OPERATOR THEORY

Solution V

1. Let $B \in \mathcal{B}(X)$ and let $T \in \mathcal{B}(Y, X)$ be invertible: $T^{-1} \in \mathcal{B}(X, Y)$. Prove that

$$\sigma(B) = \sigma(T^{-1}BT).$$

Solution

Since T is invertible,

$$\lambda \notin \sigma(B) \iff B - \lambda I \text{ is invertible } \iff T^{-1}(B - \lambda I)T \text{ is invertible}$$
$$\iff T^{-1}BT - \lambda I \text{ is invertible } \iff \lambda \notin \sigma(T^{-1}BT),$$

i.e. $\sigma(B) = \sigma(T^{-1}BT)$.

2. Consider the right-shift operator $R: l^{\infty} \to l^{\infty}$ defined by

$$Rx = (0, x_1, x_2, \dots), \quad x = (x_1, x_2, \dots) \in l^{\infty}.$$

Find the eigenvalues and the spectrum of this operator. Is this operator compact?

Solution

It is clear that $\text{Ker}(R) = \{0\}$, i.e. 0 is not an eigenvalue of R. Suppose $\lambda \neq 0$ is an eigenvalue of R. Then $Rx = \lambda x$ for some non-zero x. So,

$$0 = \lambda x_1$$
$$x_1 = \lambda x_2$$
$$x_2 = \lambda x_3$$
$$\dots$$

Solving the last system we obtain x = 0. Contradiction! Thus R does not have eigenvalues.

It is clear that ||Rx|| = ||x|| for any $x \in l^{\infty}$. Therefore ||R|| = 1 and $\sigma(R) \subset \{\lambda \in \mathbb{C} : |\lambda| \leq 1\}$. Let us take an arbitrary $\lambda \in \mathbb{C}$ such that $0 < |\lambda| < 1$. Suppose $\lambda \notin \sigma(R)$. Then the equation

$$(R - \lambda I)x = y \tag{1}$$

has a unique solution $x \in l^{\infty}$ for any $y \in l^{\infty}$. For y = (1, 0, 0, ...), (1) takes the form

$$-\lambda x_1 = 1$$
$$x_1 - \lambda x_2 = 0$$
$$x_2 - \lambda x_3 = 0$$
$$\dots$$

Solving the last system we obtain $x_k = -\lambda^{-k}$. Since $|\lambda| < 1$, the element $x = (x_1, x_2, ...)$ does not belong to l^{∞} . The obtained contradiction shows that $\lambda \in \sigma(R)$. Hence, $\{\lambda \in \mathbb{C} : 0 < |\lambda| < 1\} \subset \sigma(R)$. Taking into account that $\sigma(R)$ is closed we obtain

$$\sigma(R) = \{\lambda \in \mathbb{C} : |\lambda| \le 1\}.$$

The operator R is not compact. This follows from the fact that R is an isometry or from the fact that its spectrum cannot be the spectrum of a compact operator.

3. Consider the set

$$M = \{ x \in l^{\infty} : |x_n| \le n^{-\alpha}, n \in \mathbb{N} \} \subset l^{\infty},$$

where $\alpha > 0$ is a fixed number. Prove that M is compact.

Solution

It is clear that M is a closed set. Take an arbitrary $\varepsilon > 0$. There exists $N \in \mathbb{N}$ such that $n^{-\alpha} < \varepsilon, \forall n > N$. Let $\widetilde{x}^{(l)} = (x_1^{(l)}, \ldots, x_N^{(l)}) \in \mathbb{C}^N, l = 1, \ldots, L$ be a finite ε -net of the set

$$M_N := \{ \widetilde{x} = (x_1, \dots, x_N) \in \mathbb{C}^N : |x_n| \le n^{-\alpha}, n = 1, \dots, N \}.$$

Such an ε -net can be easily constructed with the help of ε -nets of the disks $\{x_n \in \mathbb{C} : |x_n| \leq n^{-\alpha}\}$. (The existence of such an ε -net also follows

from the fact that M_N is relatively compact as a bounded subset of the <u>finite-dimensional</u> space \mathbb{C}^N .) Now it is easy to see that

$$x^{(l)} := (x_1^{(l)}, \dots, x_N^{(l)}, 0, 0, \dots), \quad l = 1, \dots, L$$

is an ε -net of M. Hence M is a closed relatively compact set, i.e. a compact set.

