OPERATOR THEORY

Solution II

1. Let $B \in \mathcal{B}(C([0,1]))$ be defined by the formula

$$
B f(t)=t f(t), \quad t \in[0,1] .
$$

Find $\sigma(B)$ and the set of all eigenvalues of B.

Solution

$\sigma(B)=[0,1]$ and B does not have eigenvalues. This is a special case of Question 2.
2. Let $g \in C([0,1])$ be a fixed function and let $A \in \mathcal{B}(C([0,1]))$ be defined by the formula

$$
A f(t)=g(t) f(t), \quad t \in[0,1] .
$$

Find $\sigma(A)$ and construct effectively the resolvent $R(A ; \lambda)$. Find the eigenvalues and eigenvectors of A.

Solution

Let $\lambda \in \mathbb{C}, \lambda \notin g([0,1]):=\{g(t) \mid t \in[0,1]\}$. Then since $g \in C([0,1])$, $1 /(g-\lambda) \in C([0,1])$ and $A-\lambda I$ has an inverse $R(A ; \lambda)=(A-\lambda I)^{-1} \in$ $\mathcal{B}(C([0,1]))$ defined by

$$
R(A ; \lambda) f(t)=(g(t)-\lambda)^{-1} f(t), \quad t \in[0,1] .
$$

Hence $\sigma(A) \subset g([0,1])$.
Suppose now $\lambda \in g([0,1])$, i.e. $\lambda=g\left(t_{0}\right)$ for some $t_{0} \in[0,1]$. Then $(A-$ $\lambda I) f\left(t_{0}\right)=\left(g\left(t_{0}\right)-\lambda\right) f\left(t_{0}\right)=0$, i.e. $\operatorname{Ran}(A-\lambda I)$ consist of functions vanishing at t_{0}. Consequently $\operatorname{Ran}(A-\lambda I) \neq C([0,1])$ and $A-\lambda I$ is not invertible. Therefore $g([0,1]) \subset \sigma(A)$. Finally, $\sigma(A)=g([0,1])$.
Take an arbitrary $\lambda \in g([0,1])$. Let $g^{-1}(\lambda):=\{\tau \in[0,1]: g(\tau)=\lambda\}$. The equation $A f=\lambda f$, i.e. $(g(t)-\lambda) f(t)=0$ is equivalent to $f(t)=0$, $\forall t \in[0,1] \backslash g^{-1}(\lambda)$. If $g^{-1}(\lambda)$ contains an interval of positive length, then it is easy to see that the set $\left\{f \in C([0,1]) \backslash\{0\}: f(t)=0, \forall t \in[0,1] \backslash g^{-1}(\lambda)\right\}$ is non-empty and coincides with the set of all eigenvectors corresponding to
the eigenvalue λ. If $g^{-1}(\lambda)$ does not contain an interval of positive length, then $[0,1] \backslash g^{-1}(\lambda)$ is dense in $[0,1]$ and $f(t)=0, \forall t \in[0,1] \backslash g^{-1}(\lambda)$ implies by continuity that $f \equiv 0$. In this case λ is not an eigenvalue.
3. Let $K \subset \mathbb{C}$ be an arbitrary nonempty compact set. Construct an operator $B \in \mathcal{B}\left(l^{p}\right), 1 \leq p \leq \infty$, such that $\sigma(B)=K$.

Solution

Let $\left\{\lambda_{k}\right\}_{k \in \mathbb{N}}$ be a dense subset of K. Consider the operator $B: l^{p} \rightarrow l^{p}$ defined by

$$
B x=\left(\lambda_{1} x_{1}, \lambda_{2} x_{2}, \ldots, \lambda_{k} x_{k}, \ldots\right), \quad \forall x=\left(x_{1}, x_{2}, \ldots\right) \in l^{p} .
$$

Then B is a bounded linear operator and λ_{k} 's are its eigenvalues. (Why?) Consequently $\left\{\lambda_{k}\right\}_{k \in \mathbb{N}} \subset \sigma(B)$. Since $\sigma(B)$ is closed and $\left\{\lambda_{k}\right\}_{k \in \mathbb{N}}$ is dense in K,

$$
K \subset \sigma(B)
$$

On the other hand, let $\lambda \in \mathbb{C} \backslash K$. Then $d:=\inf _{k \in \mathbb{N}}\left|\lambda_{k}-\lambda\right|>0$ and $B-\lambda I$ has a bounded inverse $(B-\lambda I)^{-1}: l^{p} \rightarrow l^{p}$ defined by

$$
\begin{array}{r}
(B-\lambda I)^{-1} x=\left(\frac{1}{\lambda_{1}-\lambda} x_{1}, \frac{1}{\lambda_{2}-\lambda} x_{2}, \ldots, \frac{1}{\lambda_{k}-\lambda} x_{k}, \ldots\right), \\
\forall x=\left(x_{1}, x_{2}, \ldots\right) \in l^{p} .
\end{array}
$$

