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ABSTRACT

The linear and nonlinear dynamics of layers of anomalously high potential vorticity (PV) are studied in detail.
It is well known that PV layers are subject to slow, balanced, mixed barotropic–baroclinic instabilities. In this
paper, it is shown that, in addition, PV layers are subject to a Kelvin–Helmholtz instability, operating on much
smaller spatial and faster temporal scales.

For simplicity, spatially infinite layers of uniform anomalous PV are considered. Such layers are characterized
by two key parameters: the ratio Dq of their anomalous PV to the background PV, and the angle a between the
layer and the direction of the ambient stratification gradient (in suitably scaled coordinates). It is found that
Kelvin–Helmholtz appears, for certain values of a, whenever Dq . 8.

Of notable interest is the case of an initially vertical PV layer embedded in a weak ambient shear flow: for
sufficiently large Dq, once the PV layer is tilted past a critical angle, Kelvin–Helmholtz instability becomes
possible. It is argued that the breakdown of PV layers due to a Kelvin–Helmholtz instability induced by ambient
shear might be an important systematic mechanism leading to irreversible mixing during stratosphere–troposphere
exchange events. This is discussed in the context of an example of Kelvin–Helmholtz instability observed near
a tropopause fold.

1. Introduction

It is now widely recognized that planetary and syn-
optic-scale Rossby waves in the atmosphere regularly
‘‘break’’ in a manner analogous to water waves on a
beach, notably at the edge of the polar vortex (e.g.,
McIntyre and Palmer 1984) and at the tropopause (e.g.,
Appenzeller et al. 1996). On isentropic surfaces, indi-
vidual wave breaking events are accompanied by the
formation of thin filaments of potential vorticity (PV;
Hoskins et al. 1985). The two-dimensional dynamics of
these filaments has been studies in much detail (Drit-
schel 1989; Dritschel et al. 1991; Waugh and Dritschel
1991).

In reality, however, these filaments are three-dimen-
sional layers of PV and, in general, they are tilted rel-
ative to the vertical direction. The above-mentioned
two-dimensional studies have examined the behavior of
such filaments in the special case in which they are
exactly vertical. An alternative view of the dynamics of
filaments, in which they are represented as an infinites-
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imal perturbation to a horizontal tropopause, has also
been proposed (Juckes 1995; Hakim et al. 2002). In this
study, we generalize the problem and address the issue
of stability for PV layers oriented at an arbitrary angle
to the vertical direction.

The key result of this study is that, when the PV
anomaly of the layer is sufficiently large, and when the
angle to the vertical is within certain bounds, the PV
layer becomes unstable to a Kelvin–Helmholtz (KH)
instability, whose characteristics are quite different from
those of the barotropic–baroclinic (BTBC) instabilities
that have been considered in previous work. This finding
suggests a potential mechanism for the mixing of a PV
layer and its chemical constituents down to scales that
are much smaller and in times that are much faster than
balanced dynamics would allow.

We envisage this mechanism to occur naturally as PV
layers are embedded in vertical shear flows. Although
a PV layer may be nearly vertical in the early stages of
its formation (Polvani and Saravanan 2000), it will be-
come KH unstable as it is tilted over by the shear. Such
tilting by external shears thus provides a spontaneous
way for the flow to transition from slow, balanced dy-
namics to a fast, unbalanced evolution. In other words,
the simple tilting by an external shear allows the flow
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to radically depart from the ‘‘slow manifold’’ (see, e.g.,
Ford et al. 2000, for a recent discussion).

The paper is organized as follows. In the next section
we set up the problem, describe its geometry, define the
key parameters, and then derive a version of the non-
hydrostatic Boussinesq equations in an appropriate tilt-
ing coordinate system. This allows us to capture the
dynamics of a tilting PV layer with a two-dimensional
set of equations. In section 3 we construct the balanced
flow associated with the tilting PV layer and then de-
termine the regimes under which the layer is unstable
to BTBC and/or KH modes in section 4. Numerical
experiments are presented in section 5, illustrating the
evolution of the PV layer under these instabilities. In
the final section, the relevance of the KH instability to
transport and mixing during stratosphere–troposphere
exchange is discussed in the context of recent obser-
vations, discussed in Cho et al. (1999), following a tro-
popause fold.

2. Derivation of the model equations

To study the dynamics of an infinite tilted layer of
anomalous PV embedded in a stratified, rotating envi-
ronment with uniform buoyancy frequency N and ro-
tation rate f /2, we start from the full three-dimensional
Boussinesq equations for velocity u 5 (u, y, w), buoy-
ancy b, and geopotential f:

u 1 (Lz 1 u)u 1 yu 1 w(u 1 L) 5 2f 1 f y ,t x y z x

y 1 (Lz 1 u)y 1 yy 1 wy 5 2f 2 fu,t x y z y

w 1 (Lz 1 u)w 1 yw 1 ww 5 2f 1 b,t x y z z

2b 1 (Lz 1 u)b 1 yb 1 w(b 1 N ) 5 f Ly ,t x y z

u 1 y 1 w 5 0. (1)x y z

Note that we have allowed for the presence of an am-
bient vertical shear 5 (Lz, 0, 0), and that the stratifiedu
ambient buoyancy field is in thermal wind balanceb
with it; that is, we have 5 N 2z 2 fLy.b

