of equations

$$\sum_{k=1}^{N} a_{jk}c_k = b_j, \quad j = 1, \dots, N,$$

is solvable and that for any solution (c_1, \ldots, c_N) the vector $\sum_{j=1}^N c_j x_j$ is the nearest to x point of $\lim \{x_1, \ldots, x_N\}$.

Solution

Let $c_1, \ldots, c_N \in \mathbb{F}$. It is clear that

$$\sum_{k=1}^{N} c_k x_k = 0 \iff \left(\sum_{k=1}^{N} c_k x_k, y\right) = 0, \ \forall y \in \lim\{x_1, \dots, x_N\} \iff \left(\sum_{k=1}^{N} c_k x_k, x_j\right) = 0, \ \forall j = 1, \dots, N \iff \sum_{k=1}^{N} a_{jk} c_k = 0, \ \forall j = 1, \dots, N.$$

Therefore

the vectors x_1, \ldots, x_N are linearly independent $\iff \sum_{k=1}^N c_k x_k = 0$ iff $c_1 = \cdots = c_N = 0 \iff$ the system $\sum_{k=1}^N a_{jk} c_k = 0, \ j = 1, \ldots, N$ has only the trivial solution $c_1 = \cdots = c_N = 0 \iff$ $\det((x_k, x_j)) = \det(a_{jk}) \neq 0.$

For any $x \in \mathcal{H}$ and $b_j = (x, x_j), j = 1, \dots, N$ we have

the vector
$$\sum_{k=1}^{N} c_k x_k$$
 is the nearest to x point of
 $\lim\{x_1, \dots, x_N\} \iff$
 $x - \sum_{k=1}^{N} c_k x_k \in \lim\{x_1, \dots, x_N\}^{\perp} \iff$
 $\left(x - \sum_{k=1}^{N} c_k x_k, x_j\right) = 0, \ j = 1, \dots, N \iff$
 $\sum_{k=1}^{N} a_{jk} c_k = b_j, \ j = 1, \dots, N.$