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Summary

Large-scale waves on the extratropical tropopause have been widely observed to spontaneously
organise into groups or wave packets. Here, a simple paradigm for this wave packet formation is presented.
Firstly, a weakly nonlinear theory of Rossby wave propagation on a potential vorticity front, based on
small non-dimensional wave amplitude ε, is developed. As is typical for systems allowing conservative
one-dimensional wave propagation, the evolution of the wave envelope is governed by the nonlinear
Schrödinger equation. The sense of the nonlinearity is consistent with Benjamin-Feir instability, where
uniform wavetrains are unstable to sideband modulations, leading to the formation of wave packets.
Next, numerical results from contour dynamics integrations show that the weakly nonlinear predictions
for sideband growth rates are quantitatively accurate up to ε ∼ 0.5, and that unstable sideband growth
is qualitatively similar, but slower than predicted, at higher values of ε. For ε > 0.6 the formation of
wave packets leads to wave breaking, this occuring at much lower initial wave amplitudes than for
unmodulated uniform wavetrains previously studied. The numerical results reveal that the length and
time scales of the Benjamin-Feir instability are broadly consistent with observed wave packet formation
in the extratropics.
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1. Introduction

The instability of finite amplitude Stokes’ wavetrains on water to sideband
disturbances, or long wavelength modulations in the amplitude of the wavetrain,
was first noted by Benjamin and Feir (1967). This discovery subsequently led to
the development of a general theory for the Benjamin-Feir instability of travelling
waves. A central result is that one-dimensional weakly nonlinear waves with
an amplitude dependent dispersion relation ω = ω0(k) + ω2(k)a

2 +O(a4) will be
Benjamin-Feir unstable if and only if the Whitham (1974) criterion

d2ω0

dk2
.ω2 < 0 (1)

is satisfied. To determine the sign and magnitude of the nonlinear correction
ω2, and hence the stability characteristics of the uniform wavetrain, the de-
tailed dynamics of the specific travelling waves must be investigated. Several
approaches to this problem have been adopted including the Fourier decom-
position method of Benjamin and Feir (1967) and the variational approaches
described by Whitham (1974, § 13-14) and Bridges and Mielke (1995). Here we
shall follow the weakly nonlinear wave envelope approach developed in the water
wave context by Hasimoto and Ono (1972). Numerous travelling wave problems
have been investigated using the above mentioned methods. In the geophysical
context these include equatorial Kelvin waves (Boyd, 1983), oceanic frontal waves
(Slomp and Swaters, 1999; Karsten and Swaters, 2000), internal gravity waves
(Grimshaw, 1977; Sutherland, 2001) and Kelvin-Helmholtz waves near the onset
of instability (Benjamin and Bridges, 1997).

For the case of a uniform Rossby wavetrain on an unbounded β-plane,
Newell (1969) showed that the Benjamin-Feir instability is present, but that it is
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invariably of secondary importance as the wavetrain is also subject to a resonant
triad instability that operates on a faster timescale. Plumb (1977) extended
Newell’s results to the case of an infinite zonal channel, bounded by sidewalls at
y = 0, L in the meridional direction. In this case, the triad instability is absent for
waves with the smallest possible meridional wavenumber (l = π/L) provided they
have zonal wavenumber less than a critical value (k < 0.681π/L). For wavetrains
satisfying these criteria, Plumb showed, the Benjamin-Feir mechanism becomes
the dominant mode of instability.

Here it is argued that Benjamin-Feir unstable wavetrains, such as those
discovered by Plumb, are relevant to the situation at the extratropical tropopause,
where their evolution may resemble the observed formation of wave packets of
synoptic-scale Rossby waves (often referred to as baroclinic waves). Observed
wave packet formation has dynamics resembling that of a sideband instability,
such as Benjamin-Feir, rather than a resonant triad instability. This paper will
demonstrate that Benjamin-Feir instability always dominates in another simple,
paradigmatic model describing Rossby wave propagation. In this model, which
is arguably more relevant to the situation at the extratropical tropopause (e.g.,
Swanson et al., 1997), Rossby waves are confined to propagate on an interface
separating regions of constant potential vorticity (PV hereafter). In our model,
the stability properties of the Rossby wavetrain are not found to be subject to
abrupt transitions, that depend for example on the ratio of the wavelength to a
channel width, as in the case of Plumb (1977). Further, when our model is ‘tuned’
as far as possible to conditions at the extratropical tropopause, realistic-looking
wave packet formation occurs efficiently due to the Benjamin-Feir mechanism on
timescales of a few days. It is argued that the wave packet formation in our model
therefore represents a useful dynamical paradigm for the observed wave packet
formation.

