
OPERATOR THEORY

Solution II

1. Let B ∈ B(C([0, 1])) be defined by the formula

Bf(t) = tf(t), t ∈ [0, 1].

Find σ(B) and the set of all eigenvalues of B.

Solution

σ(B) = [0, 1] and B does not have eigenvalues. This is a special case of
Question 2.

2. Let g ∈ C([0, 1]) be a fixed function and let A ∈ B(C([0, 1])) be defined
by the formula

Af(t) = g(t)f(t), t ∈ [0, 1].

Find σ(A) and construct effectively the resolvent R(A;λ). Find the eigen-
values and eigenvectors of A.

Solution

Let λ ∈ C, λ 6∈ g([0, 1]) := {g(t)| t ∈ [0, 1]}. Then since g ∈ C([0, 1]),
1/(g − λ) ∈ C([0, 1]) and A − λI has an inverse R(A;λ) = (A − λI)−1 ∈
B(C([0, 1])) defined by

R(A;λ)f(t) = (g(t)− λ)−1f(t), t ∈ [0, 1].

Hence σ(A) ⊂ g([0, 1]).
Suppose now λ ∈ g([0, 1]), i.e. λ = g(t0) for some t0 ∈ [0, 1]. Then (A −
λI)f(t0) = (g(t0) − λ)f(t0) = 0, i.e. Ran(A − λI) consist of functions
vanishing at t0. Consequently Ran(A − λI) 6= C([0, 1]) and A − λI is not
invertible. Therefore g([0, 1]) ⊂ σ(A). Finally, σ(A) = g([0, 1]).
Take an arbitrary λ ∈ g([0, 1]). Let g−1(λ) := {τ ∈ [0, 1] : g(τ) = λ}.
The equation Af = λf , i.e. (g(t) − λ)f(t) = 0 is equivalent to f(t) = 0,
∀t ∈ [0, 1] \ g−1(λ). If g−1(λ) contains an interval of positive length, then it
is easy to see that the set {f ∈ C([0, 1])\{0} : f(t) = 0, ∀t ∈ [0, 1]\g−1(λ)}
is non-empty and coincides with the set of all eigenvectors corresponding to
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the eigenvalue λ. If g−1(λ) does not contain an interval of positive length,
then [0, 1] \ g−1(λ) is dense in [0, 1] and f(t) = 0, ∀t ∈ [0, 1] \ g−1(λ) implies
by continuity that f ≡ 0. In this case λ is not an eigenvalue.

3. Let K ⊂ C be an arbitrary nonempty compact set. Construct an operator
B ∈ B(lp), 1 ≤ p ≤ ∞, such that σ(B) = K.

Solution

Let {λk}k∈N be a dense subset of K. Consider the operator B : lp → lp

defined by

Bx = (λ1x1, λ2x2, . . . , λkxk, . . . ), ∀x = (x1, x2, . . . ) ∈ lp.

Then B is a bounded linear operator and λk’s are its eigenvalues. (Why?)
Consequently {λk}k∈N ⊂ σ(B). Since σ(B) is closed and {λk}k∈N is dense in
K,

K ⊂ σ(B).

On the other hand, let λ ∈ C \K. Then d := infk∈N |λk − λ| > 0 and B− λI
has a bounded inverse (B − λI)−1 : lp → lp defined by

(B − λI)−1x =

(
1

λ1 − λ
x1,

1

λ2 − λ
x2, . . . ,

1

λk − λ
xk, . . .

)
,

∀x = (x1, x2, . . . ) ∈ lp.

Hence λ 6∈ σ(B). Therefore
σ(B) ⊂ K.

Finally,
σ(B) = K

4. Let k ∈ C([0, 1]) be a given function. Consider the operator B ∈
B(C([0, 1])) defined by the formula

(Bu)(s) =

∫ s

0

k(t)u(t)dt.
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Construct effectively (not as a power series!) the resolvent of A. How does
this resolvent R(B;λ) behave when λ→ 0?

Solution

It is clear that Bu is continuously differentiable for any u ∈ C([0, 1]). Hence,
Ran(B) 6= C([0, 1]) and B is not invertible, i.e. 0 ∈ σ(B).

Suppose now λ 6= 0. Consider the equation (B−λI)u = f , f ∈ C([0, 1]), i.e.∫ s

0

k(t)u(t)dt− λu(s) = f(s), s ∈ [0, 1]. (1)

Suppose this equation has a solution u ∈ C([0, 1]). Then∫ s

0

k(t)u(t)dt = f(s) + λu(s), s ∈ [0, 1].

Therefore f + λu is continuously differentiable and

k(s)u(s) = (f(s) + λu(s))′, s ∈ [0, 1].

