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Supercritical rotating flow over topography
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The flow of a one-and-a-half layer Boussinesq fluid over an obstacle of nondimensional height M,
relative to the lower layer depth, is investigated in the presence of rotation, the magnitude of which
is measured by a nondimensional parameter B (inverse Burger number). The supercritical regime in
which the Froude number F, the ratio of the flow speed to the interfacial gravity wave speed, is
significantly greater than one is considered in the shallow water (small aspect ratio) limit. The linear
drag exerted by the obstacle on the flow is shown to be M?/(F vm) X f(B/F*~1), where f is a
function specific to each obstacle. Explicit expressions are given for several common obstacle
shapes, and the results are checked against nonlinear flows simulated by a shock-capturing finite
volume numerical scheme. For flows within the supercritical regime (F—1> M?3) the linear drag
result is found to remain accurate up to (at least) M =0.7. The success of the linear drag theory can
be explained because, in the supercritical regime, strong nonlinearities are displaced to the wake
regions at the flanks of the obstacle. In the presence of weak rotation and for small obstacle height
the development of the nonlinear wakes is governed by the Ostrovsky—Hunter (OH) equation.
Across a V&Lerange of parameter space the wake pattern is determined by a single parameter
B=3M/B\F?>-1. Numerical solutions of the OH equation illustrate the dependence of flow patterns
and wave breaking regions on (3. Results are again verified by comparison with numerical solutions

of the full nonlinear rotating shallow water equations. © 2009 American Institute of Physics.

[DOLI: 10.1063/1.3139306]

I. INTRODUCTION

Rotating stratified flows over obstacles are ubiquitous in
the atmosphere and oceans. Understanding the fundamental
processes occurring in such flows is essential if the influence
of topography on the larger-scale flow is to be modeled ac-
curately. In particular the drag on the flow generated by sub-
grid scale topography must be parametrized in numerical
weather prediction and climate models. The focus in the de-
velopment of such parametrization has naturally been on the
generation and influence of vertically propagating inertia-
gravity waves because of their importance for the momen-
tum budget of the upper atmosphere. However, for general
upstream wind and buoyancy profiles, not all waves gener-
ated by flow over topography are free to propagate vertically.
Wave energy may become “vertically trapped” in horizontal
wave guides which owe their existence to, for example, local
discontinuities or sharp gradients in the buoyancy field, or
alternatively to turning surfaces generated by strong vertical
shear in the horizontal wind field.'” Trapped waves can be
resonantly excited by topographic forcing, leading to the
generation of nonlinear waves with significant amplitude, as
is apparent in the compelling pictures derived from synthetic
aperture radar measurements of flow over St. Lawrence is-
land (170 °W, 63.5 °N) by Li et al.*

Numerical and analytical studies™® indicate that the ef-
fect of rotation on high Froude number (linear) stratified flow
over isolated three-dimensional obstacles is generally to re-
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duce the drag exerted by the obstacle on the flow. The cur-
rent work aims to determine whether or not similar conclu-
sions hold for vertically trapped waves, and to develop
qualitative and quantitative understanding of the behavior of
the waves excited by an isolated topographic obstacle in a
rotating flow with a single active layer. The focus is on the
supercritical regime in which the Froude number F, defined
as the ratio of the oncoming flow speed to the characteristic
gravity wave phase speed,7 is greater than unity. Following
previous studies,*"? the rotating shallow water equations
(rSWEs) are chosen as a model paradigm that can be re-
garded as representative of more general atmospheric and
oceanic flows. For the atmosphere the physically relevant
scenario described by the rSWE is that of a Boussinesq one-
and-a-half layer fluid, in which a layer of finite depth under-
lies an infinite layer of slightly greater buoyancy. Here, the
focus is on the relatively simple scenario with a uniform
background flow in both layers because if shear is present
between the layers geostrophic balance would require the
interface between the layers to slope. Under the shallow wa-
ter approximation the infinite upper layer remains dynami-
cally passive apart from the uniform flow. The horizontal
wave guide in this flow is simply the interface between the
layers, and all waves generated by the topography conse-
quently remain vertically trapped and propagate horizontally
on this interface. Note that in the meteorological terminol-
ogy, a mountain wave is defined as being trapped if the
“Scorer parameter,” which is in fact a function of height z
that corresponds to the vertical wavenumber in the Wentzel—
Kramers—Brillouin (WKB) solution, becomes negative any-
where aloft in the flow. Here, the simpler situation of waves
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being trapped on the interface between the two layers is pro-
posed as a prototype for all vertically trapped waves, al-
though clearly further work will be required to determine if
the qualitative behaviors discovered apply equally to waves
trapped by other mechanisms.

The main focus here will be on answering the following
questions:

* What is the drag exerted by the obstacle on the flow in
the supercritical regime? In particular, how is the drag
influenced by rotation? How does the drag due to hori-
zontally trapped waves compare to that generated by
vertically propagating waves in a comparable continu-
ously stratified flow?

* What determines the occurrence of wave breaking, and
the location of wave breaking regions, in the wakes of
rotating supercritical flows? In the absence of other
mechanisms of wave dissipation, wave breaking
causes the deposition of horizontal momentum trans-
ported by the waves generated at the obstacle, and
understanding this process is the key to understanding
the influence of the obstacle on the wider fluid flow.

In order to understand the occurrence of the supercritical
flows of interest here, it is helpful to invoke the close anal-
ogy between the problems of nonrotating flow over an ob-
stacle and flow past an aerofoil in compressible gas dynam-
ics. Jiang and Smith'® illustrated numerically the presence of
“bow shocks” when the Froude number F is relatively close
to unity (cf. transonic flow), and their absence in flows with
Froude number much greater than unity (cf. supersonic
flow). In the “supercritical flows” with F> 1 the disturbance
to the oncoming stream due to the obstacle was found to
consist only of “V-waves,” aligned along Mach lines emanat-
ing behind the obstacle at angles +tan!(VF2=1). Esler et
al."* (ERJO7a hereafter) used matched asymptotics to show
that the boundary between the transcritical and supercritical
regimes, in terms of the nondimensional obstacle height M,
occurs in (M,F) parameter space near the curve
F=1+T*M?3, where I'* is an obstacle dependent positive
constant taking a value near unity. Numerical simulations
showed the transition between the two regimes to be abrupt.
The effect of rotation on transcritical flows has been studied
in detail elsewhere (Esler et al.,'> ERJO7b hereafter), and
consequently the aim of the present work is to determine its
effect in the supercritical regime, where F=1+I+M?3,

In Sec. II the physical situation and appropriate model
equations for one-and-a-half layer flow over an isolated ob-
stacle, the rSWE, are introduced. The shock-capturing finite
volume numerical method used to obtain nonlinear solutions
of the rSWE is then described. In Sec. III, the steady linear
behavior of the rfSWE solutions, valid when rotating effects
are relatively strong compared to topographic forcing, is de-
scribed and a new expression for the drag exerted on the flow
by an axisymmetric obstacle of fixed height and volume is
expressed in terms of the obstacle’s radial profile. In Sec. IV
a nonlinear equation for the wake behavior in the presence of
weak rotation is derived. The conditions that determine the
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occurrence and location of wave breaking are elucidated. Fi-
nally, in Sec. V, conclusions are given.