These equations are nondimensionalized using

x, y ; L, z ; H, u, y ; NH,
2w ; NH /L, t ; L /NH, L ; N,

2 2 2b ; N H, f ; N H , (2)

where H and L are characteristic vertical and horizontal
scales of the flow associated with the PV layer. In terms
of the actual dimensions of the layer, H 5 f Lx/N, where
Lx is the width of the layer in the x direction, and the
horizontal scale L will depend on the type of motion
induced by the layer. Note that the layer width Lx does
not change as the layer is tilted by the shear flow. Notice
also that we have avoided using an explicit velocity
scale in (2), as the magnitude of the induced velocities
will be set by the scale of the instabilities. We have also
avoided using f explicitly in the scalings as we do not

wish to anticipate a priori the importance of rotation in
the motions induced by the layer. These choices result
in the nondimensional equations:

u 1 (Lz 1 u)u 1 yu 1 w(u 1 L) 5 2f 1 ey ,t x y z x

y 1 (Lz 1 u)y 1 yy 1 wy 5 2f 2 eu,t x y z y

2d [w 1 (Lz 1 u)w 1 yw 1 ww ] 5 2f 1 b,t x y z z

b 1 (Lz 1 u)b 1 yb 1 w(b 1 1) 5 eLy , andt x y z

u 1 y 1 w 5 0. (3)x y z

Two nondimensional numbers appear in these equations:

e 5 fL/NH 5 L/Lx

is a measure of the relative importance of rotation and
buoyancy effects (e22 is the Burger number), and

d 5 H/L

is a typical ratio of the horizontal to vertical scales of
the flow under consideration. The rationale behind our
choice of scaling is that the PV layer may induce motion
on different space and time scales depending on which
instability is operative. Specifically, we envision two
key scaling choices:

• a ‘‘slow’’ or ‘‘balanced’’ scaling, associated with
BTBC instability, for which

f NH
21d 5 , e 5 1, t ; f , L ; 5 L ; (4)xN f

• a ‘‘fast’’ or ‘‘nonhydrostatic’’ scaling, associated with
KH instability, for which

f
21d 5 1, e 5 , t ; N , L ; H. (5)

N

Note that Prandtl’s ratio is Pr 5 de 5 f /N in either case
and is thus always small.

The next step consists of taking advantage of the fact
that the PV layer of interest is of infinite extent and
simplifying the set of Eqs. (3) to reduce the dimension-
ality by one. To accomplish this, we introduce a suitably
rotated coordinate system, whose geometry is illustrated
in Fig. 1. At any instant, the PV layer is tilted at an angle
a to the vertical in the correctly scaled coordinate system,
in which the z coordinate is ‘‘stretched’’ by the inverse
of Prandtl’s ratio Pr21 5 N/ f.

We define two new coordinates: Z perpendicular to
the layer and X parallel to the layer (see Fig. 1). Moving
up or down the layer in the X direction involves crossing
stratification surfaces (surfaces of constant buoyancy),
so the X direction is dynamically distinct from the (hor-
izontal) y direction, which is parallel to both the layer
and the stratification surfaces. Because stratification al-
most invariably acts to stabilize fluid flows, we postulate
that the layer will invariably be subject to primary in-
stabilities in the y direction and that the evolution of
these instabilities can thus be followed in the y–Z plane.
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FIG. 1. Schematic illustration of a PV layer, showing the coordinate
systems and the appropriate spatial scales for BTBC instability and
KH instability.

In order to consider the evolution of the PV layer in
two dimensions, we take u, y, w, b, and f to be functions
of y, Z, and t alone; that is,

u 5 u(y, Z, t), y 5 y(y, Z, t), w 5 w(y, Z, t),

b 5 b(y, Z, t), f 5 f(y, Z, t), (6)

where Z is the rotating coordinate perpendicular to the
PV layer (see Fig. 1) and is defined by

Z [ Gz 2 ex. (7)

Here, G [ tana 5 tana0 1 eLt, where a0 is the initial
angle between the layer and the vertical in scaled coor-
dinates. Under this transformation the Eqs. (3) become

u 1 yu 1 Wu 1 Lw 5 ef 1 ey , (8)t y Z Z

y 1 yy 1 Wy 5 2f 2 eu, (9)t y Z y

2d (w 1 yw 1 Ww ) 5 2Gf 1 b, (10)t y Z Z

b 1 yb 1 Wb 1 w 5 eLy , and (11)t y Z

y 1 W 5 0, (12)y Z

where U and W are the velocities along and perpendicular
to the tilting layer, respectively, and are given by

2U 5 Gu 1 ed w and W 5 Gw 2 eu. (13)

Combining (8) and (10), while recalling that G 5 G(t),
we get

U 1 yU 1 WU 5 eGy 1 eb 2 LW, (14)t y Z

2 2 2d (W 1 yW 1 WW ) 5 2(Pr 1 G )ft y Z Z

21 Gb 2 e y . (15)

For the purposes of numerical integration, it is helpful
to recast (8)–(12) into three prognostic equations. This
can be achieved by constructing a y–Z vorticity:

2 2 2z [ d W 2 (Pr 1 G )y ,y Z (16)

which satisfies the equation

z 1 yz 1 Wz 5 22eGLy 1 Gb 1 eGU . (17)t y Z Z y Z

The y and W velocities can be obtained from the y–Z
vorticity z by inverting

2 2 2d c 1 (Pr 1 G )c 5 z,yy ZZ (18)

where c is the streamfunction for y and W and satisfies

c 5 W and c 5 2y.y Z (19)

