
OPERATOR THEORY

Solution III

1. Let X be a Banach space and A,B ∈ B(X).
(a) Show that if I − AB is invertible, then I − BA is also invertible. [Hint:
consider B(I − AB)−1A+ I.]
(b) Prove that if λ ∈ σ(AB) and λ 6= 0, then λ ∈ σ(BA).
(c) Give an example of operators A and B such that 0 ∈ σ(AB) but 0 6∈
σ(BA).
(d) Show that σ(AB)

⋃
{0} = σ(BA)

⋃
{0}.

(e) Prove that r(AB) = r(BA).

Solution

(a) Suppose I − AB is invertible. Then since

(I −BA)
(
B(I − AB)−1A+ I

)
= (I −BA)B(I − AB)−1A+ (I −BA) =

B(I − AB)(I − AB)−1A+ (I −BA) = BA+ (I −BA) = I,

and(
B(I − AB)−1A+ I

)
(I −BA) = B(I − AB)−1A(I −BA) + (I −BA) =

B(I − AB)−1(I − AB)A+ (I −BA) = BA+ (I −BA) = I,

the operator I −BA is also invertible and (I −BA)−1 = B(I −AB)−1A+ I.

(b) Take an arbitrary λ ∈ σ(AB)\{0}. Suppose BA−λI = −λ(I− 1
λ
BA) is

invertible. Then I − 1
λ
BA is invertible and (a) implies that I − 1

λ
AB is also

invertible. Therefore −λ(I − 1
λ
AB) = AB−λI is invertible, i.e. λ 6∈ σ(AB).

This contradiction shows that BA−λI cannot be invertible, i.e. λ ∈ σ(BA).

(c) Consider the right and left shift operators R,L : lp → lp, 1 ≤ p ≤ ∞,

Rx = (0, x1, x2, . . . ), Lx = (x2, x3, . . . ), ∀x = (x1, x2, . . . ) ∈ lp.

It is easy to see that

LRx = L(0, x1, x2, . . . ) = x, RLx = R(x2, x3, . . . ) = (0, x2, x3, . . . ), ∀x ∈ lp.

Hence LR = I, while Ran(RL) 6= lp. Therefore LR is invertible while RL is
not, i.e. 0 ∈ σ(RL) but 0 6∈ σ(LR).
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(d) Follows from (b).

(e) Follows from (d) and the definition of the spectral radius.

2. Let X be a Banach space and let operators A,B ∈ B(X) commute:
AB = BA. Prove that r(A+B) ≤ r(A) + r(B).

Solution

Take an arbitrary ε > 0. The spectral radius formula implies that ‖An‖ ≤
(r(A) + ε)n, ‖Bn‖ ≤ (r(B) + ε)n for sufficiently large n ∈ N. Therefore there
exists M ≥ 1 such that

‖An‖ ≤M(r(A) + ε)n, ‖Bn‖ ≤M(r(B) + ε)n, ∀n ∈ N.

Since A and B commute, we have

(A+B)n =
n∑
k=0

n!

k!(n− k)!
An−kBk.

Hence,

‖(A+B)n‖ ≤
n∑
k=0

n!

k!(n− k)!

∥∥An−k∥∥∥∥Bk
∥∥ ≤

M2

n∑
k=0

n!

k!(n− k)!
(r(A) + ε)n−k(r(B) + ε)k = M2(r(A) + r(B) + 2ε)n

for any n ∈ N. Consequently

r(A+B) = lim
n→+∞

‖(A+B)n‖1/n ≤ r(A) + r(B) + 2ε, ∀ε > 0,

i.e. r(A+B) ≤ r(A) + r(B).

3. Let k ∈ C([0, 1] × [0, 1]) be a given function. Consider the operator
B ∈ B(C([0, 1])) defined by the formula

(Bu)(s) =

∫ s

0

k(s, t)u(t)dt.
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Find the spectral radius of B. What is the spectrum of B? [Hint: prove by
induction that

|(Bnu)(s)| ≤ Mn

n!
sn‖u‖∞, ∀n ∈ N,

for some constant M > 0.]

Solution

Let us prove by induction that

|(Bnu)(s)| ≤ Mn

n!
sn‖u‖∞, ∀s ∈ [0, 1], ∀n ∈ N, (1)

where
M := max

(s,t)∈[0,1]2
|k(s, t)|.

For n = 0 inequality (1) is trivial. Suppose (1) holds for n = k. Then for
n = k + 1 we have∣∣(Bk+1u

)
(s)
∣∣ =

∣∣∣∣∫ s

0

k(s, t)(Bku)(t)dt

∣∣∣∣ ≤ ∫ s

0

|k(s, t)|
∣∣(Bku)(t)

∣∣ dt ≤
M

∫ s

0

∣∣(Bku)(t)
∣∣ dt ≤M

∫ s

0

Mk

k!
tk‖u‖∞dt =

Mk+1

k!
‖u‖∞

∫ s

0

tkdt =

Mk+1

(k + 1)!
sk+1‖u‖∞, ∀s ∈ [0, 1].

Hence, (1) is proved by induction.
It follows from (1) that

‖Bnu‖∞ ≤
Mn

n!
‖u‖∞, ∀u ∈ C([0, 1]),

i.e.

‖Bn‖ ≤ Mn

n!
, ∀n ∈ N.

Therefore

r(B) = lim
n→+∞

‖Bn‖1/n ≤ lim
n→+∞

M

(n!)1/n
= 0.

Since r(B) = 0, σ(B) cannot contain nonzero elements. Taking into account
that σ(B) is nonempty we conclude σ(B) = {0}.

3