The ubiquitous nature of Rossby wave packets at the extratropical tropopause
(baroclinic wave packets), and the associated ‘downstream development’ of new
eddies associated with their group propagation, have been identified in numerous
observational studies (Chang, 1993; Lee and Held, 1993; Berbery and Vera, 1996;
Chang and Yu, 1999; Chang, 2001). Coherent wave packets have been observed to
propagate up to twice around the globe in the southern hemisphere, so although
longitudinal variations in baroclinicity (due to e.g. large-scale topography and
land-sea contrasts) act to modulate their amplitudes, they cannot account for the
existence and persistence of the wave packets themselves. The wave packets are
arguably easiest to identify using Hovmoeller (longitude-time) plots of unfiltered
meridional wind at the height and latitude of the tropopause (∼ 300 mb, 40-
55◦N or S). However, it is also of interest to examine their development on isen-
tropic maps of PV (e.g. Hoskins et al., 1985), as this framework allows the waves to
be observed directly as fluctuations to a (near) materially conserved tracer field.
Figure 1 shows a sequence of plots from consecutive days of ECMWF operational
analyses of Ertel’s PV on the 340 K isentropic surface during southern hemisphere
winter. The extratropical dynamical tropopause may be identified on this plot as
the sharp jump in PV, and following widespread convention it is labelled with
the -2 Potential Vorticity Unit (PVU) contour (PV values less than this are
shaded). The Rossby waves can be identified with the wave-like disturbances to
the -2 PVU contour. In Figure 1 it can be seen the waves are concentrated mostly
in two wave packets at the locations of the black arrows, and that these wave
packets exhibit group propagation at around 25-35◦ day−1 (consistent with e.g.
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Figure 5 of Chang, 1999). By contrast the phase speeds of individual waves are
∼10◦ day−1. Because the group speed of the waves exceeds their phase speed, new
eddies are constantly formed at the downstream edge of each wave packet, while
those at the upstream edge decay away. This phenomenon has been described by
Chang (1993) as ‘downstream development’ and can be seen in Figure 1. Over the
three days shown, within the larger wave packet propagating through the western
hemisphere, the wave crests ‘A’ and ‘B’ decay, while a new crest forms at ‘E’. In
the smaller wave packet in the eastern hemisphere ‘X’ decays while a new crest
forms at ‘Z’. The robustness of the group propagation and the strong tendency
for the waves to self-organise as wave packets, as discovered and detailed by the
observational studies listed above, is notable even though the waves of largest
amplitude are often observed to break. It is this wave breaking that leads to
exchange of air masses between the stratosphere (high PV) and the troposphere
(low PV) (Thorncroft et al., 1993).

These considerations motivate the choice of model used in this paper, the
intention being to demonstrate the possible importance of the Rossby wave
Benjamin-Feir instability in a simple but relevant context. Previous analytical
(Esler, 1997) and numerical (Lee and Held, 1993; Swanson and Pierrehumbert,
1994; Esler and Haynes, 1999) studies of wave packets in the quasi-geostrophic
two-layer model have not revealed a simple paradigm explaining their formation.
The approach taken follows Nakamura and Plumb (1994), Swanson et al. (1997)
and Swanson (2000, 2001) by representing the tropopause as a single contour
dividing two regions of constant quasi-geostrophic PV in a single layer shallow
water flow. Rossby waves appear as waves on the PV jump defined by the contour,
as opposed to wave-like disturbances propagating on a continuous planetary PV
gradient. This type of simple model is relevant to real geophysical flows because
Rossby waves typically act to reinforce and sharpen PV gradients on which they
propagate. This PV gradient reinforcement occurs because away from the PV
jump the Rossby waves act to homogenise PV gradients in nonlinear critical
layers (see e.g. Rhines, 1994). This has led Haynes et al. (2001) to argue that it
is the presence of the Rossby waves themselves that generates the sharp gradient
in PV observed at the extratropical tropopause. For our choice of a single layer
model, it is important to emphasise that we are concentrating on the dynamics
of Rossby waves at the extratropical tropopause viewed in isolation, with the
possibilities of both baroclinic growth and dissipation† suppressed.