Il. MODEL EQUATIONS AND NUMERICAL SOLUTION
A. Physical scenario and model equations

The physical scenario to be modeled is that of a one-and-
a-half layer inviscid fluid, consisting of a layer of undis-
turbed depth H and uniform density p, underlying a less
dense layer (density p;) of infinite vertical extent. For ease of
exposition the density difference is taken to be small, hence
(p2—p1)/p,<<1 and the Boussinesq approximation can be
made. The fluid, acted on by gravity g, rotates at angular
frequency f/2 and both layers flow with an initially uniform
speed U, which is taken to be from right to left, over an
obstacle with maximum height #,, and horizontal scale L.
Further, the aspect ratio of the flow is taken to be small
(H/L<1) so that shallow water dynamics applies in the
lower dynamically active layer, and to leading order the flow
remains uniform in the upper layer for all time.

It is straightforward to show that the nondimensional
rSWEs hold for the lower layer flow, i.e.,

u + (= Flu,+vu, - VBu=- o.—Mh,,
v+ (= Fo +ov, + V’§u=—ay—Mhy, (1)

o+ ((u-Fo)+(vo),=0,

where ¢ is the layer thickness, h=h(x,y) is the topography,
and the total horizontal velocity is u=(-F+u,v). Equation
(1) has been nondimensionalized by taking the horizontal
length scale to be L, the horizontal velocity scale to be ¢
=+g'H (the long interfacial gravity wave speed in the ab-
sence of rotation), the time scale to be L/c, and the layer
thickness scale to be H. Three nondimensional parameters
now appear explicitly in Eq. (1): The Froude number F
=U/c, the nondimensional obstacle height M =h,,/H, and an
inverse Burger number B=f?L?/c*. Note that B is the square
of the ratio of the obstacle length scale L to the radius of
deformation Lp=c/f. Results are presented in terms of F, M,
and B in all that follows.

Following Houghton,14 and as in ERJO7a, the physical
situation at breaking waves is modeled by allowing “weak”
or discontinuous solutions of Eq. (1) that include the possi-
bility of mass and (lower layer) momentum conserving hy-
draulic jumps, as discussed by Klemp et al.”® The discontinu-
ous solutions must satisfy the Rankine—Hugoniot conditions

- V[o]Z+[ou.n]=0,

)
~Vlou.n]*+[o(u.n)?+16?] =0,

where n is a horizontal unit vector normal to the jump, V is
the jump speed in the direction of n, and [-|* denotes the
difference between the evaluated quantity in brackets up-
stream and downstream of the jump.

Klemp et al. 15 hoted that condition (2), which is derived
for the one-and-a-half layer system under the assumption of
energy dissipation occurring in the lower layer only (see also
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Ref. 16, p. 67), is appropriate for standing hydraulic jumps,
such as those generated by flow over the isolated obstacles as
studied here. There is an implicit assumption made in using
Eq. (2), of wave breaking and turbulence at the hydraulic
jump, which is experimentally observed for jumps of suffi-
cient amplitude. For low jumps there is a possibility of sig-
nificant energy and momentum transport out of the jump by
internal waves, a possibility that will not be addressed here.
Figure 16 of Klemp et al.” showed that the assumption of
lower layer energy dissipation is quantitatively accurate in a
numerical simulation of a typical standing hydraulic jump in
a Boussinesq nonhydrostatic flow. It is important to note that
condition (2) is not appropriate for traveling internal bores or
gravity currents, and there are numerous other suggestions
for jump conditions in those scenarios, see the discussions in
Refs. 15 and 17.

B. Numerical solution of the rotating shallow water
equations

Numerical solutions of the nonlinear rfSWE are pre-
sented below. Following Esler et al.,13 the finite volume soft-
ware package conservation laws software package18 (CLAW-
PACK) is used to obtain the solutions. Explicit details of how
CLAWPACK can be adapted to solve the shallow water equa-
tions in two dimensions are given by LeVeque,18 and here
the rotation and topographic forcing terms are treated using
the method of Strang splitting, following Kuo and Polvani."”
Note that however, accurate new methods for the treatment
of nonconservative forcing terms in this problem have re-
cently been developed.zo’21 The reader is referred to ERJ07a
and ERJO7b for discussion of some of the technical issues
arising in the application of the above algorithm to the par-
ticular problem of flow over an isolated obstacle, and details
of the convergence tests performed to verify results. Notably,
the variable domain size requirements found necessary to
simulate the transcritical flows investigated in ERJ07a and
ERJO7b, in which F~ 1, do not need as much consideration
in obtaining solutions for the supercritical rotating flows de-
scribed here. Here, a constant domain size of 10L X 10L is
found to be adequate for convergence of the calculations of
drag presented in Sec. III. A larger domain size (15L X 30L)
is used to obtain the profiles of the interface displacement
field 7(x,y) shown below. A grid spacing x=0.01L is used
throughout. The model is integrated forward in time with an
adjustable time step based on the Courant—Friedrichs—Lewy
criterion (for details, see Ref. 18) until the flow in a prede-
termined region around the obstacle converges to satisfy a
steady state numerical criterion. Further details are given in
Rump’s thesis.”>

lll. LINEAR THEORY AND THE LINEAR DRAG
EXERTED BY THE OBSTACLE

A. Steady solutions in Green’s function form

Linearizing the rotating shallow water Eq. (1), the fol-
lowing equation for the interface displacement p=o—1+Mh
is obtained,
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((3,- F0)> = V*+B)p=M((d,— Fd,)* + B)h. (3)

The term involving the topography Mh(x,y) can be consid-
ered to be a forcing term, generating a response in the inter-
face 7. For an obstacle with comparable dimensions in the
along and cross-stream directions, Eq. (3) is formally valid
when M <min{l,(F-1)3?}, with the transcritical theory dis-
cussed in ERJO7a (Ref. 12) and ERJO7b (Ref. 13) being
valid when M ~ (F-1)¥?<1.