(An alternative proof: it is clear that $M = T(S_{\infty})$, where $T \in \mathcal{B}(l^{\infty})$,

$$Tx := (x_1, 2^{-\alpha}x_2, 3^{-\alpha}x_3, \dots, n^{-\alpha}x_n, \dots), \quad x = (x_1, x_2, \dots) \in l^{\infty}$$

and S_{∞} is the unit ball of l^{∞} :

$$S_{\infty} = \{ x \in l^{\infty} : |x_n| \le 1, n \in \mathbb{N} \}$$

It is easy to see that $||T - T_N|| \to 0$ as $N \to +\infty$, where T_N is a <u>finite rank</u> operator defined by

$$T_N x := (x_1, 2^{-\alpha} x_2, \dots, N^{-\alpha} x_N, 0, 0 \dots), \quad x = (x_1, x_2, \dots) \in l^{\infty}.$$

Hence T is a compact operator and $M = T(S_{\infty})$ is a closed relatively compact set, i.e. a compact set.)

4. Let $g \in C([0,1])$ be a fixed function. Consider the operator $A \in \mathcal{B}(C([0,1]))$ defined by the formula

$$(Au)(s) := g(s)u(s),$$

i.e. the operator of multiplication by g. Is this operator compact?

Solution

It is clear that if $g \equiv 0$ then A is compact. Let us prove that t if $g \not\equiv 0$ then A is not compact. Indeed, since $g \not\equiv 0$, there exists a subinterval $[a, b] \subset [0, 1]$ such that $m := \min_{s \in [a,b]} |g(s)| > 0$. Consider the sequence $u_n \in C([0,1])$, $n \in \mathbb{N}, u_n(s) := \sin(2^n \frac{s-a}{b-a}\pi), s \in [0,1]$. It is clear that (u_n) is a bounded sequence. On the other hand (Au_n) does not have Cauchy subsequences. Indeed, take arbitrary $k, n \in \mathbb{N}$. Assume for definiteness that k > n, i.e. $k \ge n+1$. Let $s_n := a + 2^{-(n+1)}(b-a)$. Then $s_n \in [a,b]$ and

$$||Au_k - Au_n|| = \max_{s \in [0,1]} |g(s)(u_k(s) - u_n(s))| \ge m \max_{s \in [a,b]} |u_k(s) - u_n(s)| \ge m |u_k(s_n) - u_n(s_n)| = m |\sin(2^{k-n-1}\pi) - \sin(\pi/2)| = m |0-1| = m > 0.$$

Since (Au_n) does not have Cauchy subsequences, A is not compact.

(An alternative proof: according to the solution of Exercise 2, Sheet II, $\sigma(A) = g([0,1])$. If $g \not\equiv 0$ is a constant, then $0 \not\in g([0,1])$ and $\sigma(A)$ cannot be the spectrum of a compact operator. If g is nonconstant, then g([0,1]) is a connected subset of \mathbb{C} consisting of more than one point and $\sigma(A)$ cannot be the spectrum of a compact operator.)

5. Let X be an infinite-dimensional Banach space and $B, T \in \mathcal{B}(X)$. Which of the following statements are true?

(i) If BT is compact then either B or T is compact.

(ii) If $T^2 = 0$ then T is compact.

(iii) If $T^n = I$ for some $n \in \mathbb{N}$ then T is not compact.

Solution

(i) is false. This follows from the fact that (ii) is false.

(ii) is false. Indeed, let $X = l^p$, $1 \le p \le +\infty$ and

$$Tx = (0, x_1, 0, x_3, 0, x_5, 0, \dots), \quad x = (x_1, x_2, x_3, \dots) \in l^p.$$

Then $T^2 = 0$ and it is easy to see that T is not compact (why?).

(iii) is true. Indeed, suppose T is compact. Then $I = T^n$ is also compact, which is impossible, since X is infinite-dimensional. Contradiction!