Contour models have also been widely used to demonstrate dynamical
paradigms in geophysical fluids, including Rossby wave breaking (Polvani and
Plumb, 1992) and hydraulic effects (Haynes et al., 1993). Considerable attention
has also been given to the long-wave limit for Rossby wave propagation (Pratt
and Stern, 1986; Nycander et al., 1993), where dispersive and nonlinear effects
become comparable. Weakly nonlinear analysis in the long-wave limit is to
be distinguished from the nonlinear approach taken in section 2, where it is
assumed that it is the wave envelope that varies on an asymptotically large spatial
scale rather than the waves themselves. Connections between generic long-wave
behaviour governed by the KdV equation and Benjamin-Feir instability governed

† A model with comparable dynamics, albeit in a profoundly different geometry, might be obtained by
considering the behaviour of an isolated potential temperature front on the upper boundary of an Eady-
type model. Baroclinicity may be suppressed in this model by assuming constant potential temperature

on the lower boundary.
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by the nonlinear Schrödinger envelope equation have recently been elucidated by
Grimshaw et al. (2001).

In section 2 we derive the nonlinear Schrödinger envelope equation for Rossby
waves in the single contour model. Various predictions for nonlinear frequency
corrections and sideband growth rates are tested by numerical contour dynamics
integrations in section 3. Finally in section 4 the implications for the dynamics
of the atmosphere and oceans are discussed.

2. Weakly nonlinear behaviour of Rossby waves on a potential

vorticity front

The basic model used in both this section and the next is that of an equivalent
barotropic, quasi-geostrophic shallow water flow on an f -plane. The dynamics
are determined by the position of a single contour at y = η(x, t) separating two
regions of constant quasi-geostrophic PV. Pratt (1988) refers to such a dividing
contour as a PV front. The flow streamfunction ψ is related to the position of
the contour through a Helmholtz equation of the form

f + ∇2ψ − ψ

L2
R

= q =

{

Q+ ∆/2 for y > η(x, t)
Q− ∆/2 for y < η(x, t)

(2)

Here LR =
√
gH/f is the Rossby radius of deformation in terms of the layer depth

H, gravity g and reference Coriolis parameter f . Note that f and the background
PV value Q do not otherwise enter the dynamics below, and we are neglecting
the planetary vorticity gradient. In the case where the contour is undisturbed
(η ≡ 0) the basic velocity is given by u = (U(y), 0) where

U(y) = U0 exp (−|y|/LR). (3)

where U0, the velocity at the contour, is determined below.
The kinematic equation that determines the evolution of the contour position

y = η(x, t) in time is
ηt + uηx = v on y = η(x, t). (4)

Following e.g. Dritschel (1986) the velocity u = (u, v) = (−ψy, ψx) can be ob-
tained from the contour position η(x, t) by evaluating a contour integral along
the PV front, using the Green’s function for the Helmholtz equation (2)

u(x) = −∆

∫

C
G(x, x′) dx′. (5)

Here the integral is taken along the contour. The appropriate Green’s function
solution for (2) is given by (Swanson, 2001)

G(x, x′) = − 1

2π
K0

( |x − x
′|

LR

)

(6)

where K0 is a modified Bessel function in standard notation (K0(r) → 0 as
r→∞).

Considering simple flows of this type, Dritschel (1988) showed as a corollary
to Arnol’d’s first theorem (Arnol’d, 1966), that a direct consequence of the
conservation of streamwise impulse over the domain

J =

∫ ∫

yq dx dy (7)



BENJAMIN-FEIR INSTABILITY OF ROSSBY WAVES 5

is that the integral of the square of the of the contour displacement is conserved
in these flows, i.e.,

d

dt

∫

η2 dx= 0. (8)

This provides an important constraint on the evolution of the disturbance on
the contour in both the weakly nonlinear theory and the fully nonlinear contour
dynamics integrations to follow.

The asymptotic analysis of this section depends on the assumption of small
contour slope, which can be most generally defined by imposing the global
condition |x1 − x2| À |η(x1) − η(x2)| for any two points with x-coordinates x1,
x2. This condition is relaxed in the contour dynamics integrations of section 3.
First, we note that equation (5) can be written in the form

(u, v) = −∆

∫ ∞

−∞
G(x, x′)(1, η′(x′)) dx′ (9)

for any single-valued differentiable position function η. Next, we use the expansion

|x − x
′| =

[

(x− x′)2 + (η(x) − η(x′))2
]1/2

= |x− x′|
(

1 + 1
2

(

η(x)−η(x′)
x−x′

)2
+ ...