Steady solutions to Eq. (3) can be obtained in Green’s
function form. Vilenski and Johnson® addressed the closely
related problem of flow over an anisotropic obstacle, with a
cross-stream scale ~M~"?X its along-stream scale, in the
Kadomtsev—Petviashvili  limit,*** given by F—1,
M—0,(F-1)/M"?>—const. The Green’s function solution
for Eq. (3) can be obtained by adapting the results of Vilen-
ski and Johnson.> Note that the same equation for steady
flow results from Eq. (3) regardless of whether the flow over
the obstacle is right to left (as here) or left to right. As the
system is hyperbolic, the correct causality or wave radiation
conditions must be imposed in order to obtain a uniquely
valid expression in each case, just as for Green’s function
solutions of the wave equation (e.g., Morse and Flesbach®®).
Adapting these previous results, the Green’s function solu-
tion to Eq. (3) for a right-to-left basic flow is

n(x):Mf (F*h(x—x") + Bh(x —x"))G(x")d*x', (4)

where x=(x,y) and x'=(x’,y’). The Green’s functions is
given by23

= > 5 N 9
e
[ T , xeR
Glx.y) =] 2F - 7o
0, x ¢ R.

(5)

where R is the wedge-shaped region x<<0, x*>> (F?>—1)y?.
Note that it is in fact unhelpful to attempt to simplify Eq. (4)
using integration by parts, and then redefining the Green’s
functions so that only & appears in Eq. (4). Following such a
procedure, the redefined Green’s function is singular along
the Mach lines x= * \F2—1y, and consequently both its in-
terpretation and its direct quadrature become more difficult.

The Green’s function solution (4) for the Witch of Ag-
nesi (WA) obstacle defined in Table I, and with
(F,B)=(1.3,0.72), is shown in Fig. 1 (left). The steady in-
terface displacement field #(x,y) is obtained by direct
quadrature of Eq. (4). The solution attains maximum ampli-
tude along the Mach lines x= + VF?—1y extending from the
obstacle. Relatively long waves are also excited throughout
the region bounded by these Mach lines. This pattern is typi-
cal of those generated from linear solutions given by Eq. (4).

B. Comparison between linear and nonlinear
solutions

To develop insight into the utility of linear theory, it is
helpful to compare the Green’s function solution in Fig. 1
(left) with a nonlinear solution. Figure 1 (right) shows a nu-
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TABLE I. Example obstacle shapes, their Hankel (Fourier—Bessel) transforms, and the corresponding function f(s) giving the dependence of the drag D on
the rotation rate and flow speed The five obstacles have unit height and are normalized to have the same volume as the PB (V=7/2) using the stated value
of the nondimensional constant a. J,(z) is the Bessel function of the first kind of order n, K,(z) is the modified Bessel function of the first kind, H,(z) is the
Struve function of order n, and |Fy(a,;b;,b,,z) is the generalized hypergeometric function.

Obstacle h(r) h(x) VAO)
Witch of Agnesi a @ expl(—ax) s 1.,
(a=1/2) (@®+r2)? P a's'K,(2as)+ 5 a’s°K,(2as)

. [y r a’ L, Vma 22 22
Gaussian (a=1/12) exp! =z S exp| = d’K 4\—5(1 +a’s?)exp{—a’s*/2}
Cone (a= \%) l—r (r<a) %(Jl(aK)HO(aK)—J(](aK)Hl (ak)) No closed form expression found

a
13
E(6 1F2<—;—,4;—a2s2)
6 2°2
P . A 72 1 1 5 20
Hemiellipsoid (a=13/2) 1-5 (r<a) — (sin(ak) —ax cos(ax)) -2 F, 5;2,5;—51 57| =3Jy(2as)
a ak’
3 5
- 2a%s? 1Fz(—;Z,—;— a252>)
272
, , 2 1
Paraboloid 1-r* (r<1) — (k) —(6H,(25)—2sH,(2s))
K 5
merical solution of the rSWE at parameter settings The displacement of the essential nonlinear effects to the

(F,B,M)=(1.3,0.72,0.1), allowing direct comparison be-
tween nonlinear flows at a relatively low obstacle height with
the corresponding linear solution. Directly above the ob-
stacle, the interface displacements are similar, but it is clear
that in the wake to the flanks of the obstacle nonlinearity has
a pronounced effect. In the nonlinear flow two hydraulic
jumps are present in the wake at each side of the obstacle.
Symmetry between the wakes at the two sides of the obstacle
is broken by nonlinearity, but at the low obstacle height M
=0.1 shown here, and indeed throughout the supercritical
regime, the asymmetry is found to be small.

SWE
F=1.3
B=0.72
M linear

Distance (L)

4
10 8 -6 4 2 0 2 -10 -8 -6 4 2 0 2
Distance (L) Distance (L)

FIG. 1. A comparison of the steady interface displacement field 7(x,y), for
linear and nonlinear solutions of the rSWEs, for flow over the WA obstacle.
The flow parameters are set to (F,B)=(1.3,0.72) and M — 0 for the linear
solution (left panel) and M=0.1 for the nonlinear solution (right panel). The
contour interval is 0.15M in each case, with negative contours dashed and
the zero contour omitted. Note the hydraulic jumps appearing in the nonlin-
ear obstacle wake.

wake at the flanks of the obstacle, as in Fig. 1 (right), is used
as the definition of the supercritical regime of rSWE flow
over obstacles in ERJO7b." In the supercritical regime the
two hydraulic jumps can be considered to be “rotation modi-
fied” versions of the N-waves of Whitham,27 that have been
shown to characterize the wakes of nonrotating shallow wa-
ter flows over isolated obstacles.'™'* The fact that the non-
linearity is displaced away from the obstacle in this fashion
suggests that linear theory will accurately capture the drag
exerted by the obstacle on the flow, as will be demonstrated
next.

