
OPERATOR THEORY

Solution I

1. Prove that B(F, Y ) is not a Banach space if Y is not complete. [Hint:
take a Cauchy sequence (yn) in Y which does not converge and consider the
sequence of operators (Bn),

Bnλ := λyn, ∀λ ∈ F.]

Solution

Take a Cauchy sequence (yn) in Y which does not converge and consider the
sequence of operators (Bn),

Bnλ := λyn, ∀λ ∈ F.

It is easy to see that Bn ∈ B(F, Y ) and ‖Bn‖ = ‖yn‖, n ∈ N. Since
(Bn − Bm)λ = λ(yn − ym), we have ‖Bn − Bm‖ = ‖yn − ym‖. Therefore
(Bn) is a Cauchy sequence in B(F, Y ). Suppose there exists B ∈ B(F, Y )
such that ‖Bn − B‖ → 0 as n → +∞. Let y := B1 ∈ Y . Then ‖yn − y‖ =
‖Bn1−B1‖ ≤ ‖Bn−B‖ → 0 as n→ +∞, i.e. the sequence (yn) converges to
y. This contradiction proves that (Bn) cannot be convergent. Hence B(F, Y )
is not a Banach space.

2. Give an example of a bounded linear operator A such that Ran(A) is not
closed. [Hint: consider the imbedding X → Y , where X is the space C([0, 1])
equipped with the norm ‖ · ‖∞ and Y = Lp([0, 1]) is the completion of the
normed space (C([0, 1]), ‖ · ‖p), 1 ≤ p <∞.]

Solution

Let X be the space C([0, 1]) equipped with the norm ‖·‖∞ and Y = Lp([0, 1])
be the completion of the normed space (C([0, 1]), ‖ · ‖p), 1 ≤ p < ∞. Let
A : X → Y be the imbedding: Af = f , ∀f ∈ X. Then Ran(A) = C([0, 1])
is dense in Y = Lp([0, 1]) but does not coincide with it. Therefore Ran(A)
cannot be closed.
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3. Give an example of a normed space and an absolutely convergent series
in it, which is not convergent.

Solution

Let X be an arbitrary normed non-Banach space (e.g., X = (C([0, 1]), ‖ ·‖p),
1 ≤ p < ∞). Then there exists a Cauchy sequence (xn) in X which does
not converge. Since (xn) is Cauchy, for any k ∈ N there exists nk ∈ N such
that ‖xn − xm‖ ≤ 2−k, ∀n,m ≥ nk. Consider the series

∞∑
k=1

(xnk+1
− xnk

) . (1)

This series is absolutely convergent because

∞∑
k=1

‖xnk+1
− xnk

‖ ≤
∞∑

k=1

2−k = 1 < +∞.

On the other hand, (1) is not convergent in X. Indeed, if the sequence of
partial sums

∑j
k=1(xnk+1

−xnk
) = xnj+1

−xn1 is convergent as j → +∞, then
so is the sequence (xnj+1

) and also (xn), since (xn) is Cauchy. Contradiction!

4. Let X be the Banach space C([0, 1]) and Y be the space of all continuously
differentiable functions on [0, 1] which equal 0 at 0. Both of the spaces are
equipped with the norm ‖ · ‖∞. Show that the linear operator B : X → Y ,

(Bf)(t) :=

∫ t

0

f(τ)dτ,

is bounded, one–to–one and onto, but the inverse operator B−1 : Y → X
is not bounded. Compare this with the Banach theorem (bounded inverse
theorem).

Solution
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It is clear that ‖Bf‖∞ ≤ ‖f‖∞, ∀f ∈ C([0, 1]). So, B is bounded.
Suppose Bf1 = Bf2, i.e.∫ t

0

f1(τ)dτ =

∫ t

0

f2(τ)dτ, ∀t ∈ [0, 1].

