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Universal statistics of point vortex turbulence
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A new methodology, based on the central limit theorem, is applied to describe the
statistical mechanics of two-dimensional point vortex motion in a bounded container
D , as the number of vortices N tends to infinity. The key to the approach is the
identification of the normal modes of the system with the eigenfunction solutions
of the so-called hydrodynamic eigenvalue problem of the Laplacian in D . The
statistics of the projection of the vorticity distribution onto these eigenfunctions
(‘vorticity projections’) are then investigated. The statistics are used first to obtain
the density-of-states function and caloric curve for the system, generalising previous
results to arbitrary (neutral) distributions of vortex circulations. Explicit expressions
are then obtained for the microcanonical (i.e. fixed energy) probability density
functions of the vorticity projections in a form that can be compared directly with
direct numerical simulations of the dynamics. The energy spectra of the resulting
flows are predicted analytically. Ensembles of simulations with N = 100, in several
conformal domains, are used to make a comprehensive validation of the theory, with
good agreement found across a broad range of energies. The probability density
function of the leading vorticity projection is of particular interest because it has
a unimodal distribution at low energy and a bimodal distribution at high energy.
This behaviour is indicative of a phase transition, known as Onsager–Kraichnan
condensation in the literature, between low-energy states with no mean flow in the
domain and high-energy states with a coherent mean flow. The critical temperature
for the phase transition, which depends on the shape but not the size of D , and
the associated critical energy are found. Finally the accuracy and the extent of the
validity of the theory, at finite N, are explored using a Markov chain phase-space
sampling method.
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1. Introduction
Renewed interest in the classical problem of understanding the motion of point

vortices has been stimulated by the results of recent experiments with quantum fluids
(e.g. Neely et al. 2013). In the experiments, a Bose–Einstein condensate consisting
of O(106) 87Rb atoms is confined by a trapping potential, and is excited by the
application of a magnetic field. Vortices with quantised circulations are generated,
which, because three-dimensional motion is suppressed by the experimental geometry,
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subsequently evolve in two dimensions. The canonical model for the evolution of the
system is the Gross–Pitaevskii (defocusing nonlinear Schrödinger) equation. However,
in the experimental parameter regime, in which the healing length or core size of
the vortices is much smaller than the trap scale, the point vortex model gives an
excellent approximate description of the vortex motion (Bradley & Anderson 2012).
Related numerical work (Billam et al. 2014; Simula, Davis & Helmerson 2014) has
shown that the low-wavenumber part of the incompressible energy spectrum can be
accounted for using the point vortex system.

The methods of equilibrium statistical mechanics have been used to describe the
statistics of point vortex motion ever since the pioneering study of Onsager (1949)
(see also the review of Eyink & Sreenivasan (2006)). Most quantitative studies,
following Joyce & Montgomery (1973), have used mean-field theory to obtain a
predictive equation for the streamfunction ψ of the time-mean flow induced by the
vortices. The most well known of these is the sinh–Poisson equation (see (3.27)
below), which predicts the time-mean streamfunction ψ of a uniform neutral vortex
gas, consisting of equal numbers of positive and negative vortices with unit circulation.

A shortcoming of mean-field theory is that no information is provided about the
fluctuations of quantities of interest about their mean. Additionally, as is easily
discovered if numerical integrations of the point vortex equations are attempted,
for randomly generated ‘neutral gas’ initial conditions, it is often the case that
no time-mean flow emerges from the dynamics (i.e. ψ = 0). Mean-field theory
evidently reveals no useful information about these ψ = 0 simulations. Additionally,
sinh–Poisson solutions occur in positive–negative pairs, owing to the ψ → −ψ
symmetry of the equation. It can be inferred that the emergence of each pair of
solutions, at low mean-field energies in the sinh–Poisson equation, can be associated
with a spontaneous symmetry breaking of the no-flow ψ = 0 solution. Understanding
this symmetry breaking is a key focus of this work.

The spontaneous symmetry-breaking emergence of a mean circulation in the point
vortex system is known as Onsager–Kraichnan condensation (e.g. Billam et al. 2014;
Simula et al. 2014) in the physics literature. Condensation is widely observed in
non-equilibrium systems that are related to the point vortex model, in the sense
that they reduce to the point vortex model in a particular limit (e.g. the limit of
small vortex size), with one clear example being the superfluid experiments described
above. Additionally, however, condensation is observed in numerical simulations
(e.g. Chertkov et al. 2007) and experiments (Paret & Tabeling 1998; Shats, Xia &
Punzmann 2005) of both forced and unforced two-dimensional (2D) turbulence in
fluids, as well as in bounded magnetised plasmas (Bos, Neffaa & Schneider 2008),
where its occurrence has been argued to be of importance for plasma confinement in
tokamak experiments. One particularly interesting example of condensation occurs in
numerical simulations of decaying 2D Navier–Stokes turbulence in a square domain
(Clercx, Maassen & van Heijst 1998; Clercx et al. 2001). In this case condensation is
associated with the fluid spontaneously and quite rapidly increasing its total angular
momentum. By contrast, in a rectangular domain with sufficiently large aspect ratio,
a dipole circulation with no angular momentum is observed to form instead.

Condensation can be viewed as the result of non-equilibrium processes such as
repeated vortex merger (or annihilation in the case of superfluids), with the condensate
emerging as the end state of the merger (or annihilation) process when a small number
of vortices are left in the domain, in an equilibrium configuration. In fluid turbulence,
however, Xiao et al. (2009) have shown that vortex merger alone cannot quantitatively
account for the upscale transfer of energy entering the condensate structure. The work
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of Taylor, Borchardt & Helander (2009), applying the earlier ideas of Chavanis &
Sommeria (1996), provides insight that condensation in fact has a statistical basis.
They demonstrate that point vortex statistical mechanics can be used to predict the
outcome of the Clercx et al. (1998, 2001) experiments, in particular explaining the
transition between ‘spin-up’ and dipole forming flows as the domain geometry is
altered. In Taylor et al.’s theory, both the spin-up and dipole flows are examples of
condensation, occurring when significant number of vortices remain present, with the
spatial structure of the condensate in each case being the structure with maximum
entropy according to the point vortex theory. A switch in the maximum entropy
solution occurs when the aspect ratio of the rectangle exceeds ≈1.12, thus accounting
for the transition.

In order to understand fully the statistical basis of condensation, however, it is
necessary to use an alternative approach to the mean-field theory used by Taylor
et al. (2009). The cumulant expansion method of Pointin & Lundgren (1976) is one
method to obtain a richer statistical description of point vortex behaviour. Using
cumulant expansion, depending on the scaling of the energy E with the number
of vortices as N → ∞, either Joyce & Montgomery’s (1973) mean-field theory is
recovered (in the ‘hydrodynamic’ scaling limit, in which e = E/N2Γ 2

0 is held constant
as N → ∞, where Γ0 is the root-mean-square (r.m.s.) vortex circulation) or a theory
of fluctuations is obtained (in the ‘thermodynamic’ limit, in which ε = E/NΓ 2

0 = Ne
is held constant). Pointin & Lundgren’s (1976) fluctuation theory, which was made
explicit only for the doubly periodic domain, was recently generalised and extended
by the present authors (Esler, Ashbee & McDonald 2013, hereafter EAM13) to all
simply connected bounded 2D domains D ⊂ R2. However, cumulant expansion is
laborious, and truncations of the cumulant expansion are difficult to justify rigorously.
The results below, based on the central limit theorem (CLT), provide an alternative
and much simpler method of recovering the key results of EAM13. More importantly,
the new method allows EAM13’s results to be extended to provide a number of
predictions that can be tested against direct numerical simulations (DNS) of the point
vortex system.

The rest of the paper is set out as follows. In § 2, the point vortex model is
described, the uniform and microcanonical statistical ensembles to be investigated are
defined, and the normal modes of variability of the system are introduced. In § 3,
statistics are obtained for various quantities of interest under both the uniform
and microcanonical ensembles. The critical inverse temperature and energy for
condensation are obtained, the equilibrium energy spectra are found, the large-energy
asymptotics are derived, and the connection is explained between the new results
and those of mean-field theory. In § 4, the results are validated, first by comparison
with DNS, and second by comparison between the predicted statistics and those
obtained by statistical sampling of phase space (following e.g. Campbell & O’Neil
1991). Finally, in § 5, the applications to both 2D classical turbulence and quantum
turbulence are discussed, and conclusions are drawn.

2. Background
2.1. The point vortex model

The Hamiltonian point vortex model describes the motion in D of N vortices of
infinitesimal size with circulations Γi (i = 1, . . . , N). Here, we will be mainly
concerned with the case of a neutral vortex gas, satisfying

N�

i=1

Γi = 0, (2.1)
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this being the system of most relevance to numerical simulations of 2D turbulence.
Many of the results below can be generalised to the non-neutral case, i.e. flows
with non-zero circulation, but the results are more complicated and will be reported
elsewhere. The vortex locations xi = (xi yi)

T ∈ D evolve according to Hamilton’s
equations (e.g. Newton 2001)

Γi
dxi

dt
= −∂H

∂yi
, Γi

dyi

dt
= ∂H

∂xi
, i = 1, . . . , N, (2.2a,b)

where the Hamiltonian (Lin 1941a) is given by

H(x1, . . . , xN) = −1
2

N�

i=1

N�

j=1, j�=i

ΓiΓjG(xi, xj) − 1
2

N�

i=1

Γ 2
i g(xi, xi). (2.3)

Here G(x, x�) is the Green’s function of the first kind of the Laplacian operator in D ,
satisfying

∇2G(x, x�) = δ(x − x�), G(x, x�) = 0 on ∂D, (2.4a,b)

where the Laplacian ∇2 acts on x only, ∂D denotes the boundary of D , and

g(x, x�) = G(x, x�) − 1
2π

log |x − x�|. (2.5)

Note that the terms involving g in (2.3) only require the evaluation of the so-called
Robin function r(x)= g(x, x) in which the position arguments of g are set to be equal.
The Robin function describes the interaction of each individual vortex with the domain
boundary, and in some domains it can be expressed as the streamfunction induced
by one or more ‘image’ vortices outside the domain, evaluated at the location of the
vortex itself. A solitary vortex in D will move along a path with r(x) = const.

The statistical mechanics of the system (2.2) will be discussed next.