Hence $\lambda \notin \sigma(B)$. Therefore

$$
\sigma(B) \subset K
$$

Finally,

$$
\sigma(B)=K
$$

4. Let $k \in C([0,1])$ be a given function. Consider the operator $B \in$ $\mathcal{B}(C([0,1]))$ defined by the formula

$$
(B u)(s)=\int_{0}^{s} k(t) u(t) d t .
$$

Construct effectively (not as a power series!) the resolvent of A. How does this resolvent $R(B ; \lambda)$ behave when $\lambda \rightarrow 0$?

Solution

It is clear that $B u$ is continuously differentiable for any $u \in C([0,1])$. Hence, $\operatorname{Ran}(B) \neq C([0,1])$ and B is not invertible, i.e. $0 \in \sigma(B)$.

Suppose now $\lambda \neq 0$. Consider the equation $(B-\lambda I) u=f, f \in C([0,1])$, i.e.

$$
\begin{equation*}
\int_{0}^{s} k(t) u(t) d t-\lambda u(s)=f(s), \quad s \in[0,1] . \tag{1}
\end{equation*}
$$

Suppose this equation has a solution $u \in C([0,1])$. Then

$$
\int_{0}^{s} k(t) u(t) d t=f(s)+\lambda u(s), \quad s \in[0,1] .
$$

Therefore $f+\lambda u$ is continuously differentiable and

$$
k(s) u(s)=(f(s)+\lambda u(s))^{\prime}, \quad s \in[0,1] .
$$

If f is continuously differentiable, then

$$
k(s) u(s)=f^{\prime}(s)+\lambda u^{\prime}(s), \quad s \in[0,1],
$$

i.e.

$$
\begin{equation*}
u^{\prime}(s)-\frac{1}{\lambda} k(s) u(s)=-\frac{1}{\lambda} f^{\prime}(s), \quad s \in[0,1] . \tag{2}
\end{equation*}
$$

Taking $s=0$ in (1) gives

$$
u(0)=-\frac{1}{\lambda} f(0) .
$$

Solving (2) with this initial condition we obtain

$$
\begin{aligned}
& u(s)=e^{\frac{1}{\lambda} \int_{0}^{s} k(\tau) d \tau}\left(-\frac{1}{\lambda} f(0)-\int_{0}^{s} \frac{1}{\lambda} f^{\prime}(t) e^{-\frac{1}{\lambda} \int_{0}^{t} k(\tau) d \tau} d t\right)= \\
& e^{\frac{1}{\lambda} \int_{0}^{s} k(\tau) d \tau}\left(-\frac{1}{\lambda} f(0)-\left.\frac{1}{\lambda} f(t) e^{-\frac{1}{\lambda} \int_{0}^{t} k(\tau) d \tau}\right|_{0} ^{s}-\right. \\
& \left.\frac{1}{\lambda^{2}} \int_{0}^{s} f(t) k(t) e^{-\frac{1}{\lambda} \int_{0}^{t} k(\tau) d \tau} d t\right)=-\frac{1}{\lambda} f(s)-\frac{1}{\lambda^{2}} \int_{0}^{s} f(t) k(t) e^{\frac{1}{\lambda} \int_{t}^{s} k(\tau) d \tau} d t .
\end{aligned}
$$

Let

$$
\begin{equation*}
A_{\lambda} f(s):=-\frac{1}{\lambda} f(s)-\frac{1}{\lambda^{2}} \int_{0}^{s} f(t) k(t) e^{\frac{1}{\lambda} \int_{t}^{s} k(\tau) d \tau} d t \tag{3}
\end{equation*}
$$