Then differentiation gives f1(t) = f2(t), ∀t ∈ [0, 1], i.e. f1 = f2. So, B is
one–to–one.
Let ϕ be continuously differentiable and ϕ(0) = 0. Then ϕ′ ∈ X and

ϕ(t) =

∫ t

0

ϕ′(τ)dτ, ∀t ∈ [0, 1],

i.e. ϕ = Bϕ′. So, B is onto.
It follows from the above that B is invertible and

B−1ϕ(t) = ϕ′(t), ∀t ∈ [0, 1].

It is easy to see that B−1 : Y → X is not bounded. Indeed,

‖B−1 sin(nt)‖∞ = ‖n cos(nt)‖∞ = n ≥ n‖ sin(nt)‖∞, ∀n ∈ N.

This does not contradict the Banach theorem (bounded inverse theorem) be-
cause Y equipped with the norm ‖ · ‖∞ is not a Banach space.

5. Denote by C2([0, 1]) the space of twice continuously differentiable func-
tions on the interval [0, 1] equipped with the norm

‖u‖ := max
0≤s≤1

|u(s)|+ max
0≤s≤1

|u′(s)|+ max
0≤s≤1

|u′′(s)|.

LetX denote the subspace of C2([0, 1]) containing functions satisfying bound-
ary conditions u(0) = u(1) = 0. Prove that the operator A = − d2

ds2 is a
bounded operator acting from X to C([0, 1]).

Solution

The boundedness of A : X → C([0, 1]) follows directly from the definition
of the norm in X. (Note that C([0, 1]) is assumed to be equipped with the
norm ‖ · ‖∞.)
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6. Show that the operator A from the previous question has a bounded in-
verse A−1 : C([0, 1])→ X and construct it effectively.

Solution

Consider the equation Au = f , where f ∈ C([0, 1]) is given and u ∈ X

is unknown. It is equivalent to −d2u(s)
ds2 = f(s), ∀s ∈ [0, 1]. Successive

integration gives

du(s)

ds
= −

∫ s

0

f(τ)dτ + c1,

u(s) = −
∫ s

0

∫ t

0

f(τ)dτdt+ c1s+ c0,

where c1 and c0 are some constants. Now the boundary conditions u(0) =
u(1) = 0 imply c0 = 0 and

c1 =

∫ 1

0

∫ t

0

f(τ)dτdt.

Hence u = Rf , where

(Rf)(s) := −
∫ s

0

∫ t

0

f(τ)dτdt+ s

∫ 1

0

∫ t

0

f(τ)dτdt =

(s− 1)

∫ s

0

∫ t

0

f(τ)dτdt+ s

∫ 1

s

∫ t

0

f(τ)dτdt.

It is easy to see that Rf ∈ X, ∀f ∈ C([0, 1]) and

(ARf)(s) = − d2

ds2

(
−
∫ s

0

∫ t

0

f(τ)dτdt+ s

∫ 1

0

∫ t

0

f(τ)dτdt

)
=

d

ds

(∫ s

0

f(τ)dτ −
∫ 1

0

∫ t

0

f(τ)dτdt

)
= f(s), ∀s ∈ [0, 1],

(RAu)(s) = −
∫ s

0

∫ t

0

(−u′′(τ))dτdt+ s

∫ 1

0

∫ t

0

(−u′′(τ))dτdt =∫ s

0

(u′(t)− u′(0))dt− s
∫ 1

0

(u′(t)− u′(0))dt = u(s)− u(0)− u′(0)s

−su(1) + su(0) + su′(0) = u(s), ∀s ∈ [0, 1], ∀u ∈ X,
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since u(0) = u(1) = 0. Hence, AR = I and RA = I, i.e. A is invertible and
A−1 = R.
The boundedness of A−1 = R : C([0, 1])→ X can be obtained directly from
the definition of the norm in X. It also follows immediately from the Banach
theorem on the inverse operator. (Note that the completeness of X follows
from the well known results on uniform convergence.)
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