2.2. Microcanonical statistical mechanics
Provided that D has no continuous symmetries, for example D is not a circle,
a periodic channel or a doubly periodic domain, the Hamiltonian H is the only
known conserved quantity of the motion. Provided ergodicity can be assumed, an
aspect that will be discussed briefly in § 4.2 below (see also Weiss & McWilliams
1991), the relevant statistical ensemble for the dynamical system (2.2) is the
microcanonical ensemble consisting of all vortex configurations with a fixed energy
H = E. Hereafter, angle brackets will be used to denote the microcanonical ensemble
average, e.g. �ω(x)� for the average of the vorticity distribution

ω(x) =
N�

i=1

Γiδ(x − xi). (2.6)

Thermodynamic quantities can be obtained using the density-of-states function,
i.e. the classical measure of the number of microstates occupying each energy shell,
which for given vortex circulations Γ = (Γ1, . . . , ΓN)T is defined as

WΓ (E) = 1
AN

�

DN
δ(E − H(x1, . . . , xN)) dx1 · · · dxN, (2.7)
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FIGURE 1. Schematic of the density-of-states function WΓ (E). (The plotted curve is in
fact obtained from a numerical evaluation of W(ε) for a uniform neutral gas in domain
A – see § 3.1.)

where A is the area of D . A key insight (see Onsager 1949) is obtained from the
fact that phase space has a finite volume (equal to AN). It follows that WΓ (E) must
have a maximum at some value E = E0, and decay to zero as E → ±∞. A schematic
illustration of WΓ (E) is given in figure 1. Entropy SΓ (E) and inverse thermodynamic
temperature βΓ (E) are formally defined from WΓ (E) (setting Boltzmann’s constant to
be unity here without loss of generality),

SΓ (E) = log WΓ (E), βΓ (E) = S�
Γ (E) = WΓ

�(E)

WΓ (E)
. (2.8a,b)

It is immediately apparent from figure 1 that, depending on the energy E, βΓ can be
positive or negative. It is well known (e.g. Onsager 1949) that the sign of βΓ reveals
much about the qualitative behaviour of the associated dynamics. Strongly positive βΓ

indicates that the vortex gas will be dominated by dipoles of opposite-signed vortices,
whereas strongly negative βΓ indicates that clusters of like-signed vortices will form.

A useful starting point for any statistical theory is to describe the behaviour
of WΓ (E) as N → ∞. Note that, in this limit, it can be expected that the N
self-interaction terms in (2.3) will be dominated by the N(N − 1) interactions between
vortices. We will return to this point below. An important theoretical result concerning
the N → ∞ limit, proved by Campbell & O’Neil (1991) for periodic, rectangular or
trapezoidal domains, is that, under mild restrictions on Γ ,

lim
N→∞

NΓ 2
0 WΓ (NΓ 2

0 ε) = W(ε). (2.9)

The limiting form W(ε) is a function of a rescaled energy ε = E/NΓ 2
0 , which is an

energy per unit vortex sometimes referred to as the thermodynamic energy. Here the
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r.m.s. vortex circulation Γ0 has the standard definition

Γ0 =
�

1
N

N�

i=1

Γ 2
i

�1/2

. (2.10)

Statistical sampling of phase space, for values of N in the range 10–160, was used
by Campbell & O’Neil (1991) to produce convincing numerical evidence that WΓ (E)
indeed converges according to (2.9). An important point is that (2.9) holds even if
the r.m.s. circulation Γ0 depends on N. Different authors have followed different
conventions. For example, in order to specify the domain-integrated vorticity of each
sign, EAM13 chose Γ ∼ N−1. By contrast, Dritschel, Lucia & Poje (2015) chose
Γ ∼ N−1/2, which has the advantage that it leads to convergence of WΓ (E) with
respect to the original energy E. All such scaling choices for the circulations are
(trivially) equivalent to a rescaling of the time variable in (2.2) and therefore have
no influence on the statistics of the system.

EAM13’s main results are for the uniform neutral vortex gas, which consists of N
vortices, exactly half having positive circulation Γi = 1/N and half negative Γi =−1/N.
For the uniform neutral gas set-up, EAM13 used the cumulant expansion method to
obtain an explicit expression for W(ε), in the form of an inverse Fourier integral,
generalising a result of Pointin & Lundgren (1976) for the doubly periodic domain.
Here, we aim to obtain an analytic expression for the limiting form W(ε) for as
general a distribution of vortices as possible, using a new method. Not only will
EAM13’s results be generalised, and the scaling result (2.9) of Campbell & O’Neil
(1991) generalised to arbitrary domains, but also the new methodology will allow the
explicit calculation of probability density functions (p.d.f.s) of various quantities in the
microcanonical ensemble, which can then be verified against DNS.

2.3. Modes of variability of an ideal 2D fluid in a bounded domain
To obtain point vortex statistics in a general domain D , it is useful first to define an
orthogonal basis that captures the modes of variability of the point vortex distribution
in D . The method to generate such a basis is to solve the hydrodynamic (e.g. Flucher
& Gustafsson 1999) eigenvalue problem for the Laplacian

∇2Φ = β

A
Φ in D, (2.11)

subject to boundary conditions

Φ = const. on ∂D,

�

∂D

∇Φ · n ds = 0. (2.12a,b)

Solutions of (2.11) consist of an infinite set of eigenvalues {βj} and associated
eigenfunctions {Φj(x)} (j = 0, 1, 2, . . .). Note that β has been deliberately chosen
to label the eigenvalue parameter because the eigenvalues {βj} can be interpreted
as inverse temperatures (see EAM13 and below). It is important to emphasise
that the problem (2.11)–(2.12) is uniquely determined, and in general gives a
different spectrum and set of basis functions compared to the more familiar Neumann
(∇Φ · n = 0 on ∂D) and Dirichlet (Φ = 0 on ∂D) eigenvalue problems.

The boundary condition (2.12) is natural if Φ is interpreted as a streamfunction of a
vorticity field that integrates to zero in D . In that case, because there can be no flow
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through ∂D , Φ must be constant there, although the value of the constant need not be
specified. The integral condition in (2.12) follows from the 2D divergence theorem,
because the domain integral of the vorticity field ∇2Φ remains zero at all times.
The lead eigenvalue β0 of (2.11) is evidently zero, with corresponding eigenfunction
Φ0 = constant in D . An energy argument reveals that the remaining eigenvalues {βj}
(j� 1) are strictly negative. Note that the 1/A factor in (2.11) ensures that the {βj} are
invariant under a rescaling of the domain size. Since (2.11) satisfies the conditions for
the Hilbert–Schmidt theorem (e.g. Debnath & Mikusiński 2005), it follows that the
remaining eigenfunctions {Φj} are orthogonal, both to each other and to Φ0. Using
square brackets [·] to denote the domain average of a function f (x),

[ f ] = 1
A

�

D

f (x) dx, (2.13)

the eigenfunctions satisfy, following normalisation,

[Φj] = 0 (j � 1), [ΦjΦk] = δjk (j, k � 1), (2.14a,b)

where δjk denotes the Kronecker delta. The orthogonality properties (2.14) are of
central importance to our approach below.

The relevance of the set of eigenfunctions {Φj} is not restricted to the point vortex
system. The set {Φj} are in fact a natural basis for describing the variability of any
ideal flow with vorticity in D . In fact, Chavanis & Sommeria (1996) identified the
same eigenvalue problem as central to their study of the Miller–Robert–Sommeria
mean-field statistical mechanics predictions (Miller 1990; Robert 1991) for the
outcome of vortex patch flows in rectangular and circular domains. Their formulation
of (2.11) appears rather different,

∇2Φ � = β

A
(Φ � − [Φ �]), Φ � = 0, on ∂D, (2.15a,b)

although (2.15) is easily shown to be equivalent to (2.11) under the transformation
Φ = Φ � − [Φ �]. Taylor et al. (2009) classified the eigenfunctions of (2.15) into type I
(with [Φ �] = 0) and type II ([Φ �] �= 0). Examining the rather simpler hydrodynamic
formulation of (2.11), however, this distinction is seen to be somewhat artificial in
general, with the existence of type I solutions being dependent upon symmetries of
D (e.g. rectangles have three times as many type I eigenfunctions as type II).

For the purposes of comparison with DNS (see § 4.1), and with statistics obtained
by sampling of phase space (see § 4.2), four conformal domains (A–D) shown in
figure 2 have been chosen for detailed study. These shapes may appear somewhat
arbitrary. However, there is a good reason for avoiding: (a) the unit circle, because its
statistical mechanics are complicated by the fact that angular momentum is conserved
(e.g. Bühler 2002); (b) the doubly periodic domain, which conserves linear impulse
(e.g. Weiss & McWilliams 1991); and (c) rectangular domains, because the Green’s
function then requires relatively expensive evaluations of the Weierstrass σ -function
(e.g. Kunin, Hussain & Zhou 1994). Domains A–D have the advantage that (2.2) can
be transformed to the circle domain in which the Hamiltonian is closely related to
that of the unit circle itself (Newton 2001).

Domains A–D are defined by a two-parameter (q, s) map from the unit circle
(|Z|� 1),

z = aZ/((1 − q2Z)(1 − isZ)). (2.16)
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A
(a)

(b)

(c)

B C D

FIGURE 2. (a) Domains A–D; (b) leading three eigenfunctions of domain C; (c) leading
three eigenfunctions of domain D.

Here a = a(q, s) is a normalising constant calculated to fix the area (A =π), and (q, s)
for each domain are (A) (0.8, 0), (B) (0.3, 0), (C) (0.55, 0.65) and (D) (0.55, 0.5).
When s = 0 the map is the ‘Neumann oval’ (see e.g. Richardson 1981).

Figure 2 shows the four domains (A–D) and contours the leading three eigen-
functions for domains C and D (for domains A and B, see figures 3 and 4 of
EAM13). The eigenfunction calculations are effected by transforming to the unit
circle domain, and using a standard spectral method with a Chebyshev polynomial
representation in the radial direction and a Fourier representation in the azimuthal
direction (e.g. chapters 9 and 11 of Trefethen (2000) and appendix C of EAM13).
For the results illustrated, a grid of 51 radial × 100 azimuthal points was used.
Domains C and D exhibit an interesting switch in the ordering of eigenfunctions, the
consequences of which will be explored in § 4.1 below.

2.4. The fixed-ratio neutral vortex gas and its continuum limit
The results to follow use the CLT and are therefore obtained formally by passage to
a limit in which the number of vortices N → ∞. For definiteness, it is helpful to
be specific about how exactly the distribution of circulations Γi (i = 1, . . . , N) of the
vortices behave as the N →∞ limit is taken, while nevertheless keeping the treatment
as general as possible.