The final set of equations, to be used for time stepping
in the numerical model integrations, is then

z 1 yz 1 Wz 5 22eGLy 1 Gb 1 eGU , (20)t y Z Z y Z

U 1 yU 1 WU 5 eGy 1 eb 2 LW, and (21)t y Z

GW 1 eU
b 1 yb 1 Wb 5 eLy 2 . (22)t y Z 2 2Pr 1 G

These equations are similar to the equations for two-
dimensional, nonhydrostatic Boussinesq flow in the x–
z plane (as described, e.g., by Esler et al. 1999) except
for the addition of terms on the right-hand side that
reflect the fact the coordinate system has been tilted.

3. Balanced evolution of a tilting PV layer

One particular solution of the model equations (20)–
(22) above represents the balanced flow and buoyancy
field associated with a tilting, but otherwise unperturbed
PV layer. In this section we show that, in the case where
the layer is tilting due to (weak) uniform vertical shear,
a balanced solution exists so that the flow and buoyancy
field evolve ‘‘in balance’’ even as the layer tilts.

In the nonhydrostatic Boussinesq equations the PV is
defined as

q 5 ( fk 1 = 3 u) · =(b 1 b), (23)

and in the tilted coordinate system this becomes

z
2q 5 1 2 L 1 Gb 1 2 LUZ Z2 2Pr 1 G

GU1 y
1 b U 2 b U 2 1 Lb . (24)y Z Z y y2 21 2e Pr 1 G

We shall refer to the nondimensional units of q as back-
ground PV units (BPVU) where 1 BPVU [ fN 2. In
the absence of friction and diabatic effects, q can be
shown to satisfy the appropriate PV advection equation:

]q ]q ]q
1 y 1 W 5 0. (25)

]t ]y ]Z

The conservation equation ensures that if the PV is ini-
tially a function of Z alone, that is, q(y, Z , 0) 5 q(Z),
it retains the same distribution even as it is tilted by the
shear, so that q 5 q(Z) 5 q[z(G0 1 Lt) 2 ex] for all
time. In particular, this is the case for a uniform PV
layer satisfying

 h
q |Z | .0 2

q 5 (26)
hDq 1 q |Z | , .0 2
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Here q0 5 1 2 L2 is the PV due to the ambient strat-
ification plus the vertical shear, and Dq is the anomalous
PV characterizing the layer.

Although the problem of inverting an arbitrary dis-
tribution of PV q 5 q(y, Z) is highly nontrivial and
imprecisely defined,1 in the limit of weak of vertical
shear L K 1 it is relatively straightforward to invert
the simple distribution (26) to obtain a balanced velocity
and buoyancy distribution. The balanced y, b, and U
fields due to the layer can be found as follows. Ex-
ploiting the fact that W 5 cy [ 0, the y-independent
version of Eqs. (20)–(22) can be written

eGUZy 5 2 , (27)Zt 2 2Pr 1 G

eUZb 5 eLy 2 , (28)Zt Z 2 2Pr 1 G

U 5 e(Gy 1 b ). (29)Zt Z Z

To derive an evolving balanced solution from these
equations, it may be assumed that the rate at which the
balanced fields must adjust to remain in balance is com-
parable to the rate at which the layer is tilting. Hence,
a new time variable T 5 eLt can be introduced with
associated nondimensional units L21 f 21. Next, we ex-
pand each variable in powers of L:

(0) (1) 2 (2)y(Z, T ) 5 y 1 Ly 1 L y 1 · · ·
(0) (1) 2 (2)b(Z, T ) 5 b 1 Lb 1 L b 1 · · ·
(0) (1) 2 (2)U(Z, T ) 5 U 1 LU 1 L U 1 · · · . (30)

At leading order, the solution is easily shown to be

 GZ h
Dq |Z | ,

21 1 G 2 Gh h
(0) b 5 Dq Z .

22(1 1 G ) 2

Gh h2Dq Z , 2 ,
22(1 1 G ) 2

 Z h
2Dq |Z | ,

21 1 G 2 h h
(0) y 5 2Dq Z .

22(1 1 G ) 2

h hDq Z , 2 ,
22(1 1 G ) 2

(0)U 5 0. (31)

This leading order solution is also the exact balanced

1 Investing an arbitrary distribution q(y, Z) appears to be analogous
to the much-discussed problem of inverting two-dimensional PV dis-
tributions in the shallow water equations (McIntyre and Norton 2000).
If the distribution of PV is y independent, however, a distribution of
the form q(x, z) can be inverted (in the limit of weak L) by solving
a Monge–Ampere equation (e.g., Esler et al. 1999).

solution for a nontilting PV layer. As the layer tilts, and
G [ tana0 1 T increases, the layer’s buoyancy and
velocity distributions are adjusted due to advection in
the X direction by the velocity component U. The latter
can be shown to enter the balanced solution at the next
order. Inside the layer ( | Z | , h/2),

(1) (1)b 5 0, y 5 0,Z Z

2 222(Pr 1 G )
(1)U 5 Dq, (32)Z 2 2(G 1 1)

and 5 5 5 0 outside the layer. It is nec-(1) (1) (1)b y UZ Z Z

essary to obtain the solution at second order if U is to
remain close to (32) as the layer tilts. At this order inside
the layer we get