)

,
(10)

which is clearly convergent if the small slope condition above is satisfied every-
where. Expanding K0 in a Taylor series using this expression, the leading order
terms are

K0

( |x − x
′|

LR

)

=K0

( |x− x′|
LR

)

+K ′
0

( |x− x′|
LR

)

(η(x) − η(x′))2

2LR|x− x′| + ... (11)

and we obtain

(u, v) =
∆

2π

Z

∞

−∞

»

K0

„

|x − x′|

LR

«

+ K
′

0

„

|x − x′|

LR

«

(η(x) − η(x′))2

2LR|x − x′|
+ ...

–

(1, η
′(x′) ) dx

′

. (12)

We shall show below that if the PV contour satisfies the small slope condition
then the terms included in (12) are sufficient to obtain the velocity field at the
required order from the contour position. The solution for no displacement (η ≡ 0)
is

U0 =
∆

2π

∫ ∞

−∞
K0

( |x′|
LR

)

dx′ =
∆LR

2
. (13)

We proceed by assuming that at first order, the contour displacement is given
by a modulated harmonic wavetrain

εη0 =
ε

2k

(

A(X, T, T̃ ) exp (ikx− iω0t) + c.c.
)

, (14)

Here A is an amplitude function that depends on ‘slow’ space and time‡ variables
X = εx, T = εt and T̃ = ε2t. The small parameter ε is a measure of the non-
dimensional wave amplitude. It is easily seen that terms neglected in (12) are

‡ The use of only one ‘slow’ space variable may be justified by defining the domain length scale to be

O(ε−1). However, if a further space scale X̃ = ε2x were to be introduced, the analysis would remain

unaltered under the transformation T̃ → T̃ + X̃/ω0k.
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O(ε4) and higher. Further, we assume that all fields may be expanded in ε, so
that

η = ε(η0 + εη1 + ε2η2 + ...)
u = U0+ ε(u0 + εu1 + ε2u2 + ...)
v = ε(v0 + εv1 + ε2v2 + ...)

(15)

As the u component of (12) is quadratic in η, it is clear that u0 ≡ 0. Expanding
the derivatives in (4) in the ‘slow’ space and time variables, and equating powers
of ε gives,

η0t + U0η0x = v0 at leading order (16)

η0T + U0η0X + η1t + U0η1x = v1 at first order (17)

η0T̃ + η1T + U0η1X + η2t + U0η2x + u1η0x = v2 at second order. (18)

Details of the evaluation of the integral expressions (12) are given in Appendix A,
and we shall refer to results from there throughout the remainder of this section.
The leading order velocity is shown there to be

v0 =
∆LR

4(1 + k2L2
R)1/2

(

iA(X, T, T̃ ) exp (ikx− iω0t) + c.c.
)

(19)

Inserting η0, v0 into (16) we recover the linear dispersion relation for Rossby
waves on the contour

ω0 = U0k −
∆kLR

2(k2L2
R + 1)1/2

(20)

Note that this expression can also be obtained by using a linearisation condition
relating the jump in the disturbance zonal flow u′ = −ψ′

y at the location of the
contour to the contour displacement, [ψ′

y] = −∆η (e.g. Swanson et al., 1997). We
have chosen to avoid this approach in order to proceed to higher order in ε. An
important consideration at this point concerns the possibility of resonant triad
interaction. If non-trivial solutions existed to the triad equation

ω0(k + κ) = ω0(k) + ω0(κ) k, κ > 0, (21)

then the primary instability to the uniform wavetrain (14) would occur at O(ε2)
and would involve the growth of the resonant waves with wavenumbers κ and
k + κ. In the case of (20), however, the triad equation may be reduced to the
polynomial equation

κ2 + kκ+ k2 +
3

L2
R

= 0, (22)

which clearly has no real roots for any real values of k or LR. This implies that
the leading order instability of the wave-train is the Benjamin-Feir instability to
be described below.