With the above in mind, a ‘fixed-ratio neutral vortex gas’ is defined as follows. A
fixed ratio αk of the vortices is assumed to have a constant circulation Γ̄k, where
k = 1, . . . , K and K < ∞ is the number of different vortex populations. Evidently�K

k=1 αk = 1. As discussed above, because of time rescaling, the Γ̄k can be constants
or, provided their ratios are fixed, can multiply an arbitrary function of N without
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affecting the argument below. The neutrality condition is then

K�

k=1

αkΓ̄k = 0 (2.17)

and the r.m.s. circulation introduced above is

Γ0 =
�

K�

k=1

αkΓ̄
2

k

�1/2

. (2.18)

Note that the uniform neutral vortex gas, defined in § 2.2 above, is an example of a
fixed-ratio gas with K = 2, α1,2 = 1/2 and, in the treatment of EAM13, Γ̄1,2 = ±1/N.

To describe the continuum limit of the fixed-ratio neutral vortex gas, we introduce
α(γ ) to describe the fractional density of vortices with circulation γ . A sufficient
condition for our results below to hold, which will apply in all practical situations,
is that vortex circulations are bounded above by a maximum value γm (i.e. α(γ ) = 0
for |γ | > γm). The neutrality condition and r.m.s. circulation are then

� γm

−γm

γα(γ ) dγ = 0, Γ0 =
�� γm

−γm

γ 2α(γ ) dγ

�1/2

. (2.19a,b)

The continuum case is particularly interesting because universal scaling laws have
been proposed for distributions of vortex sizes in decaying 2D turbulence (Dritschel
et al. 2008).

2.5. Sums of χ 2 random variables
Many of the results below will be expressed in terms of functions that arise as a result
of summations of χ 2 random variables. Here, some useful results and definitions are
given, which will serve to simplify the exposition below.

A starting point is the standard result that, if X ∼ N (0, 1) is a Gaussian random
variable, then Y = X2 − 1 is χ 2

1 -distributed with p.d.f.

p(y) =






1√
2π

exp(−(y + 1)/2)

(y + 1)1/2
y > −1,

0 y �−1.

(2.20)

Notice that E(Y) = 0 and Var(Y) = 1. Next suppose that we are interested in finding
the p.d.f. of the summation

SM =
M�

j=1

Yj

2wj
(2.21)

in the limit M → ∞. Here {Yj} are independent and identically distributed (iid) with
distribution (2.20), and the {wj} are an infinite set of monotonically increasing positive
constants. The {wj} are assumed to increase sufficiently rapidly so that (a) CLT results
for weighted sums (e.g. Lyapunov CLT) do not hold, and (b) S∞ = limM→∞ SM is well
defined. It turns out that wj ∼ j at large j is sufficient for both (a) and (b).
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Denote the p.d.f. of SM by FwM
(s) where wM = (w1, w2, . . . , wM)T. Using the

convolution theorem, the Fourier transform of FwM
(s) is given by

F̂wM
(k) = (2π)(M−1)/2

M�

j=1

p̂
�

k
2wj

�
, (2.22)

where

p̂(k) = 1√
2π

exp( 1
2 i(2k − tan−1(2k)))
(1 + 4k2)1/4

(2.23)

is the Fourier transform of p(y). Taking the limit M → ∞, and using w in place of
w∞, after some working it follows that

Fw(s) = 1
2π

� ∞

−∞
Aw(k) exp(iks + iφw(k)) dk, (2.24)

where the amplitude and phase functions Aw and φw are real-valued and defined by

Aw(k) =
∞�

j=1

�
1 + k2

w2
j

�−1/4

, φw(k) = 1
2

∞�

j=1

�
k
wj

− tan−1
�

k
wj

��
. (2.25a,b)

The function Fw(s) will be used repeatedly below. A notational device we will use
in several places is to write w(i1, i2, i3) to denote the sequence w with the terms at
j = i1, i2, i3 omitted (e.g. w(1) = (w2, w3, . . .)T etc.).

Unfortunately, there is no known analytical method for inverting the transform
(2.24), or indeed to sum (2.21) by other means (e.g. Bausch 2013, and references
therein). As a consequence a numerical approach must be taken. Direct numerical
quadrature of (2.24) using the trapezium rule, with w truncated at a few hundred
terms, converges fairly rapidly with element size, provided that s � 2(

�
j w−2

j )1/2

(roughly four standard deviations of the resulting distribution). For larger |s|,
convergence rapidly becomes computationally expensive and then impossible. An
ingenious direct numerical pairwise method of summation of (2.21) by Bausch
(2013), which is very accurate and efficient for s < 0, has been used to cross-validate
our calculations.

3. A new approach to point vortex statistics
3.1. Statistics of the uniform ensemble

A natural starting point is to formulate a description of the statistics of the uniform
ensemble. The uniform ensemble p.d.f. p0(q) of a quantity Q(x1, . . . , xN) that depends
on the vortex positions is defined to be

p0(q) = 1
AN

�

DN
δ(Q(x1, . . . , xN) − q) dx1 · · · dxN . (3.1)

In other words, p0(q) is the p.d.f. of Q when the vortices are arranged at random
in D under uniform measure. Certainly, the uniform ensemble bears no relation to
the statistics of quantities calculable from dynamical simulations of (2.2), which are
governed by the microcanonical ensemble (see below). However, the density-of-states
function WΓ (E) (2.7) is simply the p.d.f. of the Hamiltonian under the uniform
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ensemble. Other important thermodynamic quantities are defined from WΓ (E)
(see (2.8)). The main aim in this section is to determine the limiting behaviour
of WΓ (E) as N → ∞ and to establish related results that allow us to address the
statistics of the microcanonical ensemble below.

The results below will be derived first for the fixed-ratio neutral gas of § 2.4, and
the continuum limit will subsequently be taken. First, define the ‘vorticity projections’
Ωj, i.e. the projections of the vorticity field onto the eigenfunction basis, to be

Ωj =
1
ω0

[ωΦj] = 1
ω0A

N�

i=1

ΓiΦj(xi), so that ω(x) = ω0

∞�

j=1

ΩjΦj(x). (3.2)

Here ω0 = N1/2Γ0/A is a scaling factor used to simplify the bookkeeping. It is
straightforward to obtain the statistics of the {Ωj}, under the uniform ensemble, using
the CLT. Note first that we can write

Ωj =
K�

k=1

α
1/2
k

Γ̄k

Γ0
Ωk

j , where Ωk
j = 1

(αkN)1/2

αkN�

ik=1

Φj(xik), (3.3)

where the {xik} denote the positions of those vortices with circulation Γ̄k. Under the
uniform ensemble, each Ωk

j is the sum of αkN iid random variables Φj(X ik), where
the X ik are random positions uniformly distributed in D , divided by the square root of
the number in the sum. Applying the CLT to Ωk

j , and noting that it follows from the
orthogonality properties (2.14) that E(Φj(X ik))=0 and Var(Φj(X ik))=1, it follows that
in the limit N → ∞ the random variable Ωk

j is Gaussian-distributed with zero mean
and unit variance, i.e. Ωk

j ∼ N (0, 1). The distribution for Ωj then follows from the
standard result for sums of Gaussian random variables applied to (3.3), from which it
is also the case that Ωj ∼ N (0, 1), or equivalently the {Ωj} have p.d.f.

p0(ωj) = exp(−ω2
j /2)√

2π
. (3.4)

Further, it follows from the orthogonality condition (2.14) that Cov(Ωj, Ωk) = 0 for
j �= k, hence in the limit N → ∞ the set of random variables {Ωj} are iid.

Next, introduce the distributions

R(x, x�) =
N�

i=1

Γ 2
i δ(x − xi)δ(x� − xi), S(x) =

N�

i=1

Γ 2
i δ(x − xi). (3.5a,b)

In terms of these distributions, the point vortex energy (2.3) can be written as

H = −1
2

�

D2
((ω(x)ω(x�) − R(x, x�))G(x, x�) + R(x, x�)g(x, x�)) dx dx�

= −1
2

�

D2
(ω(x)ω(x�) − R(x, x�))G(x, x�) dx dx� − 1

2

�

D

S(x)r(x) dx. (3.6)

This result can be verified by inserting (2.6) and (3.5) into (3.6).
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Progress can now be made by introducing the eigenfunction expansions of R(x, x�)
and S(x) as follows:

Rjk = 1
ω2

0A2

N�

i=1

Γ 2
i Φj(xi)Φk(xi), R(x, x�) = ω2

0

∞�

j=0

∞�

k=0

RjkΦj(x)Φk(x�), (3.7a,b)

Sj =
1

ω2
0A2

N�

i=1

Γ 2
i Φj(xi), S(x) = ω2

0A
∞�

j=0

SjΦj(x). (3.8a,b)

Similarly, the Green’s function G(x, x�) and the Robin function r(x) can be expanded
in the eigenfunction basis,

G(x, x�) = G00 +
∞�

j=1

Φj(x)Φj(x�)

βj
, G00 = 1

A2

�

D2
G(x, x�) dx dx�, (3.9a,b)

r(x) =
∞�

j=0

rjΦj(x), rj =
1
A

�

D

r(x)Φj(x) dx. (3.10a,b)

Using (3.6)–(3.10) the Hamiltonian can now be expressed in terms of the projections
{Ωj, Rjj, Sj}, which can be regarded as random variables under the uniform ensemble,

H = ω2
0A2

�
ε0 − 1

2

∞�

j=1

�
Ω2

j − Rjj

βj
+ rjSj

��
, where ε0 = G00 − r0

2
. (3.11)

If one now writes Rjj = Tj + 1, it is shown in appendix A that the random variables
Tj and Sj can be neglected at leading order in (3.11), essentially because they are
both zero-mean random variables with variance O(1/N) compared to O(1) for Ωj.
Note that it was anticipated above that contributions to H from self-interaction terms,
i.e. the {Tj} and {Sj} here, would become insignificant as N → ∞. On substituting
ω0 = N1/2Γ0/A, (3.11) is at leading order

H
NΓ 2

0
− ε0 = −1

2

∞�

j=1

Ω2
j − 1
βj

, where Ωj ∼ N (0, 1) (3.12)

and with the Gaussian random variables {Ωj} being iid. The result (3.12) holds in the
continuum limit but with Γ0 given by (2.19). Alternatively, for the specific case (see
§ 2.2) of the uniform neutral gas of EAM13, Γ0 = 1/N.