C. Drag in steady rotating flow

The aim here is to derive a general expression for the
steady state drag over an isolated obstacle of circular cross
section. A Fourier transform approach is used, in order to
exploit Parseval’s theorem. Following Lighthill,28 a useful
device to ensure the correct causality, when transforming to
Fourier space, is to assume an exponentially growing ob-
stacle of the form

hx,y,t) = i f i f i h(k,Dexpli(kx + Ly) + et}dkdl. (6)

In the limit e—0 the solution converges to the steady state
solution at =0, with €>0 consistent with the solution in-
cluding only waves radiating outward from the obstacle (as
opposed to inwards from infinity). Seeking a solution of Eq.
(3) of the form

1 0 o]
7(x,y,t) = 2—] f 7k, Dexp{i(kx + ly) + et}dkdl
ﬂ- -0 —00

results in
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(e—ikF)*+1*
(e—ikF)+ V+ k> + 1%

Hk,1) = lim Mh(k,1) (7)
e—0

The linear drag exerted by the obstacle on the flow in steady

state is given by'o

D=—Mf f nhxdxdy=—Mf f ikfh*dkdl, (8)

where Parseval’s theorem is used with Eq. (7) to obtain the
second expression, and * denotes the complex conjugate.

Attention is restricted from here onwards to obstacles
with circular cross section h=h(r)e€, where r’=x’+y% A
standard result (e.g., Gradshteyn and Ryzhik,29 p. 953) is that
the two-dimensional Fourier transform of an axisymmetric
function reduces to a one-dimensional Hankel or Fourier—
Bessel transform,

. 1 o0 oo
h(k,l) = 2—f f h(r)exp{— ikx — ily}dxdy
W —00 —00

=fz(1<) =f h(r)Jo(kr)rdr,
0
where «?=k>+12. The inverse transform is
h(r) =f ﬁ(K)JO(Kr)KdK.
0

Writing k=« cos 6, [=k sin 0 the expression for drag be-
comes

D =—-27M? lim f K2h(k)?
e—0 Jo

21 . 2
cos —ikF cos 0)"+B
x f Olle i cos O +B] . ©)
o (e—ikF cos 0)°+B+k

As €—0, O(e) terms in the numerator and O(€?) terms in the
denominator may be neglected giving

D=-M?% f K2h(k)*1(k;F,B)dxk, (10)
0
where
. 2 cos O(B — k*F? cos? 6)
I(k;F,B) = lim o A
e—0Jy —KFcos 0+ B+ k" —2iexF cos 0
(11)

The integral I(«;F,B) can be evaluated using standard com-
plex methods, described in Appendix A, as

21 K KF
2 [2 2 » TOr 77 2 =1
FNF*=1\k*=B/(F*-1) VB + k
I(k;F,B) =
kF
0, for ) <1
VB + k

and consequently the drag D is given by
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35 —

3.0 , \ o M=0.1, F=2
\ A M=04, F=2

O M=0.7, F=3
2.5

2.0

1.5

Drag Function 2nf(s)

1.0

0.5

ce v e b b b b b
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ooL . . . |

(=}
N
EN
&}
(s

10
Rotation Parameter (s=B"(F-1)"")

FIG. 2. The drag function 27f(s) as a function of the rotation parameter
LU
s=+/B/(F?-1) for the obstacles described in Table 1.

27M? \@
= , . (12)
FVF = 1" \\F? -1
The function f is given by
® h(k)
£(s) :f \/de (s=0). (13)

Equation (12) is a new closed form expression for the drag in
linear rotating supercritical flow over an axisymmetric ob-
stacle with radial profile A(r). The result is quadratic in ob-
stacle height M, but exhibits a nontrivial and obstacle-
specific functional dependence on the Froude number F and
inverse Burger number B. For many common obstacle
shapes the integral expression for f(s) can be evaluated ex-
plicitly, with several examples being given in Table I. Plots
of the resulting functions f(s) are shown in Fig. 2. For most
of the obstacles considered f(s) has a maximum around s=1
indicating that at fixed Froude number F, drag initially in-
creases with rotation rate, before decreasing rapidly.

For the paraboloid (PB) and “Witch of Agnesi” (WA)
obstacles a suite of numerical simulations, using the rfSWE
finite volume code described above, has been used to test the
accuracy of Eq. (12). Three sequences of simulations at fixed
(F,M)=(2,0.1), (2, 0.4), and (3, 0.7) were performed, vary-
ing B in each case in order to evaluate f(s) for
s=0.5,1,1.5,...,10. In the simulations, the steady state
drags are established within a few advection times (L/c),
except for weak vacillations which persist for considerably
longer. The wake patterns to the obstacle flanks, at a distance
L,, from the obstacle, become established over a longer time-
scale (proportional to L,,/c).

The drag results in Fig. 2 demonstrate clearly that Eq.
(12) is accurate for the drags generated by both obstacles in
each family of nonlinear flows, including those for the larg-
est nondimensional mountain height M=0.7. In fact, Eq. (12)
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more accurately describes the drags in the (F,M)=(3,0.7)
set compared to the (F,M)=(2,0.4) set. The reason for this
is that the relevant measure of nonlinearity is not solely the
nondimensional mountain height, but the distance in param-
eter space from the transcritical regime [see ERJ07a,"
ERJO7b (Ref. 13)], which is given approximately by the
value of the similarity parameter I'=(F—1)/M?*3. The simi-
larity parameter is larger (I'=2.53) for the (3,0.7) than for the
(2,0.4) set (I'=1.84), hence the effects of nonlinearity are
stronger for the latter set. Based on the results of ERJO7a,12
the drag formula (12) is expected to be accurate only for
I'=T", where I'* is an obstacle-specific constant with values
typically in the range of 1-1.5.

Note that an alternative expression for the drag in non-
rotating flow is given in ERJ07a (Eq. 2.28 therein), as fol-
lows:

2c,M? ”
=Cd—/2—a Cd=f XzG(X)zd‘X’
FVF~ -1 w
(14)
h
G(X) = f idr
N =

Consistency between Egs. (12) and (14) requires that mf(0)
=c,, requiring the following integral transform identity to
hold

- J : Kh(k)dk =2 f ’ X2G(X)2dX. (15)
0 0

It is shown in Appendix B that the resulting Eq. (15) holds
for any h(r) (0=r< o) for which the Hankel transform ex-
ists.