(2) 4 2 2 2 2 2 24y 5 (6G 2 2G 2 2Pr 1 10Pr G )(G 1 1) Dq,Z

(2) 4 2 2 2 2b 5 (22G 1 2G 1 6Pr 2 2Pr G 2 4)Z

2 243 (G 1 1) GDq,
(2)U 5 0. (33)Z

If Eqs. (27)–(29) are initialized with the balanced
solutions up to second order, that is, y 5 y (0) 1 L2y (2),
b 5 b (0) 1 L2b (2), U 5 LU(1), the velocity and buoyancy
fields will remain within O(L) of the leading order bal-
ance (31) even as the layer tilts an O(1) amount. These
are therefore suitable balanced buoyancy and velocity
fields with which to initialize our model in section 5.

4. Linear stability analysis

a. Condition for barotropic–baroclinic instability

To determine the linear stability of a PV layer (26)
with arbitrary Dq and a would require a detailed nu-
merical analysis of Eqs. (20) and (21). However, in-
structive analytic progress is easily made in the quasi-
geostrophic limit (d, Dq → 0). To further simplify mat-
ters, throughout this section we assume that the PV layer
is nontilting (L 5 0). As we will show, under suitable
rescaling the problem turns out to be mathematically
identical to that of the stability of a two-dimensional
filament of vorticity as first studied by Rayleigh (1894).
The dynamics of two-dimensional vorticity filaments
have been widely studied in the geophysical literature
(e.g., Dritschel 1989; Dritschel et al. 1991), as the same
equations describe the dynamics of barotropic or vertical
(a 5 0) PV layers of arbitrary Dq (subject to z-inde-
pendent disturbances). Notably, the effects of external
shear, strain, and rotation on the filament stability and
the consequent implications have been discussed. In the
absence of these external flows, however, the two-di-
mensional filament/vertical PV layer is found to be un-
stable to disturbances with horizontal wavelength great-
er than ø4.9L, where L is the width of the layer, with
the fastest growing disturbance having a wavelength
around 7.9L and a growth rate ø0.2 Dqf (Drazin and
Reid 1981, p. 146).
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Once the layer is tilted, its PV induces both velocity
and buoyancy perturbations, and Dq scales out of the
problem only in the quasigeostrophic limit Dq → 0. The
quasigeostrophic PV equation is recovered from Eqs.
(3) with L 5 0 by first assuming hydrostatic balance
(d 5 0). Exploiting the fact that u, y, w, and b are at
most O(Dq), and that time can be rescaled as t̃ 5 Dqt,
to leading order each variable is expanded in powers of
Dq. This yields geostrophic balance at leading order, and
standard manipulation of the first-order terms results in

] ] ]
2 f 1 f q̃ 5 0,y x1 2]t̃ ]x ]y

2q̃ 5 f 1 f 1 e fxx yy zz

1, |G 2 ex | , h /2,z5 50, |G 2 ex | . h /2.z

(34)

From the arguments of section 2, the primary instability
of the layer will be independent of the X coordinate.
Transforming coordinates and assuming that the distur-
bance depends only on y and Z, we obtain

] ] ]
1 ef 2 ef q̃ 5 0,y Z1 2]t̃ ]Z ]y

2 2q̃ 5 f 1 e (1 1 G )fyy ZZ

1, |Z | , h /2,
5 50, |Z | . h /2.

(35)

A further rescaling,

2 2 2 1/2f̂ 5 e (1 1 G )f, ŷ 5 e(1 1 G ) y,
2 21/2t̂ 5 (1 1 G ) t̃, (36)

allows this equation to be written

] ] ]
2 f̂ 1 f̂ q̃ 5 0,ˆZ y1 2]t̂ ]ŷ ]Z

q̃ 5 f̂ 1 f̂ˆ ˆyy ZZ

1, |Z | , h /2,
5 (37)50, |Z | . h /2.

With Eq. (37) we have recovered the two-dimensional
vorticity equation [Eq. (35) with G 5 0], with 2Z and
ŷ in the roles of x and y. The rescaling of time and
distance reveals that as the layer is tilted, the time scale
on which the instability develops increases with seca
[ (1 1 G2)1/2, whereas the length scale of the unstable
waves decreases in proportion to cosa. The BTBC in-
stability of a PV layer therefore is gradually suppressed
as the layer is tilted. This is perhaps not surprising since,

in the limit a → 908, the velocity induced by the anom-
alous PV in the layer vanishes, and only the buoyancy
fields carries a signature of the PV in the layer.

Of course, the above analysis applies only to the qua-
sigeostrophic limit Dq → 0. When Dq is finite, however,
it does not scale out of the problem, and away from the
Dq → 0 limit the normal mode structure depends on
Dq. In the numerical calculations in section 5 below we
will briefly investigate this dependence.

b. Condition for Kelvin–Helmholtz instability

The Miles–Howard condition for Kelvin–Helmholtz
instability (Miles 1961; Howard 1961) states that a nec-
essary condition for KH instability is that somewhere
in the flow, the Richardson number

b 1 b 1z zRi [ , . (38)
2 2u 1 y 4z z

This condition applies exactly to our Eqs. (20)–(22) in
the absence of rotation (e 5 0). However, because KH
instability has an aspect ratio of order unity (d ; 1),
the effect of rotation on the developing waves is very
weak (e ; Pr); that is, KH instability is described by
the fast scaling given by (5) above. As Pr is typically
very small in the atmosphere and oceans, we can use
the Miles–Howard criterion to diagnose when the lead-
ing-order balanced response to a PV layer given by (31)
becomes KH unstable.