If f is continuously differentiable, then

k(s)u(s) = f ′(s) + λu′(s), s ∈ [0, 1],

i.e.

u′(s)− 1

λ
k(s)u(s) = −1

λ
f ′(s), s ∈ [0, 1]. (2)

Taking s = 0 in (1) gives

u(0) = −1

λ
f(0).

Solving (2) with this initial condition we obtain

u(s) = e
1
λ

∫ s
0 k(τ)dτ

(
−1

λ
f(0)−

∫ s

0

1

λ
f ′(t)e−

1
λ

∫ t
0 k(τ)dτdt

)
=

e
1
λ

∫ s
0 k(τ)dτ

(
− 1

λ
f(0)− 1

λ
f(t)e−

1
λ

∫ t
0 k(τ)dτ

∣∣∣s
0
−

1

λ2

∫ s

0

f(t)k(t)e−
1
λ

∫ t
0 k(τ)dτdt

)
= −1

λ
f(s)− 1

λ2

∫ s

0

f(t)k(t)e
1
λ

∫ s
t k(τ)dτdt.

Let

Aλf(s) := −1

λ
f(s)− 1

λ2

∫ s

0

f(t)k(t)e
1
λ

∫ s
t k(τ)dτdt. (3)
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It is easy to see that Aλ : C([0, 1])→ C([0, 1]) is a bounded linear operator.
The above argument shows that if f is continuously differentiable and (1)
has a solution u ∈ C([0, 1]), then u = Aλf . In particular, (1) with f = 0 has
only a trivial solution u = 0, i.e. Ker(B − λI) = {0}.
For any f ∈ C([0, 1]) and u = Aλf the function

f(s) + λu(s) = −1

λ

∫ s

0

f(t)k(t)e
1
λ

∫ s
t k(τ)dτdt

is continuously differentiable and

(f(s) + λu(s))′ = −1

λ
f(s)k(s)− k(s)

λ2

∫ s

0

f(t)k(t)e
1
λ

∫ s
t k(τ)dτdt =

k(s)Aλf(s) = k(s)u(s)

(see (3)). Hence

f(s) + λu(s) =

∫ s

0

k(t)u(t)dt+ const.

It follows from (3) that f(0) + λu(0) = f(0) + λAλf(0) = 0. Therefore

f(s) + λu(s) =

∫ s

0

k(t)u(t)dt,

i.e. f = (B−λI)Aλf , ∀f ∈ C([0, 1]), i.e. (B−λI)Aλ = I. Consequently Aλ
is a right inverse of B−λI and Ran(B−λI) = C([0, 1]). Since Ker(B−λI) =
{0}, the operator B − λI is invertible for any λ 6= 0 and (B − λI)−1 = Aλ.
Thus

σ(B) = {0} and R(B;λ) = Aλ, ∀λ 6= 0,

where Aλ is given by (3).
It follows from the well known property of the resolvent that ‖R(B;λ)‖ ≥
1/|λ|, ∀λ 6= 0. So ‖R(B;λ)‖ → ∞ as λ → 0. If k ≡ 0, the above inequality
becomes an equality. Let us show that if k 6≡ 0, then ‖R(B;λ)‖ grows much
faster than 1/|λ| as λ→ 0 in a certain direction. Indeed,

(R(B;λ)1)(s) = (Aλ1)(s) = −1

λ
− 1

λ2

∫ s

0

k(t)e
1
λ

∫ s
t k(τ)dτdt =

−1

λ
+

1

λ
e

1
λ

∫ s
t k(τ)dτ

∣∣∣s
0

= −1

λ
e

1
λ

∫ s
0 k(τ)dτ .

Further, k 6≡ 0 implies
∫ s

0
k(τ)dτ 6≡ 0. Let

C := max
[0,1]

∣∣∣∣∫ s

0

k(τ)dτ

∣∣∣∣ =

∣∣∣∣∫ s0

0

k(τ)dτ

∣∣∣∣ > 0.
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Then for λ such that 1
λ

∫ s0
0
k(τ)dτ > 0 we have

‖R(B;λ)‖ ≥ ‖R(B;λ)1‖ ≥ 1

|λ|
eC/|λ| as λ→ 0.

5. Let A,B ∈ B(X). Show that for any λ ∈ ρ(A)
⋂
ρ(B),

R(B;λ)−R(A;λ) = R(B;λ)(A−B)R(A;λ).

Solution

R(B;λ)(A−B)R(A;λ) = R(B;λ)((A− λI)− (B − λI))R(A;λ) =

R(B;λ)−R(A;λ).
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