IV. NONLINEAR THEORY AND THE STRUCTURE
OF THE WAKE

A. Derivation of a nonlinear equation for the wake

The numerical drag calculations described above indi-
cate that linear drag theory is accurate, even for large ampli-
tude obstacles, in rotating supercritical flow. The linear solu-
tion (4) is therefore expected to be accurate in the vicinity of
the obstacle, but this does not preclude strong nonlinearity
developing in the wake to the obstacle flanks, as seen in Fig.
1. Waves generated at the obstacle will transport pseudomo-
mentum, and this pseudomomentum will be deposited as mo-
mentum where those waves are dissipated. To investigate
what determines the location of wave breaking and dissipa-
tion, a weakly nonlinear description of the developing wake
follows.

Solutions of Eq. (1), in the limit e=M <1 are sought in
two spatial regions. The first “inner” region has horizontal
scale comparable to the obstacle, and is described by coor-
dinates (x,y). The second “outer” region has the scale of the
wake, and is described by coordinates (x.,y.)=e€(x,y). For
the purposes of the asymptotic theory, rotatlon is taken to be
sufficiently weak that B/M=17 (i.e., VB=€"21), where 17 is
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order unity. It is further assumed that y=\F>-1 is of order
unity. For both inner and outer regions, series expansion so-
lutions of Eq. (1) are sought as

u=e(uy+ €%u, + eu,...),
v=e(vy+ v, + e,...), (16)

n=elm+e’n+en..),

where n=0—-1+Mh is the interface displacement as in Sec.
III. Below, the inner solution is given superscript [ (linear),
and the outer solution superscript f (far field).

Inserting Eq. (16) into Eq. (1) and seeking steady solu-
tions at leading order, the steady nonrotating linear problem
is recovered,

(Fz_l)néxx_ng)yyz_hxx' (17)

As discussed in detail elsewhere,lo’u’30 Green’s function
methods can be used to write the solution of Eq. (17), for
right-to-left flow as here, as

(7
o(x,y) = > f h(x = y(y - 3).5)dy
')’ —00
+f hx(x+7(y—§’)&7dy~}. (18)

It is useful at this stage to introduce a rotated coordinate
system (X.,YV+)=(x=* yy,y+ yx)/F for the regions y>0
and y <0, respectively. In y>0, the new coordinate system
is rotated anticlockwise through an angle tan™! 7y so that X,
measures distance perpendicular to the Mach lines, x+yy
=const, and )/, the distance along the Mach lines. A similar,
but clockwise, rotation occurs for the coordinates in y <0. In
terms of these new coordinates, Johnson and Vilenski*® noted
that, provided the obstacle height decays sufficiently rapidly
at large distances, as y— = oo solution (18) converges to

B hx<X,(FX+_X)>

dX, y—+»
lim 7 (ey) = 2= 4
y—»imno Y 272 —oo (X_FX—)
h\ X,/ |dX, y— —oo.
Y
(19)

Equation (19) shows that the linear solution away from the
obstacle tends to a function of the single coordinate X'., with
sign taken according to whether we are looking at y — = 0.
For definiteness, the upper half plane y>0 will be consid-
ered hereafter (the lower half-plane solution being symmet-
ric), and the subscript + will be dropped.

For the particular case of an axisymmetric obstacle
h=h(r), a change in variables allows Eq. (19) to be ex-
pressed as'?
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W)
AN Ir -

(20)

In the absence of nonlinearity and rotation, the linear wake
profile (20) would persist out to J)— . However, at large )
it is expected that nonlinear and rotating effects will be im-
portant, and consequently it is necessary to match the inner
solution (20) with an outer solution to capture these effects.
The analysis leading to the outer solution is closely analo-
gous to that used to obtain the governing equation for the
wake in dispersive flow past a thin body. 3132

Introducing rotated outer coordinates (X,,),)=€(X,)),
and seeking solutions of Eq. (1) in the outer region away
from the obstacle (i.e., where h=0), it becomes clear that
derivatives in the X and ) directions arise at different orders
in €. Consequently, it is found to be natural to seek solutions
of the form 7=17/(X,)),), etc. At leading order, Eq. (1) is
found to be satisfied when

uy=—_, Up="- >
T F T F

for any 7)(X,).). Rotation enters the problem at the next
order [O(€¥?) terms] where it is established that

o Tha Vv v b

M= T TR YT T T

To find an equation determining 7;6, it is necessary to pro-
ceed to O(€’) in the expansion. At this order, terms in 77{, 7/2
can be eliminated leaving

Qynby, + 37 mh)x— V7 =0. (21)

Here we will refer to Eq. (21) as the Ostrovsky—Hunter (OH
hereafter) equation following Boyd.33 Ostrovsky34 derived
Eq. (21), including an additional dispersive term, to describe
the time evolution of one-dimensional nonlinear inertia-
gravity waves (i.e., a rotation modified Korteweg—de Vries
equation), and Hunter™ discusses numerical methods for its
solution.

One important point to note regarding Eq. (21) as a de-
scription of the supercritical wake is that the outer along
Mach-line coordinate ), assumes the role taken by the time-
like variable in the previous studies. The “initial” condition
for Eq. (21) determined by matching with the inner solution
(18) above, is simply the far-field form of that solution

: L(r) dr.
?4\’"‘

(22)

776(2(,0) =— %/XG(X), where G(X) =

For the case of the WA obstacle (see Table I), G(X) can be
evaluated directly to be

2

OO wary

(23)

ERJ07a (Ref. 12) gave explicit expressions for G(X) for the
other obstacles in Table I.
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Recalling that v=\B/M, Eq. (21) together with Eq. (22)
can be rescaled [defining ¢=(3/12) 7, 7=(1*/2%)Y.] into
the canonical problem

(f:+ pPpr)x— =0, with $(X,0)= ¢y(X) = - BXG(X).
(24)
The single parameter appearing in Eq. (24) is
3M
PPt 23

For a given obstacle then, it is clear from Eq. (24) that the
essential structure of its wake in supercritical, rotating flow
is a function solely of .

B. Numerical solution of the Ostrovsky—Hunter
equation

In the absence of analytical results for the OH equation,
numerical calculations are required to examine the wake be-
havior. Two different numerical methods have been em-
ployed, namely a spectral method using characteristic vari-
ables, and a finite volume discretization. The spectral method
allows the onset of wave breaking to be defined precisely,
and consequently accurate calculation of the location in the
(X, 7)-plane where breaking first occurs, as a function of S,
is made possible. The finite volume method is used to follow
the solution long after breaking occurs, when the spectral
technique would become prohibitively expensive. A further
advantage of using two methods is that they act to cross-
validate one another.