For a layer of uniform PV, as given by (26), the Rich-
ardson number RiPV within the layer is given, in terms
of the parameters Dq and G [ tana and to leading order
in the vertical shear L, by the expression

2 2 2 21 1 Gb (G 1 1) 1 DqG (G 1 1)ZRi 5 5 . (39)PV 2 2 2 2G y G DqZ

Figure 2 is a contour plot of RiPV as a function of Dq
and a. The Miles–Howard stability boundary RiPV 5 1/
4 is given by the thick solid contour, with locations
above this line in the regime diagram subject to KH
instability. The dashed line indicates the angle of tilt am

corresponding to minimum Ri at a given value of Dq.
It is easily shown that am satisfies

21/4tana 5 G 5 (1 1 Dq) .m m (40)

Note that am tends toward 458 as Dq → 0.
A simple expression for the minimum value of Dq

for which KH instability may occur can be found by
solving

2 2 2 2(G 1 1) 1 DqG (G 1 1) 1m m m 5 , (41)
2 2G Dq 4m

whose relevant root yields

Dq 5 8. (42)

As is clear from Fig. 2, KH instability is therefore only
possible for some angles a when Dq . 8. For the mar-
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FIG. 2. The Richardson number Ri as a function of the angle of
orientation a [ tan21 G and anomalous PV in the layer Dq. The
Miles–Howard stability boundary Ri 5 0.25 is shown by the thick
solid line. The dotted lines have contour interval 0.1 (Ri 5 0.1 to
1.0) and the thin solid lines have contour interval 1 (Ri 5 1 to 5).
The dashed line shows the angle of minimum Ri for a given Dq. The
symbols show the locations of the numerical experiments described
in section 5 (the arrow corresponding to the tilting Kelvin–Helmholtz
experiment in Fig. 6).

ginally critical case Dq 5 8, it turns out that RiPV 5 1/
4 for an angle to the vertical am of 308.

A similar analysis can be applied to the case of layers
of anomalously low PV, with 21 , Dq , 0. Potential
vorticity layers with Dq in this range may occur when
tropospheric air is transported into the stratosphere.
From (39) it is easily shown that the minimum Rich-
ardson number for Dq in this range is RiPV 5 1, oc-
curring as Dq → 21 and a → 908. Hence, uniform low
PV layers are not subject to KH instability. Recall, in
addition, that for Dq , 21, the PV in the layer will be
opposite in sign to the background PV. Such layers,
which might result from transport across the equator
will, of course, be subject to inertial instability.

Traditionally, KH instability is discussed for flows
with arbitrary vertical shear U(z) and stratification N(z).
However, for balanced, rotating, stratified flows, U and
N are determined by the PV distribution, which thus
controls the Richardson number of the flow. It is such
an example of PV-based KH instability that is investi-
gated in the numerical experiments presented next.

5. Numerical results and interpretation

In this section we present results from numerical
integrations of Eqs. (20)–(22) in a domain that is pe-
riodic in both the y and Z directions, with dimensions

2pL* 3 2pH*. The geometry of the domain relative
to the tilted layer is illustrated in Fig. 1. The model
has been adapted from the pseudo-spectral code of Bar-
tello (1995) and was used in a different configuration
in Esler et al. (1999). The resolution employed in the
experiments described below is 128 3 256 Fourier
wavenumbers, in conjunction with a grid of 384 3 768
points. The greater resolution in the Z direction is used
to achieve a near-isotropic resolution within the
Kelvin–Helmholtz billows in the experiments de-
scribed below. A ¹ 4 hyperdiffusion is applied to the
z, U, and b fields to inhibit numerical instabilities. The
time step employed is in the range 0.001–0.01 non-
dimensional time units, depending on the value of Dq
(note that the units of time are either N 21 or f 21 , de-
pending on the scaling choices described in section 2).

The numerical experiments are initialized with initial
conditions based on the balanced state described in sec-
tion 3, y 5 y (0) 1 L2y (2), b 5 b (0) 1 L2b (2), U 5 LU(1)

plus some small noise to allow instabilities to develop.
Note that L 5 0 in many of the experiments described
below. To satisfy the constraints of periodicity in the Z
direction, it is necessary to modify the initial PV dis-
tribution slightly, as the domain-integrated PV anomaly
must be zero to allow periodicity in y and b. The total
PV outside the layer is therefore not q0 as in the ide-
alized case discussed in section 4 but q0 2 Dqh/(H* 2
h). Several numerical tests were therefore used to verify
that the numerical results were independent of the pa-
rameter h/H*, the ratio of the layer thickness to the
domain size in the Z direction, provided sufficiently
small values were used (2pH* 5 15h and 2pL* 5 30L
in most of the cases reported below).

a. Barotropic–baroclinic instability experiments

In this section we present numerical integrations of
BTBC roll-up of a PV layer in order to investigate the
behavior as Dq is varied, as well as to emphasize the
contrast with the KH instability described below. As we
are solving the set of Eqs. (20)–(22) in two dimensions,
there is an implicit assumption that the evolution of the
PV layer will remain X independent as the layer rolls-
up in the y–Z plane. As previously discussed, we believe
this is a reasonable assumption as the X direction in-
tersects stratification surfaces, which are likely to act to
suppress instability. It should be clear that, in order to
rigorously test the validity of this assumption, full three-
dimensional simulations would be necessary; these are,
however, beyond the scope of the present work.