It is easy to see that $A_{\lambda}: C([0,1]) \rightarrow C([0,1])$ is a bounded linear operator. The above argument shows that if f is continuously differentiable and (1) has a solution $u \in C([0,1])$, then $u=A_{\lambda} f$. In particular, (1) with $f=0$ has only a trivial solution $u=0$, i.e. $\operatorname{Ker}(B-\lambda I)=\{0\}$.
For any $f \in C([0,1])$ and $u=A_{\lambda} f$ the function

$$
f(s)+\lambda u(s)=-\frac{1}{\lambda} \int_{0}^{s} f(t) k(t) e^{\frac{1}{\lambda} \int_{t}^{s} k(\tau) d \tau} d t
$$

is continuously differentiable and

$$
\begin{array}{rl}
(f(s)+\lambda u(s))^{\prime}=-\frac{1}{\lambda} f(s) k(s)-\frac{k(s)}{\lambda^{2}} \int_{0}^{s} & f(t) k(t) e^{\frac{1}{\lambda} \int_{t}^{s} k(\tau) d \tau} d t= \\
& k(s) A_{\lambda} f(s)=k(s) u(s)
\end{array}
$$

(see (3)). Hence

$$
f(s)+\lambda u(s)=\int_{0}^{s} k(t) u(t) d t+\text { const. }
$$

It follows from (3) that $f(0)+\lambda u(0)=f(0)+\lambda A_{\lambda} f(0)=0$. Therefore

$$
f(s)+\lambda u(s)=\int_{0}^{s} k(t) u(t) d t
$$

i.e. $f=(B-\lambda I) A_{\lambda} f, \forall f \in C([0,1])$, i.e. $(B-\lambda I) A_{\lambda}=I$. Consequently A_{λ} is a right inverse of $B-\lambda I$ and $\operatorname{Ran}(B-\lambda I)=C([0,1])$. Since $\operatorname{Ker}(B-\lambda I)=$ $\{0\}$, the operator $B-\lambda I$ is invertible for any $\lambda \neq 0$ and $(B-\lambda I)^{-1}=A_{\lambda}$. Thus

$$
\sigma(B)=\{0\} \quad \text { and } \quad R(B ; \lambda)=A_{\lambda}, \forall \lambda \neq 0,
$$

where A_{λ} is given by (3).
It follows from the well known property of the resolvent that $\|R(B ; \lambda)\| \geq$ $1 /|\lambda|, \forall \lambda \neq 0$. So $\|R(B ; \lambda)\| \rightarrow \infty$ as $\lambda \rightarrow 0$. If $k \equiv 0$, the above inequality becomes an equality. Let us show that if $k \not \equiv 0$, then $\|R(B ; \lambda)\|$ grows much faster than $1 /|\lambda|$ as $\lambda \rightarrow 0$ in a certain direction. Indeed,

$$
\begin{array}{r}
(R(B ; \lambda) 1)(s)=\left(A_{\lambda} 1\right)(s)=-\frac{1}{\lambda}-\frac{1}{\lambda^{2}} \int_{0}^{s} k(t) e^{\frac{1}{\lambda} \int_{t}^{s} k(\tau) d \tau} d t= \\
-\frac{1}{\lambda}+\left.\frac{1}{\lambda} e^{\frac{1}{\lambda} \int_{t}^{s} k(\tau) d \tau}\right|_{0} ^{s}=-\frac{1}{\lambda} e^{\frac{1}{\lambda} \int_{0}^{s} k(\tau) d \tau} .
\end{array}
$$

Further, $k \not \equiv 0$ implies $\int_{0}^{s} k(\tau) d \tau \not \equiv 0$. Let

$$
C:=\max _{[0,1]}\left|\int_{0}^{s} k(\tau) d \tau\right|=\left|\int_{0}^{s_{0}} k(\tau) d \tau\right|>0 .
$$

Then for λ such that $\frac{1}{\lambda} \int_{0}^{s_{0}} k(\tau) d \tau>0$ we have

$$
\|R(B ; \lambda)\| \geq\|R(B ; \lambda) 1\| \geq \frac{1}{|\lambda|} e^{C /|\lambda|} \text { as } \lambda \rightarrow 0
$$

5. Let $A, B \in \mathcal{B}(X)$. Show that for any $\lambda \in \rho(A) \bigcap \rho(B)$,

$$
R(B ; \lambda)-R(A ; \lambda)=R(B ; \lambda)(A-B) R(A ; \lambda)
$$

Solution

$$
\begin{array}{r}
R(B ; \lambda)(A-B) R(A ; \lambda)=R(B ; \lambda)((A-\lambda I)-(B-\lambda I)) R(A ; \lambda)= \\
R(B ; \lambda)-R(A ; \lambda) .
\end{array}
$$