The spectral method is formulated by first transforming
Eq. (24) to the usual characteristic coordinates g, s with
7(q,s)=s and X(q,s) defined by

ax

= ¢(X(q.s).5), X(g,0)=
Under this change in variables Eq. (24) is transformed to the
set

dys= b, ¢,(q.0) = Pi(q),
(26)
b=, Plg,0)=1,

where (/= dX/ dq is the Jacobian of the mapping between the
original (X, 7) and characteristic (¢,s) coordinates. Together
with the boundary condition ¢(—,s)=0, set (26) can be
integrated forward in s using a pseudospectral method. The
solution is written as a series in Chebyshev polynomials with
time-dependent coefficients, e.g.,

N
(q.5) = X, ay(s)Ti(q), etc.
k=0

Collocation at the grid points g;=m(=1+2j/N),
j=0,...,N—1 converts the system of partial differential
equations into a set of coupled ordinary differential equations
(in s) for the coefficients a;(s) which are easily solved via a
fourth order Runge—Kutta method.

The advantage of the spectral formulation is the follow-
ing. When wave breaking occurs we have ¢y— —o. In the
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FIG. 3. Comparison of numerical solutions to the OH Eq. (24) using spec-
tral and finite volume methods discussed in the text. The initial condition
was taken to be that corresponding to the WA obstacle [see Eq. (23)]. The
similarity parameter 8=1; the solution shown is for 7=2.6. The solid line
shows the CLAWPACK shock fitting solution, with spatial resolution X
=0.000 05. The broken line shows the pseudospectral parametric solution
for the same problem, computed using 1024 Chebyshev nodes.

parametric form (26) since ¢ = ¢,/ 1, this corresponds to the
Jacobian becoming singular, i.e., )=0. Thus the onset of
wave breaking, one of the diagnostics of interest here, may
be diagnosed by an order one quantity passing through zero,
as opposed to a gradient approaching infinity.

The disadvantage of the spectral method is that it be-
comes expensive to continue the calculations for very long
after wave breaking has taken place. In order to compare the
OH solutions to those of the full nonlinear rfSWE, a finite
volume method is also employed. This is achieved by ex-
tending the method, described by LeVeque,18 to solve the
Hopf equation

b+ PPx=0, (27)

using the CLAWPACK finite volume package, with the usual
weak solutions, satisfying

~V[¢]" + 3471 =0,

permitted for discontinuities in & propagating at speed V.
Integrating Eq. (24) in X, the OH equation becomes the Hopf
Eq. (27) with an additional source term. The source term is
treated using Strang splitting, exactly as for the rotating
terms in full rSWE solutions described above.

Figure 3 shows a comparison between solutions gener-
ated by the two numerical methods (see caption for details).
A snapshot is shown for a calculation with initial condition
as for the WA obstacle (23) and with the parameter S=1. The
“time” (7) of the snapshot is chosen to show the situation
after wave breaking has occurred, but before the breaking
waves have developed to cause the pseudospectral method to
become prohibitively expensive. Agreement between the two
methods is seen to be good, with the finite volume code
having fitted “equal area” hydraulic jumps27 at the breaking
waves.

C. Comparison with rotating shallow water flows

Next, solutions of the OH Eq. (24) for the wave field
will be compared to those from the full rSWE (1). The ad-
vantage of the OH representation is that a three parameter
problem (F,M,B) in the rSSWE becomes a single parameter
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problem () in the OH representation. The comparison will
serve to test accuracy of the OH representation at finite M, a
necessary test of its utility as it is formally valid only for
M<1.

Figure 4 compares the steady interface displacements
7(x,y) obtained from four separate solutions of the rfSWE
with those derived from a single solution of the OH Eq. (24),
with B8=0.5. To reconstruct a displacement height field
Mou(x,y), for the upper half plane y>0, from a solution
(X, 7) of Eq. (24), the inverse mapping and rescaling

x+7yy B(y—yx) ) 28)

() qu(
TSI =3 F ar P
can be applied. It is important to note that, although a given
OH solution ¢(X,7) depends only on B, the mapping Eq.
(28) depends on each on the parameters (F,M,B) of the
corresponding rSWE flow. Note also that since the OH solu-
tion describes the evolution of the wave field along a single
Mach line emanating from the obstacle, and must be
matched to the linear solution in the vicinity of the obstacle
itself, it is meaningful to plot the resulting solution 7gy(x,y)
only for y=1 in Fig. 4. Symmetry considerations allow this
solution to be reflected about y=0, allowing the solution for
y=-1 also to be plotted.

The parameter dependence of the inverse mapping Eq.
(28) is not immediately obvious and it turns out that wave
fields that appear superficially to be rather different can be
generated from a single solution of Eq. (24). The specific
7on(x,y) fields plotted in Fig. 4 (middle columns) are gen-
erated from a single solution of Eq. (24) with 8=0.5, but
different parameter triplets (F,M,B) corresponding to full
integrations of the rSWE, are used to map the solution back
into the physical domain. The final steady state 7(x,y) fields
from separate rSWE integrations at these parameter settings
are plotted in Fig. 4 (left column). If the top row in Fig. 4 is
regarded as a control experiment, then the remaining rows
show integrations in which the three pairs of parameters
(M ,F), (F,B), and (M ,B) are varied in turn while keeping 8
constant. Good qualitative and quantitative agreement be-
tween the rSWE and OH solutions is evident in each case,
within the regions |y|>1 where the comparison is valid.
Cross sections of the interface displacement field 7(x,y) at
fixed values of y are shown in the right column for each set
of integrations.

An interesting finite obstacle height (finite M) effect is
that the rSWE solutions are not symmetric about y=0, so for
the rSWE solutions the cross sections are plotted for y
= * const. The dynamical cause of the symmetry breaking in
the wake of the obstacle in the rSWE solutions is due to the
generation of relative vorticity at the obstacle (i.e., topo-
graphic vorticity), and its associated circulation. Conserva-
tion of potential vorticity of the flow over the obstacle re-
veals that the relative vorticity has magnitude ~VBM (the
relevant units being cL™'). Symmetry breaking is therefore
not present in the OH limit M, B—0, as it remains a high
order effect compared to the modifications to the obstacle
wake on long length scales due to nonlinearity and rotation-
induced long-wave dispersion. The asymmetry about y=0 is
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FIG. 4. Left column: the steady interface displacement field 7(x,y) for four different rSWE flows over the WA obstacle at the given parameter settings (each
corresponding to 8=0.5). Contour intervals in each panel are 0.15M, with negative contours dashed and the zero contour omitted. Center column: the solution
¢(X,).) of the OH equation with 8=0.5, mapped back into the physical domain under Eq. (28) for comparison with the corresponding rSWE flow. Right
column: Cross sections of the rSWE and OH displacement height fields at fixed cross-stream distance y= * constant from the obstacle.
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066601-10  Esler, Rump, and Johnson

seen in Fig. 4 to be very weak, at least for those values of M
corresponding to the present cases. In each case the OH so-
lution accurately reproduces the location and magnitude of
the hydraulic jumps present in the rSWE solution.