BTBC instability involves balanced flow, in the sense
that the evolution may be described by the slow, bal-
anced scaling (4) and we therefore may solve (20)–(22)
with d 5 f /N, e 5 1, and t ; f 21. It is to be emphasised,
however, that the balance in question corresponds to
that assumed in quasigeostrophic theory only in the limit
Dq → 0. In all the experiments, Prandtl’s ratio is set to
Pr 5 f /N 5 1/100. The analysis of section 4a suggests
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FIG. 3. BTBC instability with Dq 5 1, a 5 308 (corresponding to G 5 0.577 35), and L 5 0. (left) Anomalous PV Dq (with nondimensional
values indicated by the color bar). (right) Total buoyancy 1 b, with contour intervals 0.4 N 2H; recall that the absolute value of buoyancyb
is arbitrary, hence the coloring scheme is used for illustration only.

that tilting of the layer will not have an important qual-
itative influence on the dynamics of BTBC instability,
so for the experiments in this section we take L 5 0
and a 5 308 (G ø 0.577 35). A series of integrations
with Dq 5 0.5, 1, 2, and 4 is performed.

Figure 3 shows the results from the experiment with

Dq 5 1. Waves eventually develop on the PV layer (by
t 5 64 f 21), and the layer is observed to roll-up into a
series of four ‘‘PV tubes’’ over the next 20–30 inertial
times (dimensionally, one inertial time f 21 at 458N is
approximately 2.7 h). Potential vorticity is materially
conserved throughout the experiment to a good ap-
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FIG. 4. As in Fig. 3, but for Dq 5 4.

proximation, except in the regions between the PV tubes
where relatively high strain causes the layer to be
thinned to the grid scale. It is notable that despite the
overturning of PV contours during the roll up the total
buoyancy field (Fig. 3, right) remains in balance; that
is, buoyancy surfaces are only weakly perturbed from
their initial state, with their configuration determined

entirely by the PV distribution. Furthermore, snapshots
of the buoyancy field reveal that far from the PV layer
the buoyancy contours remain almost unperturbed
throughout the roll up, suggesting that the roll up is
accompanied by very little radiation of gravity waves.

Figure 4 shows evolution of the instability for Dq 5
4. As expected the instability develops faster than for
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FIG. 5. The growth rate of the most unstable mode vs the anomalous
PV Dq, for three different angles of orientation: a 5 158 (diamonds),
308 (triangles), and 458 (squares). The unfilled points on the x axis
indicate the marginal stability value for each of the three cases, as
determined by the analysis of section 4; these values are Dq 5 8 (for
a 5 308); 4(1 1 ) (for a 5 458); and 8(k 1 2 ), where k 5Ï2 Ïk
2 2 (for a 5 158).Ï3

Dq 5 1 (the quasigeostrophic theory discussed above
suggests that the time scale for growth is proportional
to Dq21). However, Dq 5 4 is far from the quasigeo-
strophic limit (Dq → 0), and one consequence of this
is that the fastest growing normal mode for the PV layer
has doubled in wavelength compared with the Dq 5 1
case. As a result, the PV tubes that form appear more
elliptical. Another contrast with Fig. 3 is the degree to
which the surfaces of constant buoyancy are tilted dur-
ing the roll up of the PV layer. Although the slopes of
the buoyancy surfaces appear large compared to those
in Fig. 3, they nevertheless remain in balance with the
PV distribution, and the physical slope remains O(Pr)
at all times.

b. Kelvin–Helmholtz instability experiments

In this section we describe experiments that are either
initialized in the KH unstable region of parameter space
shown in Fig. 2 or are tilted into the unstable region by
the action of vertical shear. For this reason we use the
fast scalings for length and time scales (5) so that d 5
1, e 5 f /N, and t ; N 21. As above, we set Pr 5 1/
100. Note that KH instability also occurs if the slow
scaling is chosen, but that numerical problems result
because the KH billows are not resolved either in space
or time. BTBC instability, however, will not develop on
the short horizontal length scale of the fast scaling and,
in any case, would not be important on the short time
scale of the following experiments.

In Fig. 5, numerically calculated growth rates of the
fastest growing unstable KH mode are illustrated for a
range of values of Dq (from 9 to 13) and for three
different constant angles of tilt (a 5 158, 308, and 458,
and L 5 0). The growth rates are obtained directly from
model experiments (indicated by the symbols in Fig. 2)

by isolating the period where KH waves are growing
exponentially and identifying the wavenumber with the
fastest growth rate. On the abscissa we have also plotted
the point of marginal stability calculated analytically for
each angle of tilt, following the arguments outlined in
section 4. The numerical growth rate results are con-
sistent with the locations of the predicted stability
boundaries Dqc(a), with the growth rate vi of the fastest
growing KH wave approximately satisfying v i ; [Dq
2 Dqc(a)]. In the numerical experiments, the length
scale associated with the fastest growing KH wave is
also found to be strongly dependent on the angle of tilt
a. The wavelength of the fastest growing wave was
found numerically to be 22.53, 10.40, and 6.44 H 5
fLx/N for a 5 158, 308, and 458, respectively. This de-
pendency on a largely reflects the fact that the vertical
scale of the layer in physical coordinates equals HG21,
and hence decreases as the layer is tilted by the shear
flow.