Under the uniform ensemble, the right-hand side of (3.12) is a sum of χ 2 random
variables, precisely as discussed in § 2.5. Introducing a scaled energy ε = H/NΓ 2

0 , it
is evident that this sum of random variables will have a p.d.f. W(ε) that depends
only on the properties of the domain D , through the eigenvalues {βj} and the
domain-dependent constant ε0, and not on the vortex circulations Γ . From the scaling
properties of random variables, in the limit N → ∞, the density-of-states function
WΓ (E), which is the p.d.f. of H, satisfies NΓ 2

0 WΓ (NΓ 2
0 ε) = W(ε). This observation

generalises the result of Campbell & O’Neil (1991) to all simply connected domains.
Furthermore, from the results of § 2.5, W(ε) can be given explicitly in terms of the
functions defined there as

W(ε) = Fβ(ε − ε0), (3.13)
where β = (−β1, −β2, . . .)T is the vector of eigenvalues of (2.11).



Universal statistics of point vortex turbulence 287

–0.2 –0.1 0 0.1 0.2 0.3
–50

0

50

100(a) (b)

(c) (d)

Domain A

–0.2 –0.1 0 0.1 0.2 0.3
–50

0

50

100

Domain B

–0.2 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
–50
–48
–46
–44
–42
–40
–38
–36
–34
–32
–30

Domain A

–0.2 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
–50

–45

–40

–35

Domain B

Fluctuation theory

Fluctuation theory

Fluctuation theory

Fluctuation theory Fluctuation asymptotic

Fluctuation asymptotic

In
ve

rs
e 

te
m

pe
ra

tu
re

In
ve

rs
e 

te
m

pe
ra

tu
re

MC3MC3

MC3 MC3

MC3

FIGURE 3. (Colour online) Comparison of inverse temperatures βΓ (E) obtained from the
multi-canonical Markov chain Monte Carlo (MC3) calculation (red curves) for domains A
and B (illustrated), with the theoretical result β(ε) obtained from (3.13) (green curves),
and βh(e) (see § 3.3) obtained from the mean-field (sinh–Poisson) theory (solid blue
curves). Panels (a,c) are scaled to show the central region and panels (b,d) the right-tail
region of W(ε). The dashed blue lines give the linearised (low-E) sinh–Poisson result,
and the dashed green lines the large-ε asymptotic result (3.20). A secondary sinh–Poisson
solution (dotted blue curve) is shown for domain B.

Equation (3.13) is precisely the formula found by EAM13 for the special case
of the uniform neutral gas, including evaluating the unknown constant (W0 in their
equation (41)). EAM13 used the (rather laborious) cumulant expansion method
of Pointin & Lundgren (1976). The function W(ε) (see also figure 1 of EAM13)
invariably resembles the schematic of figure 1, which in fact shows (3.13) for
domain A.

A careful comparison of the shapes of the density-of-states prediction (3.13)
is afforded by figure 3 (green curves), which shows the corresponding inverse
temperature β(ε) = W �(ε)/W(ε). The differences between domains are much
more evident when looking at β as opposed to W. In the limit ε → −∞, the
behaviour is similar for both domains A and B, and is not inconsistent with the
domain-independent behaviour predicted by Edwards & Taylor (1974), β ∼ exp(−8πε)
(see also Pointin & Lundgren 1976). At positive energies, by contrast, in the limit
ε → ∞, the inverse temperature β → β1, i.e. the first non-zero eigenvalue of (2.11),
in each domain. Notice that β1 differs between domains A (β1 ≈ −36.37) and B
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(β1 ≈ −42.61). It will be shown below that β → β1 in all simply connected domains
and that βc = β1 therefore has a special role as the critical inverse temperature
for condensation referred to in the introduction. Moreover, β invariably approaches
β1 from below. It is interesting to remark that, in all closed domains, the point
vortex microcanonical ensemble therefore has ‘negative specific heat capacity’ at
high energies. (In our notation the specific heat capacity c with respect to the scaled
(thermodynamic) energy ε is c = −β2/β �, which is negative wherever β �(ε) > 0.)
Negative specific heats are generic features of long-range interacting systems and
raise interesting issues concerning ‘ensemble inequivalence’ (e.g. Campa, Dauxois &
Ruffo 2009). In addition, for each domain, it is possible to define a critical energy
εc (vertical dotted lines on figure 3) to be the lowest energy (but in practice the only
energy) for which β(εc)=βc. The onset of condensation will be shown below to occur
at energies close to εc. Figure 3 will be discussed further below, in the context of
numerical validation of the theory, when results are compared with statistics obtained
by random sampling of phase space (see § 4.2 below).

In summary, the new approach has been used here to generalise and simplify the
derivation of EAM13’s result (3.13), showing that (3.13) is universal to all neutral
distributions of vortices. Next, it will be shown that the flexibility and simplicity
afforded by the current approach allows new microcanonical results to be obtained,
which are directly testable by comparison with DNS.

3.2. Statistics of the microcanonical ensemble
The microcanonical p.d.f. pE(q) of a quantity Q(x1, . . . , xN) is the distribution of Q
when the energy E is held constant. Explicitly, this is

pE(q) = 1
ANWΓ (E)

�

DN
δ(Q(x1, . . . , xN) − q)δ(H(x1, . . . , xN) − E) dx1 · · · dxN . (3.14)

Under the ergodic hypothesis, the time series of the variable Q(t) in a long-time
dynamical solution of (2.2) with energy H = E will be distributed as pE(q). However,
even for moderate (i.e. O(100)) values of N, (3.14) can be extremely expensive to
sample numerically, particularly for energies outside the central region (although
methods do exist, as will be described in § 4.2 below). For many purposes (3.14) has
little practical value.

By contrast, in the limit N → ∞, interesting and practical microcanonical statistics
can be obtained. Denoting the limiting microcanonical p.d.f.s as pε(q), where
ε = E/NΓ 2

0 is the scaled energy, the techniques of § 3.1 can be adapted to make
predictions that can be compared with integrations of (2.2). Here the focus will be
on the microcanonical p.d.f.s of the vorticity projections Ωj, which reveal how energy
is shared between the normal modes of the system in the long-time limit. Recall that,
under the uniform ensemble, the {Ωj} are iid with Gaussian distribution N (0, 1).
Under the microcanonical ensemble, their p.d.f. will deviate from Gaussianity due to
the need to satisfy the energy constraint H = NΓ 2

0 ε (see (3.12)).
The results are obtained using Bayes’ theorem. Writing the microcanonical marginal

p.d.f. of Ωj as pε(ωj) = p0(ωj | ε), and applying Bayes’ theorem,

pε(ωj) = p0(ε | Ωj = ωj)p0(ωj)

p0(ε)
=

Fβ(j)

�
ε − ε0 + ω2

j − 1
2βj

�

Fβ(ε − ε0)

exp(−ω2
j /2)√

2π
, (3.15)
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FIGURE 4. (Colour online) (a–c) Contour plots of pε(ω1), from the theoretical
expression (3.15), as a function of (ω1, ε) for domains A, C and D. The blue circle and
error bars denote the mean and 95 % confidence intervals of W(ε) and the critical energy
εc is marked with a dotted line. The possible values of ω1 according to the linearised
sinh–Poisson solution (3.29) are marked with the dashed blue parabolas. (d–f ) As for
(a–c), but here pε(ω1) is estimated using MC3 sampling of phase space with N = 100
vortices.

gives the result in terms of the functions defined in § 2.5 (recall that β(j) denotes
the vector β with the jth term omitted). The conditional probability in the numerator
of (3.15) is expressed in terms of the function Fβ(j)(·) because the latter is the
p.d.f. for the sum of random variables in (3.12) excluding the jth term, and its
argument follows from the fact that the total sum in (3.12) must remain equal to
ε − ε0 in the case where Ωj = ωj is given.

The p.d.f. pε(ω1) of the first vorticity projection Ω1 deviates most strongly from
the Gaussian obtained for the uniform ensemble. In figure 4(a–c), pε(ω1), calculated
using (3.15), is contoured as a function of (ω1, ε) for domains A, C and D. All three
domains share a key feature. At energies around the level ε = εc, the p.d.f. switches
from unimodal to bimodal, and the distribution becomes increasingly bimodal as the
energy is further increased. A strongly bimodal distribution can be associated with a
state with a coherent mean flow (i.e. the condensed state), because in this case there
will be a strong tendency for the system to remain either in a positive polarity state
with Ω1 > 0 or in a negative polarity state with Ω1 < 0. Passage between the two
states requires the system to evolve through a relatively improbable configuration with
Ω1 = 0 (similar transitions between positive and negative polarity equilibrium solutions
of the Euler equations have been studied by Naso, Chavanis & Dubrulle (2010)).

In figure 4, domain A is seen to have a very ‘clean’ condensation, in the sense
that pε(ω1) becomes strongly bimodal at relatively low energies. There is a sharp
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FIGURE 5. (Colour online) Comparison between theoretical predictions ((3.15), blue
curves) of pE(|ω1|) and DNS ((2.2), red curves): (a) domain A; (b) domain B. Three
different energy levels (ε = −0.1, 0, 0.1) are shown (2.2).

contrast, which arguably might be expected on geometric grounds, between domain A
and domains B–D for which the onset of bimodality as ε is increased is more gradual.
In domains B–D the probability of a configuration associated with a switch in polarity
(Ω1 = 0) is much greater than that at the same energy in domain A. The issue of how
the transition probability is controlled by the domain shape is discussed in the next
subsections where asymptotics at high ε are considered. Domains C and D, which
have similar shapes, unsurprisingly are seen in figure 4 to have similar p.d.f.s. The
reason they have been chosen for close examination is that the condensate structure
Φ1(x) (plotted in figure 2) is nevertheless very different between the two domains.

The difference in the p.d.f.s of Ω1 can be seen clearly in figure 5, where pε(ω1)

(blue curves) is plotted at three different values of the energy (ε = −0.1, 0, 0.1)
for domains A and B. Note that, since the p.d.f. is an even function of ω1, it is
plotted as a function of |ω1| in figure 5 in order to facilitate comparison with the DNS
(red curves, discussed in § 4.1 below). For reference, the (Gaussian) uniform ensemble
p.d.f. is also plotted (dotted black curve).