D. The location of the onset of wave breaking

Based on the results above, it appears reasonable to take
the OH Eq. (24) as a quantitative model for rSWE supercriti-
cal wakes. The aim next is to find a simple expression, based
on the OH approximation, for the spatial location of the on-
set of wave breaking in the wake. The question of interest
here is how far, in terms of obstacle radii, the waves propa-
gate along the Mach lines before wave breaking occurs. The
resulting “breaking distance” provides an important con-
straint on the horizontal distance across which along-stream
momentum can be transported by the waves.

To derive the breaking distance, we first define 7=7, to
be the lowest value of the along Mach-line coordinate 7 at
which wave breaking is detected, in integrations of the ca-
nonical OH Eq. (24). The value taken by 7, depends on both
[ and the obstacle shape, both of which enter the problem in
the initial conditions of Eq. (24). Equation (24) is integrated
numerically using the spectral method, for a series of values
of B, in order to calculate 7,(8). As described above, the
spectral method provides an objective numerical definition of
“breaking.” For initial conditions corresponding to common
obstacles, two separate occurrences of breaking can be found
using this method [i.e., two separate values of 7,(8)]. The
first corresponds to wave breaking toward the rear of the
obstacle wake, and the second, which invariably occurs at a
larger value of 7 corresponds to the onset of (rather weaker)
wave breaking near the front of the wake (see also Fig. 4).

Figure 5 shows the functions 7;,(8) for two different ob-
stacles, the Gaussian and WA. The function 7,(8) determin-
ing the onset position of the front shocks for each obstacle is
plotted as a solid curve, and the rear shock as a dashed curve.
At large B each curve asymptotes to a function 7;,(3), spe-
cific to each obstacle, plotted on Fig. 5 as dotted curves. The
large B limit corresponds to the absence of rotation, and in
this case the nonrotating breaking times can be determined
from the solution of the Hopf equation”’ (27) with initial
condition as in Eq. (24). It is straightforward to show that
this distance is, for both front and rear shocks,

1
B max[G(X) + XG' ()]

©

Tb =

At lower values of 3, rotation acts to increase the distance at
which the front wave is seen to break, and decrease that of
the rear. Even for 8=0.5, however, the breaking distances
have changed from the nonrotating value by a factor of less
than 2. The location where the front and rear jumps (or
shocks) first form is remarkably independent of obstacle
type. Using the mapping Eq. (28) to convert back to a physi-
cal distance D, from the obstacle (units are the obstacle non-
dimensional length scale) gives
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FIG. 5. Ilustrating the time 7=7, at which a shock first forms in the OH
solutions, plotted as a function of the free parameter B, when the initial
conditions (specified at 7=0) are as for the WA and Gaussian obstacles. Both
front shocks (solid) and rear shocks (dashed) are shown. Dotted curves show
the corresponding times for both front and rear shocks in nonrotating flow.

2WFr -1 3M
DFT%(,B) ﬁ=ﬁ ,
(29)
. 2(F*=1)

by =34 max[G(X) + XG'(X)]’

Equation (29) in combination with Fig. 5 allows straightfor-
ward estimation of the onset location of wave breaking in
supercritical rotating shallow water flow over topography.
The expression for D, is the corresponding nonrotating re-
sult derived from 7,.

V. CONCLUSIONS

In the introduction two key questions were posed on the
topic of rotating, supercritical, one-and-a-half-layer shallow
flow over topography. The meteorological scenario for which
our results are directly relevant is that of a shallow neutral
layer under a sharp inversion, with a deep layer above and
with relatively weak wind shear between the two layers.

The answer to the first question, concerning what deter-
mines the drag exerted by the obstacle on the flow, is that an
exact formula (12) derived from linear theory, expresses the
dependence of the drag on the three flow parameters
(F,M ,B). Numerical simulations of nonlinear flows demon-
strated that this formula remains accurate throughout the su-
percritical regime, up to obstacle heights of at least M =~0.7.
The linear theory gives accurate results for the drag over
relatively high obstacles because nonlinear effects are dis-
placed to the wake at the obstacle flanks and consequently do
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not significantly affect drag. One interesting feature of the
drag function is that rotation may act to increase drag (see
Fig. 2). Numerical simulations of rotating stratified flow™®
suggest that drag due to vertically propagating waves is de-
creased by the presence of rotation so the increase in drag
due to rotation found here appears to be associated with the
excitation of vertically trapped waves.

The answer to the second question, concerning what de-
termines the location of wave breaking in the wake behind
the obstacle, has been answered by demonstrating that the
wake structure can be accurately modeled, at least for low to
moderate obstacle heights and relatively weak rotation, by
the weakly nonlinear OH Eq. (24). In nonrotating flows two
hydraulic jumps are formed at an identical distance from the
obstacle in the wake to each side. Rotation affects the onset
of wave breaking by introducing dispersion at the long wave-
length end of the excited spectrum. The net effect of this
long-wave dispersion is to cause the rear hydraulic jump to
form closer to the obstacle, but the front hydraulic jump to
form further away. The dispersion opposes nonlinear wave
steepening effects for the front wave, although it appears that
in most cases short waves, which are relatively unopposed
by dispersion and typically of small amplitude, will eventu-
ally steepen and break (cf. the microbreaking of Boyd33).
Consideration of the OH formulation leads to Eq. (29),
which expresses the distance along the Mach lines that
breaking waves will first be encountered as a function of the
initial flow parameters.