The most interesting case, where an initially stable
PV layer is tilted by the ambient shear into a KH un-
stable regime, is illustrated in Fig. 6. The initial param-
eter settings are Dq 5 12 and G0 5 0.2 (corresponding
to a ø 11.38); the constant shear L 5 0.1. The change
in a during the experiment is indicated by the arrow in
Fig. 2. At the beginning of the experiment, the layer is
stable, and the initial noise added to perturb the layer
does not lead to exponential growth. As the layer is
tilted, however, it enters the unstable regime and ex-
ponential growth commences. Eventually, fully nonlin-
ear KH billows develop, as seen in the t 5 125N 21 and
137.5N 21 panels. These act to mix mass and momentum
across the region of the PV layer (e.g., Scinocca 1995).
The final state in the t 5 150N 21 panel shows the layer
to be fully turbulent and thoroughly mixed.

The most striking qualitative difference between the
development of a KH instability and the balanced BTBC
instability described above, leaving aside the different
length and time scales on which they develop, is clear
from Fig. 6: KH instability leads to overturning buoy-
ancy surfaces, whereas BTBC instability does not. Sharp
gradients develop in the buoyancy field within the over-
turning KH billows, and dissipation causes PV to no
longer be materially conserved within the layer. In our
model this dissipation is numerical, but PV nonconser-
vation within actual KH billows would also occur since,
no matter how low the thermal diffusivity, buoyancy
gradients inside the billows will eventually become
steep enough for diffusion to become important. At the
end of the numerical experiment (t 5 150N 21), the PV
field is rather noisy, and the mean PV in the final layer
has a mean value of Dq ø 6. Note that this final mean
value of PV does not depend on the specific details of
the diffusion (numerical or physical) because the total
PV substance integrated between two unbroken buoy-
ancy surfaces, above and below the layer, must remain
constant throughout the evolution of the instability
(Haynes and McIntyre 1987). Thus, the final mean PV



15 JUNE 2004 1401E S L E R A N D P O L V A N I

FIG. 6. Kelvin–Helmholtz instability with Dq 5 12. The ambient shear is L 5 0.1, and the initial angle of tilt is a0 ø 11.38 (corresponding
to G0 5 0.2). As in Fig. 3, the left panels show Dq (with values indicated by the color bar), and the right panels show the total buoyancy

1 b with contour interval 0.4 N 2H.b

value in the layer must be determined by the amount
of entrainment occurring during the KH roll up.

The evolution of the Richardson number and the ex-
ponential growth rate of the fastest growing mode dur-
ing the KH instability are shown in Fig. 7. The growth
rate is zero until the Richardson reaches the value of

0.22, after which point the growth rate starts to increase
as the layer tilts and Ri decreases further, until nonlinear
saturation of growth occurs late in the experiment. The
reason why exponential growth does not begin until Ri
5 0.22, as opposed to the canonical value Ri 5 0.25,
is that the scale of the periodic domain causes a dis-
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FIG. 7. Time evolution of the Richardson number (solid curve) and
the exponential growth rate of the wave-3 disturbance to the layer
(dashed curve), for the experiment in Fig. 6. The dotted line indicates
the Miles–Howard stability boundary at Ri 5 1/4.

cretization of the horizontal wavenumbers in our ex-
periment. For the linear growth rate calculations re-
ported for Fig. 5, the domain was extended to minimize
this effect. However, for the experiment in Figs. 6 and
7, the priority was to resolve the KH billows.

6. Discussion and conclusions

Having considered in detail the dynamics of tilted
layers of anomalous PV, we now discuss the implication
of our results for the atmosphere. The key to this lies
in determining where in the parameter diagram of Fig.
2 typical atmospheric PV layers are likely to be located.
In particular, one would like to determine whether ob-
served PV layers are likely to exceed the threshold Dq
5 8 required for KH instability. This appears unlikely
for layers in the winter stratospheric surf zone, as the
contrast in PV between the polar vortex and the surf
zone is such that Dq will seldom exceed 1.5–2 BPVU
(Waugh et al. 1994). For this reason, we have concen-
trated on tropospheric PV layers in the following, as a
wider range of Dq values are likely to be encountered
there.

Stratosphere–troposphere exchange events that may
lead to the formation of PV layers occur on a wide range
of spatial scales, in both the Tropics and the extratropics.
Some of the largest-scale events (H ; 5 km, L ; 1000
km) are observed in the Tropics in the vicinity of the
so-called ‘‘westerly duct’’ (Waugh and Polvani 2000;
Waugh and Funatsu 2003); background PV is low in
the Tropics, and thus large values of Dq are more likely
in such events. Extratropical events, such as the Cho et
al. (1999) tropopause fold discussed below, may ap-
proach similar spatial scales, with the important dis-
tinction that extratropical layers may be advected is-
entropically toward the ground, whereas in the Tropics
PV layers of stratospheric origin will remain aloft.
Smaller-scale events (H ; 500 m, L ; 50 km) have
also been widely studied in the extratropics, such as the
relatively thin layers of stratospheric origin observed
near the extratropical tropopause, and referred to as
‘‘streamers’’ (e.g., Vaughan et al. 2001). Also, strato-
spheric values of PV may be present in dry intrusion

air masses of frontal circulations (e.g., Browning 1990).
In general, however, smaller-scale PV layers will be
more strongly affected by turbulent mixing and diabatic
heating, thus reducing Dq (Haynes and Ward 1993; For-
ster and Wirth 2000).