For any ordered set of n integers {i1, i2, . . ., in} the joint microcanonical p.d.f.
pε(ωi1, ωi2, . . . , ωin) of the random vector of vorticity projections (Ωi1, Ωi2, . . . , Ωin)

T
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FIGURE 6. Contour plots comparing pε(|ω1|, |ω2|) (a,b) predicted by the theory (3.16)
with (c,d) statistics compiled from the DNS (2.2): (a,c) domain A; (b,d) domain B. The
energy is fixed at ε = 0.05.

can also be calculated. The result is

pε(ωi1, ωi2, . . . , ωin) =
Fβ(i1,i2,...,in)

�
ε − ε0 +

�

ik

ω2
ik − 1
2βik

�

Fβ(ε − ε0)

exp

�
−
�

ik

ω2
ik

2

�

(2π)n/2
. (3.16)

Of these joint p.d.f.s, the most interesting is arguably pε(ω1, ω2) because it illustrates
the distribution of energy between the leading two normal modes of the system.
Figure 6 contours pε(ω1, ω2) for domains A and B for energy ε = 0.05. The results
show markedly different behaviours for the two domains. In domain A nearly all states
have a significant amount of energy trapped in mode 1, whereas domain B allows
energy to be shared comparatively efficiently between modes 1 and 2, evidenced
by the circular pattern (only the upper right quadrant is shown) in figure 6. The
difference can be explained by the difference in the spectral gap β1 − β2, between
the two domains, as will be discussed further below.

3.3. The energy spectrum
For the 2D Euler equations in D , it is straightforward to define the ensemble-averaged
fluid dynamical energy EF and the associated instantaneous discrete energy spectrum.
Expanding the vorticity field ω(x) (here assumed to have zero mean) in the
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eigenfunctions {Φj(x)} as in (3.2) leads to

EF = −1
2

�

D2
�ω(x)ω(x�)�G(x, x�) dx dx� = ω2

0A2
∞�

j=1

�Ej�, where Ej = −Ω2
j

2βj
(3.17)

and Ωj = [ωΦj]/ω0 as in (3.2). In general, ω0 is any scaling factor and the angle
brackets denote an (unspecified) ensemble average. In the singular limit of the
point vortex distribution (2.6), however, EF is undefined. Consequently, additional
regularising terms are needed in the point vortex Hamiltonian (2.3); compare, for
example, (3.6) and (3.17). Nevertheless, the fluid dynamical spectral coefficients
Ej in (3.17), which denote the energy in a mode with wavenumber kj = (−βj/A)1/2,
do remain calculable in the point vortex system. In this case, ω0 = N1/2Γ0/A and
the angle brackets unambiguously denote the microcanonical ensemble. In fact, it is
demonstrated in appendix A that �Ej� has the following exact analytic relationship
with the density-of-states function:

�Ej� = − 1
2βj

�
1 + β(ε)

βj
− 2

βj

W(ε)

∂W
∂βj

(ε)

�
. (3.18)

It is interesting to remark that the density-of-states function W(ε) encodes, through
(3.18), all information concerning the equilibrium point vortex energy spectrum
(recall that β(ε) = W �(ε)/W(ε)). An alternative expression (compare equation (38)
of EAM13), which shows that it is not in fact necessary to evaluate the partial
derivatives ∂W/∂βj to obtain the energy spectrum from W(ε), is

�Ej� = 1
2W(ε)

� ε

−∞
W(ε̄) eβj(ε−ε̄) dε̄. (3.19)

Equation (3.19) is obtained by integrating equation (A 8) given in appendix A.
In figure 7 the energy spectrum obtained from (3.18) is plotted for domain B for

several values of ε. The usual convention of summing the contributions from modes
within wavenumber shells of finite width �k is adopted. Here we take �k = 2

√
π

(consistent with taking �k = 1 in the usual doubly periodic domain, which has greater
area by a factor of 4π). Figure 7 shows that, as ε is increased, energy is increasingly
added to the largest scales in the system. At small scales the spectrum has a k−1 slope
for all values of ε, consistent with the spectrum not being integrable. These results are
consistent with spectra recently calculated numerically by Dritschel et al. (2015) for
the particular case of point vortices on the sphere. The dashed curve, showing the
saturated spectrum, will be discussed below.

3.4. Large-ε asymptotics, condensation and saturation spectrum
In appendix A it is proved that, as ε → ∞, the limiting density-of-states function
satisfies

W(ε) ≈
� −β1

π(ε − ε0)

�1/2

exp

�
β1(ε − ε0) − C1

2
−

∞�

k=1

Bk+1

k(ε − ε0)k

�
, (3.20)

where C1 is a constant,

C1 =
∞�

j=2

log
�

1 − β1

βj

�
+ β1

βj
, (3.21)
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FIGURE 7. Point vortex energy spectra E (k) in domain B at different values of ε.

and the {Bk} are a sequence of negative constants also depending upon the eigenvalues
{βj} (see table 1 in appendix A). Not only does (3.20) serve as a test of the numerical
quadrature of (3.13), it also allows simplified analytical expressions to be obtained for
various quantities of interest. The useful domain of validity of (3.20) can be estimated
by inspection of figure 3(b,d), where the corresponding four-term approximation
β(ε) ≈ �3

k=0 Bk(ε − ε0)
−k (see table 1) is plotted (dashed green curves) against a

quadrature of the exact expression (i.e. obtained from (3.13), solid green curves).
Evidently the approximation is appropriate only for inverse temperatures below the
critical value (i.e. β < β1), and works better in domain A than in domain B because
the coefficients {Bk} decay more rapidly in the former case.

Naturally, (3.20) also gives the s → ∞ asymptotics of the functions Fw(s) of
§ 2.5. Hence, essentially the same asymptotics can be applied to the microcanonical
p.d.f. pε(ωj) (given by (3.15)) of the vorticity projection Ωj. It is found that, as
ε → ∞, all but the first vorticity projection become normally distributed,

Ωj ∼ N

�
0,

βj

βj − β1

�
for j � 2. (3.22)

Applying the method to (3.16) it can also be established that {Ω2, Ω3, . . .} become
independent as ε → ∞. Interestingly, (3.22) is consistent with saturation of the fluid
dynamical energy in each mode,

�Ej� = −�Ω2
j �

2βj
→ 1

2(β1 − βj)
, as ε → ∞, for j � 2. (3.23)

In other words, at large ε, the energy spectrum of the point vortex system becomes
saturated and, as ε increases further, all of the additional energy must go into the



294 J. G. Esler and T. L. Ashbee

condensate only. The saturated spectrum (3.23) is plotted on figure 7 (dashed curve).
Note that, because �E1� depends upon on the system energy ε, the first energy shell is
omitted. Spectral saturation is seen to be more or less complete by ε = 0.1, indicating
that, as ε increases beyond this value, all energy will go into the first energy shell
(i.e. the condensate).

The p.d.f. pε(ω1) of the condensate vorticity projection Ω1, by contrast, does not
become Gaussian as ε → ∞. However, results about its behaviour can be found by
taking the microcanonical ensemble average of (3.12), and using the results above. For
example, the ensemble average of the condensate energy E1 is found to be

�E1� = ε − ε∗
0, ε∗

0 = ε0 + 1
2β1

+
∞�

j=2

β1

2βj(β1 − βj)
. (3.24)

The domain-dependent constant ε∗
0 represents a correction to the mean-field theory to

be discussed in the next subsection. Similarly, the variance of the condensate energy
about its mean value is found to be

�(E1 − �E1�)2� = 1
4

∞�

j=2

1
(β1 − βj)2

, (3.25)

showing that the amplitude of fluctuations of the condensate energy are independent
of ε as ε → ∞. The predicted variance in (3.25) varies greatly between domains,
e.g. �(E1 − �E1�)2� ≈ 7.2 × 10−4 in domain A versus 2.4 × 10−2 in domain B, with
the large difference explained by the clustering of the first few eigenvalues close to
β1 in domain B.

Figures 4–6 suggest that, as energy increases, switches in the sign of Ω1 will
become increasingly infrequent in the dynamics, as the probability pε(ω1 = 0) of
encountering a transition state with Ω1 = 0 becomes increasingly small. One might
in fact anticipate that the expected time of transition is inversely proportional to
pε(ω1 = 0). This is in fact the case with stochastic models of bistable systems (e.g.
Naso et al. 2010), which might be used as a simple phenomenological model for the
dynamic evolution of Ω1(t) here (see e.g. Touchette 2009, § 6.2). This idea will be
explored in more detail in future work. In the large-ε limit,

pε(ω1 = 0) ≈
�

β2

β1

�1/2

exp
�

−(β1 − β2)(ε − ε0) + C1 − C2

2
− β2

2β1

�
, (3.26)

where C2 is defined exactly as C1 above, but with β2 replacing β1 and the sum starting
at j = 3. The result (3.26) shows that the frequency of switches in the sign of Ω1
is highly sensitive to the spectral gap β1 − β2 > 0. In domain A, β1 − β2 ≈ 33.78,
whereas in domain B, β1 −β2 ≈ 3.54, which explains the huge difference in switching
behaviour between the two domains. The important point is that it is the shape of the
domain that controls the spectral gap, and through this the switching frequency at high
energy.

3.5. The connection with mean-field theory (sinh–Poisson equation)
Many researchers will be more familiar with the mean-field statistical mechanics
theory of Joyce & Montgomery (1973) than with the fluctuation theory considered
above. What is the connection between the two theories? To answer this question,
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we will briefly review the mean-field theory for a uniform neutral gas below, and
show how the main predictions relate to those of the fluctuation theory. The essential
starting point is to recognise that, while the results of the fluctuation theory are
expressed as a function of the scaled (thermodynamic) energy ε = E/(NΓ 2

0 ), the
mean-field results are expressed as a function of e = E/(N2Γ 2

0 ) (sometimes referred
to as the hydrodynamic energy). The fact that the energy scales differently with
the number of vortices N in each theory (ε = Ne) means that, with respect to the
density-of-states function in figure 1, the fluctuation theory is a theory of the central
region, whereas the mean-field theory is a theory of the (positive) tail region. Pushing
an analogy with sums of random variables in elementary statistics, it might be said
that the fluctuation theory is the ‘central limit theorem’ for point vortices, with the
mean-field theory acting as a ‘large-deviation theory’. According to this analogy, the
two theories will be linked asymptotically, with the ε → ∞ limit of the fluctuation
theory matching to the e → 0 limit of the mean-field theory (Pointin & Lundgren
1976).