The conclusion of the present work that in supercritical
flows the rear hydraulic jumps increase in amplitude and
move closer to the obstacle, whereas the upstream hydraulic
jumps decrease in amplitude and move further away, is fully
consistent with the results of experimental, analytical and
numerical works that consider the transcritical regime.”’m’36
The rotating towing-tank experiments of Johnson et al.*®
demonstrated that transcritical rotating flows feature a
“sharp-crested” nonlinear wave to the rear of the obstacle
that is not present in nonrotating flow. In transcritical two-
dimensional flow over a ridge, the analytical results of Esler
et al.'' showed that increasing rotation leads to the appear-
ance and growth of a hydraulic jump downstream of the
obstacle that can exceed the amplitude of the upstream jump.
The regime diagram of ERJO7b (Ref. 13) (their Fig. 4) shows
that three-dimensional rotating transcritical flows (with 1
<F=1+I"*M??) over isolated obstacles are dominated by
rear hydraulic jumps at high rotation rates, and front jumps
when rotation is weak. The overall conclusion that rotation
acts to generate and/or amplify rear hydraulic jumps and
tends to suppress upstream jumps therefore appears to be
robust across a range of flow geometries and flow speeds.

The present results have been obtained under the as-
sumption, following the discussion in Sec. II, that mass and
lower layer momentum are conserved across hydraulic
jumps. The resulting jump condition (2) models the situation
at a turbulent breaking wave at an internal standing hydraulic
jump. There has been much discussion in literature'>'” about
the correct conditions to apply at different types of internal
jumps and bores, and it should be borne in mind that are
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results are likely to show some quantitative sensitivity to the
type of jump condition used.

It is hoped that the results presented here will assist in
the interpretation of numerical simulations of more realistic
flows over topography in which trapped waves are excited.™®
Further, the results may be of use in the design and imple-
mentation of gravity wave drag parametrizations for climate
models for which rotating effects are important.

APPENDIX A: EVALUATION OF INTEGRAL (11)

In this appendix the evaluation of the integral
fzw cos O(B — K*F? cos? 6)
o —KF?cos O+ B+ k> —2iexF cos 6

(A1)

I(k;F,B) =lim

e—0

is described. The integral can be evaluated using the standard
complex substitution z=¢'? and integrating anticlockwise
around the unit circle in the complex plane {C:|z|]=1}. A
similar integral has been evaluated in the nonrotating context
using this substitution by Jiang and Smith."”

Adopting the substitution, after some algebra the integral
can be written as

AN 2+ 1) =4R*P) (P +1) dz

I(k;F,B) =lim —, (A2
( ) 0 Je A2+ 1) -4 +ie(+ 1) 2iz? (42)
where
212
KF B
A’= , R’= ) A3
B+ i B+ K> (A3)

For €=0 and A<1 the five poles of the integrand can be
shown to lie on the real axis, and the resulting integral can be
shown to be zero. For A>1 and €=0 the five poles are
located at z=gz;, i=1 and 5,

7= eia, = ei(ﬂ'—a)’ 3= ei('n’+a)’ = ei(2'n'—a),
S (A4)
z5=0, with a=tan"'{JVA%> -1},

and with z;_, simple poles and z5 a double pole. Next, we
need to examine what happens to the location of the poles on
the unit circle z;_4 when € is nonzero. For small € each pole
z; will be displaced slightly to a new location z;+éw;
+0(@). Inserting into the expression

AN+ 1) -4 +ig(+1)=0, (A5)
equating terms in € and using the fact that
A%(z7+1)* =477 =0, (A6)
the following expression is arrived at
<i
w;= (A7)

" 4A? sin{Arg(z)}’

Clearly the correction term w; is proportional to z; in each
case, and therefore the sign of the (real) constant of propor-
tionality determines whether each pole moves in or out of the
unit circle. Hence we deduce that for €>0, z; and z, move
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inside the unit circle and z3 and z4 move outside. The integral
for A>1 is therefore given by

I(k;F,B) =2mi[Res(z;) + Res(z,) + Res(zs)]. (A8)

For the double pole at z5=0,
d 1(AY2+1)12-

Res(zs) = 2 %

4R’ (2 +1)
AN +1)2 -4

=0. (A9)
z=0

For the remaining poles
1 A+ 1) -4RD) P+ 1)
2 AMz-2)(z-z3)(z-24)

cos a— (R/A)2

2 sin «

Res(z)) =

=z
1-R?
T 2AA2-1

: 1 K
PP -1 -BIF2-1)
and Res(z,)=Res(z;). Hence

(A10)

217 K
FVF =1 -BI(F*-1)’
0, for A <.

for A>1
I(k;F,B) =

(A11)

APPENDIX B: EQUIVALENCE OF THE TWO
EQUATIONS FOR DRAG IN NONROTATING FLOW

Here and in Ref. 12 two separate expressions have been
obtained for the drag on an obstacle in nonrotating shallow
water flow. The implication of the two separate results is that

2 fo i G(X)*XdX=m fo ’ K2h(K)2dk, (B1)
where

G(x) = ’ %dr
and (B2)

h(k) = f h(r)Jo(kr)r dr.
0

Here we show that this result, which can be viewed as a
variation on Parseval’s theorem for Fourier—Bessel trans-
forms, in fact holds.

First note that the integral on the right-hand side can be
written as

Wf K2fz(K)2dK

0

= fo f‘” f“ h(r)h(s)Jo(re)Jo(s k) k*rsdrdsdk
0o Jo Jo

= ZWJOO f” foo ' (r)h' (s)J,(re)J,(sk)rsdrdrds (s <)
0 K 0
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oe) e} S2 s2
=4f j h'(r)h’(s)r[K(—z) —E(—zﬂdrds, (B3)
0 s r r

where K(z) and E(z) are the complete elliptic integrals of the
first and second kinds respectively. To obtain this result in-
tegration by parts in r and s is first used, utilizing the result

f Jo(r@)ardr=rJ,(ra). (B4)

Symmetry in r and s is then used to restrict the domain of
integration to r>s. Finally, the integral in « is evaluated
using the identity

* 2 o? a?
fo Ji(az)J,(Bz)dz = ;[K(E) _E<E>] (a<p).

(B5)

For the second integral, similarly,

2 f i XG(X)2dx
0
_erf R dddX
- 0o Jx \/V—Xz\ e
4fff h(r)h(s)XZ dde (s<r)
- ras S r
0\’ \/

=4fOO fwh’(r)h’(s)r[K<i—z) —E(i—i)]drds. (B6)
0 K

Note that in this case, change in the order of integration
requires care to be taken with the limits of the integrals.
Again, symmetry in r and s is exploited to restrict the do-
main of integration to r>s. The standard definitions of the
elliptic integrals can then be manipulated to obtain the fol-
lowing result used in the evaluation of the X integral,

a 2 a2 a?
e e LR |

(B7)
Clearly, there is equality between the two integral expres-
sions and the result is proved.
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