We will focus our discussion on a large-scale extra-
tropical tropopause fold observed on 13 October 1997
during the Subsonic Assessment (SASS) Ozone and Ni-
trogen Oxides Experiment (SONEX) aircraft campaign.
This example is chosen because Cho et al. (1999) dis-
cuss in detail aircraft observations of KH waves in this
fold. It is therefore of interest to assess whether the
orientation and magnitude of the anomalous PV is with-
in the unstable KH range derived in section 4b above.

The tropopause fold is illustrated in Fig. 8. The quan-
tity contoured is reverse-domain-filling (RDF) European
Centre for Medium-Range Weather Forecasts
(ECMWF) operational analysis PV, that is ECMWF PV
evaluated 2 days previously along back trajectories start-
ed from a regular grid (e.g., Sutton et al. 1994). RDF
PV is used in preference to instantaneous PV as the
latter is diffused artificially during the model assimi-
lation on scales greater than that of the fold. Figure 8
shows the a horizontal map of the RDF PV on the 310-
K isentropic surface. The fold appears as a long filament
of high PV air that has been advected over North Amer-
ica (Hudson Bay can been seen in the map superimposed
on Fig. 8). We will concentrate on the SW–NE part of
the fold lying in the region of the two sections (X1)
and (X2).

Longitude–height sections of Ertel PV along (X1) and
(X2) are shown in Fig. 9, and illustrate the horizontal
and vertical extent of the PV layer that constitutes the
fold. The first of these sections (X1) is at the latitude
of the flight (398N), and the location of the measured
KH waves is marked with a black square. There is a
good correspondence between our RDF PV in the (X1)
section and measurements from the ozone lidar on board
the aircraft (cf. Plate 3 of Cho et al. 1999). The section
(X2) at 498N illustrates the latitudinal extent and co-
herence of the PV layer.

Figure 10 shows plots of RDF PV against longitude,
at a height of 7 km, and at the respective latitudes of
the sections (X1) and (X2). These reveal that the RDF
PV reaches values of 7–9 potential vorticity units
(PVUs; 1 PVU 5 1 3 1026 m2 s21 K kg21) in the layer,
whereas background values are found to be in the range
0.3–1.0 PVU. Thus, Dq would be in the range 7–30 in
background PV units. In addition, the aspect ratio of
the PV layer is around 80:1 suggesting a value for a
close to 308 (taking 100:1 as a typical tropospheric value
of N: f ). We therefore conclude that KH instability due
to the tilting of the PV layer is a plausible explanation
for the observed KH waves. This raises the possibility
that such KH instability may occur systematically in
many stratosphere–troposphere exchange events, and
may thus provide a mechanism for rapid mixing of
stratospheric chemical species into the troposphere.
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FIG. 8. Ertel PV on the 310-K isentropic surface at 1800 UTC 13 Oct 1997, for the tropopause
fold discussed in Cho et al. (1999). The PV is here calculated using the RDF technique, at 2 days
previously along back trajectories started on a 0.58 3 0.58 grid. The color code is based on PVUs.

FIG. 9. Ertel PV in the tropopause fold, along two longitude–height sections, as indicated by the solid white lines in Fig. 8. (left) Cross
section along (X1) at latitude 398N. The dotted line shows the trajectory of the SONEX flight, and the black square the location of the
measured KH waves. (right) Cross section along (X2; 498N). As in Fig. 8, the PV is computed using the RDF technique.
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FIG. 10. Ertel PV vs longitude, at constant latitude and height,
along the two horizontal sections indicated by the solid lines in Fig.
9. The two sections are at (X1; 398N) and (X2; 498N), and are both
at height 7 km.

Beyond the KH instability, we note that another po-
tential application of this work arises in the context of
PV tubes. We have shown that they can arise from tilted
PV layers as a result of BTBC instability, as is illustrated
in Figs. 3 and 4. Considerable evidence for the existence
of these tubes, at least in general circulation models,
was presented in Bithell et al. (1999), who showed that
such tubes arise in connection with tropopause folds
(see especially their Fig. 6). Note that the formation of
such tubes is a fundamentally different process from the
roll up of tropopause anomalies described by Wirth et
al. (1997). In the latter the tropopause is represented by
infinite jump in PV, but is perturbed only infinitesimally
in the vertical direction. That model (see also Juckes
1995) is, by construction, concerned with the dynamics
of a weakly distorted tropopause, whereas the dynamics
of PV layers we have considered in this paper are rel-
evant to the situation where the tropopause has been
strongly distorted, for example, by Rossby wave break-
ing.

Finally, we note that the sudden onset of KH insta-
bility to the tilting balanced state described in section
3 offers a clean example of a sudden departure from
the balanced slow manifold leading to fast, unbalanced
motion. The stripping of layers of high PV from the
tropopause, followed by tilting due to vertical shear,

therefore provides a continuous, ongoing mechanism for
the spontaneous in situ generation of unbalanced mo-
tion, and hence clear air turbulence, in the tropopause
region.
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