At first order (17) can be interpreted as a forced equation determining η1.
The forcing terms are all fundamental terms (i.e. proportional to exp (ikx− iω0t))
implying that η1 is also a fundamental term. If η1 is a fundamental term, however,
it can simply be incorporated into η0 by a renormalisation of A(X, T, T̃ ). For this
reason we may set η1 ≡ 0 without loss of generality. From the expression (I.1)
given in the appendix we can therefore write, (as (I.2)≡ 0)

v1 =
∆LR

4k(1 + k2L2
R)3/2

(

AX(X, T, T̃ ) exp (ikx− iω0t) + c.c.
)

(23)
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and in (17) this results in the group velocity condition

AT + ω0kAX = 0, ω0k = U0 −
∆LR

2(1 + k2L2
R)3/2

(24)

Note that ω0k = ∂ω0/∂k is also the group velocity derived from the linear
dispersion relation (20). The group velocity condition on the wave amplitude
A can be expressed as

A=A(ζ, T̃ ) with ζ =X − ω0kT. (25)

At second order (equation 18) it is clear from (1) and (1) that both
fundamental and third harmonic terms (proportional to exp (3ikx− 3iω0t)) are
present. Following the arguments above, η2 is assumed to have a third harmonic
component only, as any fundamental component can be renormalised into A. We
can therefore write

η2 =
AH

6k
exp (3ikx− 3iω0t) + c.c. (26)

where AH is an as yet unknown amplitude. This allows us to write down an
expression for v2 from (I.1), (I.3) and (I.4)

v2 =
3∆L2

R

8k(1 + k2L2
R)5/2

“

iAXX(X, T, T̃ ) exp (ikx − iω0t) + c.c.
”

+
∆LR

16k2L2
R

h“

(1 + k
2
L

2
R)1/2 − (1 + 4k

2
L

2
R)1/2

”

`

2i|A|2A exp (ikx − iω0t) + c.c.
´

+
“

(1 + k
2
L

2
R)1/2 − 2(1 + 4k

2
L

2
R)1/2 + (1 + 9k

2
L

2
R)1/2

”

`

iA
3 exp (3(ikx − iω0t)) + c.c.

´

i

+ AH
∆LR

4(1 + 9k2L2
R)1/2

(i exp (3(ikx − iω0t)) + c.c.) (27)

Equating the fundamental terms in equation (18) results in the nonlinear
Schrödinger (NLS) equation

(NLS) AT̃ − 1
2 iω0kkAζζ + iω2|A|2A= 0, (28)

with ω0kk = 3
2∆L2

R kLR

(

1 + k2L2
R

)−5/2
, (29)

and ω2 = − ∆
16kLR

[

4(1 + k2L2
R)1/2 − (1 + 4k2L2

R)1/2 − 3
]

. (30)

Note that the well-known conservation property of the NLS equation

d

dt

∫

|A|2 dζ = 0 (31)

is the weakly nonlinear equivalent of the fully nonlinear Arnol’d constraint derived
by Dritschel (1988) (equation 8 above).

To determine the details of the Benjamin-Feir instability, it is necessary
to examine the stability properties of the uniform wavetrain solution to the
amplitude equation (28), which has equation

A= exp (−iω2T̃ ). (32)

As discussed in the introduction the Benjamin-Feir instability is present if and
only if the Whitham criterion (1) is satisfied (ω0kk ω2 < 0). For equivalent
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barotropic Rossby waves on a PV front, equations (29-30) indicate that the
Whitham criterion is satisfied for all kLR > 0. The standard approach (e.g.
Johnson, 1997) is to examine sideband modulations to the uniform wavetrain
of the form

A(ζ, T̃ ) = exp (−iω2T̃ )
[

1 +A1e
i(qζ−σT̃ ) +A2e

−i(qζ−σ∗T̃ )
]

(33)

where the star denotes the complex conjugate. Since the Whitham criterion (1)
is satisfied the dispersion relation for the sidebands reveals a positive growth rate
with

Im σ = −ω2

(

−q2
(

ω0kk

ω2

)

− q4

4

(

ω0kk

ω2

)2
)1/2

. (34)

The fastest growing sideband mode has growth rate ε2Im σF and wavenumber
εqF with

Im σF = −ω2 and qF =
√

2

(

− ω2

ω0kk

)1/2

. (35)

In the short wave limit kLR →∞, we have ω2 →−∆/8, maximising Im σF and
indicating that sideband growth will be fastest for short barotropic waves in an
infinite domain. However, in this limit the wavenumber of the fastest growing
sideband qF →

√

8/3L−1
R , indicating a further separation of scales between the

scale of the sideband wavenumber and the fundamental wave (with wavenumber
k). This separation of scales means that in a finite domain sideband instability
will always be suppressed for large enough LR, as will be discussed further in
section 3 below.