The mean-field theory is formulated on the basis that the hydrodynamic energy e
of the system is positive, that all of this energy is contained in a steady mean flow
(the condensate) and that fluctuations can be neglected. For the case of a uniform
neutral gas, the mean-field theory leads to the well-known sinh–Poisson equation
(Joyce & Montgomery 1973) for the time-mean streamfunction ψ (scaled so that
∇2ψ = �ω�/NΓ0) of the condensate,

∇2ψ = C sinh (βhψ), where C = 1
A

[exp(βhψ)]−1/2[exp(−βhψ)]−1/2, (3.27)

where as above [·] denotes the domain average. The correct boundary condition
for ψ on ∂D is (2.12). This can be seen, for example, by following the derivation
of Pointin & Lundgren (1976) – see discussion surrounding their equation (23).
We note in passing that the Dirichlet condition (ψ = 0 on ∂D) has occasionally
been erroneously used in previous works, following, for example, Book, Fisher &
McDonald (1975). That (2.12) physically makes sense is clear: ψ = const. on ∂D
is sufficient to satisfy no normal flow, and the circulation condition on ψ in (2.12)
must hold from Green’s theorem in the plane, because the domain integral of the
mean-field vorticity ∇2ψ is zero for a neutral gas. Consider also that (3.27) is
not invariant under the transformation ψ → ψ + const., and therefore specifying a
value for ψ on the boundary by using the Dirichlet boundary condition is evidently
over-prescriptive. The inverse temperature βh =βh(e) appearing in (3.27) is determined
from the mean-field energy

e = −1
2

�

D

ψ∇2ψ dx. (3.28)

It has been proved (Kiessling 1995) that βh(e) is strictly negative. As discussed above,
however, it is clear that both positive and negative temperatures exist in the point
vortex system. At the outset it is thus clear that the mean-field theory is restricted
to a limited range of β.

Asymptotic matching with the fluctuation theory requires that the system (3.27)–
(3.28) be studied in the limit E → 0. In this limit (3.27) can be linearised to recover
the eigenvalue problem (2.11). In other words, at low energies, distinct solutions of
the sinh–Poisson equation emerge from (e, βh) = (0, β1), (0, β2), . . . . The mean-field
theory can be used to show (Chavanis & Sommeria 1996; Taylor et al. 2009) that, of
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these solutions, the first has maximum entropy and will therefore be selected by the
dynamics. In the E → 0 limit the first solution has streamfunction

ψ(x) = ±
�

−2e
β1

�1/2

Φ1(x). (3.29)

Further, Taylor et al. (2009) have shown that the caloric curve βh(e) associated with
this first solution has expansion

βh(e) = β1 − β2
1

�
1 − 1

3 [Φ4
1 ]
�

e + O(e2). (3.30)

Numerical solutions of (3.27)–(3.28) have been obtained, using the algorithm of
McDonald (1974), in domains A and B for a range of energies starting close to
E = 0. These solutions have been used to obtain numerical estimates of βh(e) for
each domain, and these have been plotted on figure 3 (blue curves) for N = 50 and
N = 100 vortices (note that the number of vortices N affects the scaling of the βh(e)
curve in figure 3 because the ordinate is ε = Ne and not e). The shape of the βh(e)
curves can be seen only in panels (b) and (d), which expand the region near β1. For
domain B, solutions emerging from both (0, β1) and (0, β2) (dotted line) are plotted.
The corresponding small-e approximation (3.30) has also been calculated and plotted
(dashed blue line).

The results above allow us to consider matching between the ε → ∞ limit of
the fluctuation theory and the e → 0 limit of the mean-field theory. First note
that it is proved above, and is clear from figure 3, that both limε→∞ β(ε) = β1
and lime→0 βh(e) = β1. Hence βc = β1 is not only the critical inverse temperature
for condensation, but is also the critical value for matching between the theories.
Therefore, as E is increased at finite N, a smooth transition between the behaviour
predicted by each theory can be expected for β near βc. This transition will be
examined numerically in § 4.2 below using phase-space sampling. Second, the
solution (3.29) is consistent with the ε → ∞ prediction for the fluctuation theory,
because in the fluctuation theory all of the excess energy ends up in the condensate.
The results (3.24)–(3.25) go beyond the mean-field theory result (3.29) by calculating
the size of both the leading correction to the mean energy of the condensate and the
variance of the condensate energy about this mean. The vorticity projection predicted
by (3.29) is plotted on figure 4 as a blue dashed parabola, and shows that mean-field
theory slightly underestimates the magnitude of the vorticity projections.

4. Numerical validation
4.1. Direct numerical simulation

The ergodic hypothesis motivating the study of the microcanonical ensemble in § 3.2
is that the statistics of the microcanonical ensemble will correspond to the (long)
time-averaged statistics of the equations of motion (2.2). This hypothesis will be tested
next using DNS of (2.2). In particular, marginal p.d.f.s pε(ωj) for the scaled vorticity
projections {Ωj} can be compared directly with statistics from the DNS. Here we
will focus on pε(ω1), given by (3.15) and plotted in figure 5, as well as the joint
p.d.f. pε(ω1, ω2) contoured in figure 6.

DNS of equation (2.2) is performed using the adaptive algorithm described in
Ashbee, Esler & McDonald (2013). The majority of the runs to be discussed have
been documented previously in EAM13. Briefly, (2.2) is solved for a uniform
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neutral gas with N = 100, in domains A and B, at a range of energies (ε =
−0.15, −0.1, −0.05, 0, 0.05, 0.1, 0.15) spanning the central region of the
density-of-states function shown in figure 1. For each energy level and both domains,
eight runs of 1000Γ −1

0 time units are executed, during which the evolving vorticity
projections Ωj(t) are calculated and recorded at regular time intervals (10Γ −1

0 ). Long
time-averaged p.d.f.s are then compiled from the histograms of the recorded data.

The red curves in figure 5 show the DNS results for pε(|ω1|), which can be
compared with the theoretical prediction (3.15) (blue curves). Notice that pε(|ω1|)
is plotted rather than pε(ω1). Here we are exploiting the fact that pε(ω1) is an
even function to aid comparison with the DNS. This is necessary because in the
high-energy DNS (e.g. ε = 0.1), particularly in domain A, the system tends to
become trapped for the duration of each run in a state with Ω1 either strictly positive
or negative, producing asymmetric statistics. Good agreement is seen in figure 5,
with much of the remaining discrepancy arguably due to the finite integration length
over which our statistics were compiled. In particular, the large contrast in the shape
of pε(|ω1|) between the two domains is equally apparent in the DNS as it is in the
theory. Similarly, the DNS results in figure 6(c,d) agree well with the theoretical
prediction of (3.16) (figure 6a,b). The contrast between the two domains is again
equally apparent in the DNS.

A further testable prediction is that the time-mean streamfunction �ψ� in the DNS,
at energies in the matching region (low e, high ε), is at leading order given by (3.29).
In particular, the spatial structure of the condensate should match that of the first
non-constant eigenfunction Φ1(x). Domains C and D have been selected to provide
an exacting numerical test that the correct spatial structure of �ψ� emerges, because,
as shown in figure 2, the two geometrically similar domains have very different first
eigenfunctions. In domain C, Φ1(x) has a tripole structure dominated by a single large
vortex in the centre of the domain, whereas in domain D Φ1(x) has a left–right dipole
structure.

The numerical runs for domains C and D are initialised with N = 100 randomly
placed vortices, and are executed just as described above for domains A and B, but
for a longer duration (3000Γ −1

0 time units) and at higher energy (ε = 1.3 for C and
ε = 1.1 for D). High energy is necessary to prevent switches in the polarity of the
circulation, as described above, occurring during the DNS. During each run, the exact
instantaneous streamfunction at every point on a spatial grid is recorded. Note that,
although the instantaneous streamfunction has logarithmic singularities at the locations
of the vortices, provided that a vortex location is never exactly coincident with a grid
point, the time average at the grid point remains well defined. Moreover, owing to the
gentle nature of the logarithmic singularity, ‘near-misses’ where vortices pass close to
grid points do not dominate the time average.

Figure 8 shows a comparison between the time-mean streamfunction �ψ� calculated
from the DNS (a,c) and the theoretical predictions (b,d). The DNS results capture
the contrasting structures between the two domains. The N = 100 vortex runs have
been repeated with many sets of randomly generated initial conditions across a range
of similar energies, and the emergence of the distinct structures in �ψ� in each
domain has been found to be very robust. A detailed numerical investigation of the
‘geometry-controlled transition’ (see also Chavanis & Sommeria 1996; Taylor et al.
2009) between the two structures, as the domain shape is varied smoothly between
domains C and D, is presented in Ashbee (2014).
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Domain

C

D

(a) (b)

(d)(c)

FIGURE 8. (a,c) Time-mean streamfunction (scaled by NΓ0 as in § 3.5) �ψ(x)�, calculated
for time interval 1000Γ −1

0 < t < 3000Γ −1
0 , for dynamical runs with N = 100 vortices in

domains C and D. The energies are (C) e = E/N2Γ 2
0 = 0.013 (ε = 1.3) and (D) e = 0.011

(ε = 1.1). (b,d) Linearised sinh–Poisson solution (−2e/β1)
1/2Φ1(x) for the two domains.

Contour intervals are the same in each panel.

4.2. Phase-space sampling using a multi-canonical Markov chain Monte Carlo
(MC3) method

The results of § 3 can also be validated against statistics generated from repeatedly
sampling the uniform distribution (see e.g. Campbell & O’Neil 1991; Bühler 2002;
Esler et al. 2013; Billam et al. 2014). In the naive approach, the N vortices are
randomly distributed in the domain with uniform measure, and quantities of interest
such as the energy and the vorticity projections Ωj are calculated for the distribution
in question and recorded. Repeating the process allows histograms to be generated
from the recorded data, which then serve as estimates of the probability densities
p0(·) under the uniform ensemble. Probability densities under the microcanonical
ensemble pε(·) can be generated from subsets of the data for which the energy lies
in a shell centred on the energy ε of interest.

If the point vortex system is ergodic, p.d.f.s obtained by sampling the microcanonical
canonical ensemble and p.d.f.s obtained from long-time integrations of the dynamics
(2.2) should be identical to within statistical error. For our calculations with N = 100,
this is indeed what we have found, i.e. there is no evidence of non-ergodicity, in
contrast to the N = 6 doubly periodic calculations reported by Weiss & McWilliams
(1991).

The main drawback with the naive sampling method described above is that it
is very expensive to generate data outside the central region of the density-of-states
function illustrated in figure 1 (i.e. outside −0.2 � ε � 0.3), simply because the
vast majority of random distributions of vortices will have energy within that range.
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To bypass the need to sample all energy levels simultaneously, and as a method
of investigating energy levels outside of the central region, methods of sampling
constant energy surfaces have been developed (Creutz 1983). Creutz’s method has
been used with apparent success in the point vortex context by Smith (1989) but
has the disadvantages that (i) no proof exists that the microcanonical ensemble is
accurately represented, and (ii) it does not allow direct calculation of the inverse
temperature β for comparison with theory.

An alternative method is multi-canonical Markov chain Monte Carlo (MC3)
sampling (Berg 2000; Driscoll & Maki 2007). In its simplest form, MC3 can be
regarded as a method for sampling the tail regions of one-dimensional p.d.f.s, and
in our set-up the p.d.f. in question is the density-of-states function WΓ (E). Our
implementation of the MC3 algorithm closely follows the structure of the MATLAB
code published by Driscoll & Maki (2007) – see discussion surrounding their figure 4
– used therein to estimate the (known) binomial p.d.f. of a one-dimensional random
walk. For our problem, a Markov chain is initialised with a random distribution of
vortices, and is updated at each step by moving a single vortex, chosen at random,
to a new random position in D . The algorithm proceeds, for states in the positive
tail region of WΓ (E), by accepting an update if the new distribution of vortices
has greater energy E, and rejecting it with a certain probability if the updated E is
lower. The MC3 algorithm then uses the accumulated statistics of how E changes
under updates to adjust the rejection probabilities. The result is that, after a sufficient
number of iterations, WΓ (E) is sampled with optimal efficiency far into the tail
regions with an unbiased method.

MC3 has been used to sample WΓ (E) in domains A and B, where the circulations Γ
are those of a uniform neutral gas with N = 100. A Markov chain length of 1.5 × 107

was used for each iteration, of which the first third is a ‘burn-in’, which is not used
when compiling the statistics. Note that the fact that only one vortex is moved each
time the chain is advanced can be used to accelerate the calculation of the energy and
vorticity projections, allowing for efficient calculation of long chains. Twenty iterations
were found to be necessary for the statistics to converge on the energy interval −0.2�
ε� 2.5. The failure of MC3 to significantly extend the statistics in the negative energy
tail is due to the double exponential decay of WΓ (E) as E → −∞ (see figure 1).

Numerical differentiation was then used to obtain the corresponding inverse
temperatures βΓ (E) = W �

Γ (E)/WΓ (E), which are plotted in figure 3 (red curves,
NΓ 2

0 βΓ plotted as a function of ε = E/NΓ 2
0 ). The calculated inverse temperatures can

be compared with the theoretical predictions β(ε) (fluctuation theory, green curves)
and βh(e) (mean-field theory, blue curves). Figure 3(a,c) cover the central region
(−0.2 < ε < 0.3), which could equally well have been sampled using the naive
method, and show excellent agreement between the MC3 sampled βΓ (E) and the
fluctuation theory β(ε). Figure 3(b,d), by contrast, focus on the positive tail region
(0 � ε < 2) and show inverse temperatures close to the critical value β = β1 (dashed
line). On this scale, the MC3 results show a remarkable transition between close
agreement with the fluctuation theory at lower energies, and close agreement with
mean-field theory prediction βh(e) at higher energies. Accurate statistical validation
of βh(e), which has not (to the authors’ knowledge) been attempted previously, has
therefore been made possible by MC3. The naive method is computationally too
expensive by several orders of magnitude. To check the robustness of the result,
the MC3 calculation was repeated for domain A with N = 50 vortices. Recall that,
because figure 3 is plotted as a function of the thermodynamic energy ε = E/NΓ 2

0
rather than the hydrodynamic energy e = ε/N, the mean-field theory prediction βh(e)
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FIGURE 9. (a–c) The microcanonical p.d.f. pε(ω1) of the vorticity projection Ω1 at
energy ε, calculated for domain A with a uniform neutral gas, contoured as a function of
(ω1, ε): (a) MC3 calculation with N = 20 vortices; (b) MC3 with N = 50; and (c) MC3
with N = 100. (d) The theoretical prediction (3.15).

must be replotted on figure 3 when N is changed. Nevertheless, the MC3 calculation
(dark red curve) reveals that a clear transition between agreement with β(ε) to
agreement with βh(e) again takes place, i.e. both theories are correct within their
range of validity.

Statistics compiled using MC3 can also be used as a check on the p.d.f.s of the
vorticity projections. In figure 4(d–f ), pε(ω1), as calculated from histograms compiled
from the MC3 data with N = 100 vortices, is contoured. Excellent agreement with the
theoretical predictions of (3.15) is evident in all three domains (A, C, D). It is clear
from figure 4 that N = 100 vortices are sufficient for the theory to be accurate; hence
an obvious question relates to how the theory performs as N is decreased. Figure 9
compares pε(ω1) estimated from MC3 calculations in domain A with N = 20, 50 and
100 vortices with the theoretical prediction. Even with as few as N = 20 vortices, the
phase transition between the uncondensed and condensed states is seen to occur at
an almost identical energy ε. At higher energies, there is a quantitative difference
with the expected values of |Ω1| somewhat lower for N = 20 compared with the
theory. An explanation for the difference is that ε = 0.7 in figure 9 corresponds to
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a significantly higher value of the hydrodynamic energy e at low N (e = 0.035 for
N = 20 compared to e = 0.007 for N = 100). The former value of e is sufficiently high
for the sinh–Poisson equation (3.27) to predict significant nonlinearity in the �ω�–�ψ�
relationship, and an associated change in the spatial structure of �ψ�, causing it to
differ significantly from that of Φ1(x).

5. Discussion and conclusions
A new methodology has been introduced above, which, using the central limit

theorem, allows p.d.f.s from the microcanonical ensemble to be calculated and
compared to time averages from DNS. Good agreement has been found. The p.d.f.s
in question are primarily those of the projections of the vorticity field onto a particular
orthonormal basis, which has been argued to give a natural description of the modes
of variability of the system (see also Chavanis & Sommeria 1996). It is perhaps
not surprising that the microcanonical ensemble, which is defined by conservation
of energy, provides information most succinctly about the distribution of energy
between modes that are orthogonal under the energy norm. In particular, an exact
expression (3.18) has been found that allows the complete energy spectrum to be
calculated.

A natural topic for future investigation is to test the relevance of this predicted
energy spectrum to simulations of 2D Navier–Stokes and superfluid turbulence,
particularly in the case where the area fraction covered by the vortices is very small,
when the theory might be expected to be most relevant. In the case of superfluids,
significant steps in this direction have been made by Billam et al. (2014), who have
compared incompressible energy spectra computed from DNS of the Gross–Pitaevskii
equations with energy spectra from point vortex integrations. Excellent agreement
was found at low wavenumbers at a range of point vortex energies, showing that
key aspects of the physics are well captured by the point vortex model. The current
work allows the energy spectrum in flows of this type to be calculated analytically,
including in domains with geometry matching those of the experiments, and therefore
promises detailed and flexible theoretical predictions of value to experimentalists.

A key question concerns the extent to which the point vortex approach remains
relevant when non-equilibrium processes, such as vortex merger and filament
formation in classical turbulence or vortex annilihation in quantum turbulence, are
active. Non-equilibrium processes act to change the vortex population, in classical
turbulence by evolving both the distribution of vortex sizes and their number –
empirical models of this process have been developed by Benzi et al. (1992),
Dritschel et al. (2008) – and in quantum turbulence by reducing the number of
vortices. Our (testable) hypothesis is that a point vortex description will be successful
whenever τe � τne, where τe is the characteristic time scale for the point vortex
system to relax to equilibrium (i.e. forget initial conditions) and τne is the time
scale over which non-equilibrium processes act to change the vortex population. If
τe � τne the equilibrium statistics of the point vortex model will remain relevant to
those of the evolving turbulent flow, because the turbulent flow in this case adjusts
sufficiently rapidly that no memory of its changing vortex population is retained.
The good correspondence between the point vortex model and the Gross–Pitaevskii
calculations of Billam et al. (2014) suggests that, at least in some circumstances,
τe � τne in typical numerical simulations of 2D quantum turbulence. Similarly, a
preliminary study of DNS of decaying 2D classical turbulence by the first author and
collaborators suggests that, at least at late times in typical simulations, point vortex
predictions correspond closely to the observed energy spectrum.
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An important point concerning the use of the point vortex model to interpret DNS
of classical or quantum turbulence is that, because the vortex population evolves
in the turbulent flow, the mapping from the point vortex model to the turbulent
flow also evolves in time. In particular, the point vortex energy ε corresponding to
the turbulent flow will change as the vortex population evolves, even as the fluid
energy EF of the turbulent flow is approximately conserved. Under the empirical
model of vortex population evolution in classical turbulence suggested by Dritschel
et al. (2008), ε can be shown to increase with time, consistent with the 2D turbulent
flow evolving towards a regime favouring like-signed vortex clustering and eventual
Onsager–Kraichnan condensation. In this picture, which will be explored in more
detail in future work, the combination of the point vortex model and any suitable
model of vortex population evolution provides a route to a quantitative statistical
understanding of upscale energy transfer in 2D classical turbulence.

The main focus of much of this work has been a detailed investigation of Onsager–
Kraichnan condensation in the point vortex model, addressing the question of under
what circumstances a steady time-mean flow spontaneously emerges in a given set-
up. It is clear from both the theoretical results and those from statistical sampling
of phase space that condensation is a spontaneous symmetry breaking in the system.
The pitchfork-like bifurcations shown in figure 4 resemble those seen in second-order
phase transitions in (for example) the Ising model of ferromagnetism, with the first
vorticity projection Ω1 taking the role of a global order parameter. However, there are
obstacles to developing this analogy because the point vortex system is a long-range
interacting Hamiltonian system, and is resistant to many of the standard methods of
statistical mechanics (e.g. Campa et al. 2009). An interesting new result is that, at
the onset of condensation, the energy spectrum becomes saturated, with any additional
energy going exclusively into the condensate mode. The saturated spectrum can be
found explicitly (see (3.23)).

Many of the remaining results relate to how condensation is influenced by the
domain shape. The geometry of the domain determines the eigenvalues {βj}, and in
turn these control, for example, the amplitude of fluctuations of the energy in the
condensate mode, and the scaling of the transition probability pε(ω1 = 0), which
controls the frequency of switches in the polarity of the condensate mean flow. The
behaviour is most sensitive to the size of the spectral gap β1 − β2. It is important
to emphasise that, because the point vortex system is a long-range interacting one,
there is no limit in which the shape of the domain does not influence the statistics of
the flow. This point is particularly relevant to the study of 2D turbulence in doubly
periodic domains. Rather than somehow representing the flow on an infinite domain,
as might be supposed, the specific nature of the doubly periodic geometry influence
the statistics just as profoundly as that of the bounded domains studied here.
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Appendix A. Some mathematical details pertaining to § 3
A.1. The Hamiltonian (3.11) in the limit N → ∞

Here we aim to justify carefully the approximation of (3.11) by (3.12) in the limit
N → ∞. We will establish the result by first considering an application of the
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multivariate CLT to a 3M-component random vector Zk
ik to obtain the distribution

of its sample mean Sk in the limit N → ∞. Here M denotes the number of
eigenfunctions at which expansions such as (3.2) are truncated. The random vectors
{Zk

ik} are associated with the contributions of those vortices, with indices ik, that have
circulation Γ̄k. They are given by

Zk
ik =





Φ1(X ik)

...

ΦM(X ik)

N−1/2Γ̄kΓ
−1

0 (Φ1(X ik)
2 − 1)

...

N−1/2Γ̄kΓ
−1

0 (ΦM(X ik)
2 − 1)

N−1/2Γ̄kΓ
−1

0 Φ1(X ik)

...

N−1/2Γ̄kΓ
−1

0 ΦM(X ik)





and Sk = 1
(αkN)1/2

αkN�

ik=1

Zk
ik =





Ωk
1

...

Ωk
M

Tk
1
...

Tk
M

Sk
1
...

Sk
M





.

(A 1a,b)

The {Zk
ik} have been designed in order that their normalised sums Sk have components

{Ωk
j , Tk

j , Sk
j }, where Ωk

j has been previously defined in (3.3), whereas Tk
j and Sk

j are
defined by the sums in (A 1). These random variables have zero mean, and by design
satisfy

K�

k=1

α
1/2
k

Γ̄k

Γ0
Ωk

j = Ωj,

K�

k=1

α
1/2
k

Γ̄k

Γ0
Tk

j = Tj,

K�

k=1

α
1/2
k

Γ̄k

Γ0
Sk

j = Sj, (A 2a−c)

where the random variables {Ωj, Tj, Sj} are those appearing in connection with (3.11)
(recall that Tj = Rjj − 1).

The multivariate CLT must be used because the components of Zk
ik are not

independent. The multivariate CLT states that, provided that all components of the
covariance matrix exist, in the limit N → ∞ the random vector Sk will be distributed
as

Sk ∼ N (0, Σ), (A 3)

where Σ =E(Zk
ik Zk

ik
T
) is the covariance matrix associated with Zk

ik . It is straightforward
to calculate the entries in the covariance matrix Σ (note that, because covariance
matrices are symmetric, only entries with p � q need be given explicitly):

(Σ)pq =






δp�q� 1 � p, q � M,

N−1/2Γ̄kΓ
−1

0 [Φp�Φ2
q�] 1 � p � M, M + 1 � q � 2M,

N−1/2Γ̄kΓ
−1

0 δp�q� 1 � p � M, 2M + 1 � q � 3M,

N−1Γ̄ 2
k Γ −2

0 ([Φ2
p�Φ2

q�] − 1) M + 1 � p, q � 2M,

N−1Γ̄ 2
k Γ −2

0 [Φ2
p�Φq�] M + 1 � p � 2M, 2M + 1 � q � 3M,

N−1Γ̄ 2
k Γ −2

0 δp�q� 2M + 1 � p, q � 3M.

(A 4)

Here square brackets [·] denote the area average over D , δpq is the Kronecker
delta, and primes on the indices denote that the modulus with respect to M is
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intended (i.e. p� = p mod M). The important point to take from (A 4) is simply that
all covariances are finite, justifying the use of the CLT. Further, in the limit N → ∞,
the matrix is dominated by the diagonal entries with 1 � p = q � M, hence in the
limit N → ∞ we can neglect all components in Sk except the {Ωk

j }, which are iid
with Ωk

j ∼ N (0, 1). Summing the Gaussian-distributed random variables in (A 2),
and then taking the limit M → ∞, the result that the vorticity projections are iid
with Ωj ∼ N (0, 1) is recovered, along with the fact that at leading order in N the
variables {Tj} and {Sj} can be neglected, as required for (3.12).

A.2. Derivation of the energy spectrum
Here, the details are given for the result (3.18), which expresses the microcanonical
average of �Ω2

j � in terms of the density-of-states function W(ε) and its derivatives.
First note that

�Ω2
j � =

� ∞

−∞
ω2

j pε(ωj) dωj, (A 5)

where pε(ωj) is the microcanonical p.d.f. of Ωj given by (3.15). Next, note that
� ∞

−∞
ω2

j pε(ωj) dωj

= 1
Fβ(ε − ε0)

� ∞

−∞
Fβ(j)

�
ε − ε0 + ω2

j − 1
2βj

�
ω2

j√
2π

exp

�
−ω2

j

2

�
dωj

= 1
W(ε)

� ∞

−∞

Aβ(j)(k)
(2π)3/2

exp
�

i(ε − ε0)k + iφβ(j)(k) − ik
2βj

�

×
�� ∞

−∞
ω2

j exp

�
ikω2

j

2βj
− ω2

j

2

�
dωj

�
dk

= 1
W(ε)

� ∞

−∞

Aβ(j)(k)
(2π)

× (β2
j + ikβj) exp(i(ε − ε0)k + iφβ(j)(k) − ik/(2βj) + 1

2 i tan−1(k/βj))

(1 + k2/β2
j )

1/4(k2 + β2
j )

dk

= 1
W(ε)

� ∞

−∞

Aβ(k)(β2
j + ikβj)

2π(k2 + β2
j )

exp(i(ε − ε0)k + iφβ(k)) dk. (A 6)

A result equivalent to (A 6) was obtained by EAM13 (see their equation (45), and
note that ajj + 1 = �Ω2

j �).
To obtain (3.18) it remains to calculate
∂W
∂βj

(ε) = 1
2π

� ∞

−∞

�
∂Aβ

∂βj
+ iAβ ∂φβ

∂βj

�
exp(i(ε − ε0)k + iφβ(k)) dk

= 1
2π

� ∞

−∞

k2(βj + ik)
2β2

j (k2 + β2
j )

Aβ(k) exp(i(ε − ε0)k + iφβ(k)) dk

= 1
2π

� ∞

−∞

(βj + ik)
2

�
1
β2

j
− 1

(k2 + β2
j )

�
Aβ(k) exp(i(ε − ε0)k + iφβ(k)) dk

= 1
2βj

(W(ε) + W �(ε)/βj − �Ω2
j �W(ε)),

from which (3.18) follows.
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A.3. High-energy asymptotics of (3.13)
Here the high-energy (ε → ∞) asymptotics of the density-of-states function W(ε) is
considered. We have not managed to find a direct method to approximate (3.13) as
ε → ∞. The following indirect method is used instead. Consider the equations

ε − ε0 = −1
2

∞�

j=1

�Ω2
j � − 1
βj

, (A 7)

(∂ε + β(ε))�Ω2
j � = βj(�Ω2

j � − 1) (j � 1). (A 8)

Here (A 7) is the microcanonical ensemble average of (3.12), and (A 8) follows from
differentiation of (A 6) with respect to ε. Equations (A 7)–(A 8) can also be obtained
by the cumulant expansion method (cf. equations (37) and (39) of EAM13).

To study (A 7) and (A 8) asymptotically in the limit ε → ∞, it is necessary to take
as a starting point the fact that all of the energy at leading order is contained in the
j = 1 mode, i.e. that associated with condensation. A solution based on the following
expansion in the small parameter (ε − ε0)

−1 can then be sought:

�Ω2
1 � = −2β1(ε − ε0) +

∞�

k=0

A1k(ε − ε0)
−k,

�Ω2
j � =

∞�

k=0

Ajk(ε − ε0)
−k (j � 2),

β(ε) =
∞�

k=0

Bk(ε − ε0)
−k.






(A 9)

The values obtained when the expansion (A 9) is inserted into (A 7) and (A 8), and
powers in (ε − ε0)

−1 are equated, are shown in table 1. The expansion for β(ε) can
be integrated to give

W(ε) ≈ W0

(ε − ε0)1/2
exp

�
β1(ε − ε0) −

∞�

k=1

Bk+1

k(ε − ε0)k

�
, (A 10)

for W0 constant. The {βj} dependence of the constant W0 can be obtained by
demanding consistency with (3.18), giving, after some working,

W0 = W00(−β1)
1/2 exp

�
−1

2

∞�

j=2

log
�

1 − β1

βj

�
+ β1

βj

�
, (A 11)

where W00 is a constant independent of the {βj}. Finally, consistency with the single
variable p.d.f. (2.20) in the limit βj → ∞ (j � 2) requires W00 = π−1/2, resulting
in (3.20).

A notable feature in table 1 is that the calculated coefficients {Bk} in the expansion
of β(ε) are negative, provided that s1 > 1, which appears to be the case in all domains.
Under this assumption on s1, it turns out to be possible to prove inductively that Bk <0
for all k. The proof by induction starts with the following set of three assumptions:
that, for some positive k, for all 0 � i � k − 1, firstly A1i < 0, secondly Aji > 0 for all
j � 2, and thirdly Bi+1 < 0. Inspection of table 1 reveals that these assumptions hold
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k Bk Ajk (j � 2) A1k

0 β1
βj

βj − β1
1 − s1

1 −1
2

− βj

2(βj − β1)2
− s2

2β1

2
1

4β1
(s1 − 1)

1
4

�
3βj

(βj − β1)3
+ (s1 − 1)βj

β1(βj − β1)2

�
− 1

4β2
1
(3s3 + s2(s1 − 1))

3 − 1
8β2

1
((s1 − 1)2 + 3s2) etc. etc.

TABLE 1. The coefficients in the expansion (A 9) of (A 7) and (A 8). Here the constants
{s1, s2, s3} refer to the summations s1 = �∞

j=2 β2
1/βj(βj − β1), s2 = �∞

j=2 β2
1/(βj − β1)

2 and
s3 =�∞

j=2 β3
1/(βj − β1)

3.

true for k = 1 and k = 2. Inserting the expansion (A 9) into (A 8) with j = 1, and then
equating terms of order (ε − ε0)

−k results in

Bk+1 = 1
2β1

�
−(s1 − 1)Bk +

k−2�

i=1

A1iBk−i −
�

k − 1
2

�
A1,k−1

�
< 0 (k � 2) (A 12)

because, under our assumptions above, every term inside the brackets is positive.
Considering next (A 8) with j � 2, and again equating terms of order (ε − ε0)

−k, we
have

Ajk = 1
β1 − βj

��
k − 1

2

�
Aj,k−1 −

k�

i=2

BiAj,k−i

�
> 0 (k � 1) (A 13)

again using the three assumptions. Finally, it follows from the expansion of (A 7) that

A1k = −β1

∞�

j=2

Ajk

βj
< 0. (A 14)

In summary, we have proved that, if our three assumptions hold for some k, then they
will also hold for k + 1. Given that they hold for k = 2, inductively they must hold
for all k, i.e. Bk < 0 for all k, establishing the result.
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