By equating third harmonic terms in (18) it is possible to determine the
magnitude and sign of the third harmonic η2. The constant AH in (26) can be
evaluated after some algebra, as

AH =A3(ζ, T̃ )
1

8k2L2
R

(1 + 9k2L2
R)1/2 − 3(1 + 4k2L2

R)1/2 + 3(1 + k2L2
R)1/2 − 1

(1 + k2L2
R)−1/2 − (1 + 9k2L2

R)−1/2

(36)
Figure 2a plots the relative amplitude of the third harmonic compared to the
fundamental wave (|AH | / 3|A|) as a function of kLR. In Figure 2b the funda-
mental wave (dashed curve) and fundamental plus third harmonic (solid curve)
are both plotted for kLR = 1 and ε|A| = 1, to illustrate how small the predicted
shape correction is. Note that the sign of the shape correction is such that all
weakly nonlinear waves are ‘omega’-shaped, in the terms of Nakamura and Plumb
(1994), as opposed to ‘sawtooth’-shaped. At finite amplitude (corresponding to
ε > 1), Nakamura and Plumb found that short waves (kLR > 5.25) were sawtooth-
shaped, but longer waves with kLR < 5.25 were omega-shaped, and that this
significantly affects the amplitude at which wave breaking takes place. The abrupt
bifurcation at kLR ≈ 5.25 between the two types of steady solution has no weakly
nonlinear equivalent. These issues will be discussed further below.

3. Numerical integrations of the single contour model

In order to verify the weakly nonlinear theory described above, and to inves-
tigate its range of validity we have integrated (4) together with (5) numerically
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using a single-layer contour dynamics package, see e.g. Dritschel (1989) and Dunn
et al. (2001) for details. In summary, the contour is represented by a series of
nodes with a typical density of 40-100 nodes per wavelength in the cases to be
presented. Velocities at each node are calculated by summing the contributions
from every other node along the contour, via an expression derived from (9)
using integration by parts (Dritschel, 1986). Periodicity in the x-direction is im-
posed, with channel length Lx, by repeating the velocity summation over the
contour with x-displacements changed by nLx for n= 1,−1, 2,−2, ... etc. until
the remaining node contributions become negligible. Timestepping is done by
the fourth-order Runge-Kutta scheme with stepsize δt=0.005 ∆−1. Normally the
contour dynamics algorithm includes a renoding procedure after each timestep,
in order to increase the density of nodes in regions of high curvature. However,
we found that the renoding procedure had a weak dissipative effect on the waves
when an integration continued for a long time (in particular the ε= 0.3 case
described below). As we are primarily interested in the linear sideband growth
stages of the wave, when the contour curvature remains approximately constant,
we have turned off the renoding algorithm for integrations with ε6 0.7, and
retained it for larger values of ε.

Following Swanson et al. (1997), the single contour divides two regions of
constant PV in a domain that is periodic in the x-direction and infinite in
the y-direction. The contour represents a geophysical PV ‘barrier’ such as the
extratropical tropopause (e.g. Haynes et al., 2001). The size of the domain in the
x-direction is taken to be Lx = 12πk−1, so that there are six waves across the
periodic domain. In most of the experiments described below the Rossby radius
LR is set so that kLR = 1.

Swanson (2001) describes some of the issues connected to choosing appro-
priate scalings for ∆ and LR that best correspond to the situation at the extra-
tropical tropopause, and discusses some of the caveats that must be considered
when comparing such an idealised model to the atmosphere. For the case of
baroclinic Rossby waves in the extratropics it is important to remember that the
single layer contour model cannot describe their vertical structure. Crudely, their
vertical structure can be described by a pair of phase-locked ‘counter-propagating’
Rossby waves at the tropopause and at the surface, that interact constructively
to cause wave growth (e.g. Holton, 1992). The single layer contour model cor-
responds dynamically to the case where the surface wave is absent (or weak),
as would occur if the both the surface potential temperature and the latitudinal
gradient in lower tropospheric PV were homogenised. The success of the single
contour model in describing the basic dispersive properties of baroclinic Rossby
waves (see below) might be explained by the relative weakness of the surface wave
in fully resolved turbulent baroclinic flows such as the extratropical atmosphere.

Swanson argues that sensible choices are LR = 700 km and ∆ = 2 × 10−4s−1.
This choice of LR corresponds to a wavelength of 4400 km for waves with
kLR = 1, and Lx = 26400 km in agreement with observations of extratropical
baroclinic waves (e.g. Pierrehumbert and Swanson, 1995). The basic velocity
along the contour U0 = ∆LR/2 = 70ms−1, wave phase speed ω0/k =20.5 ms−1

and wave group velocity ω0k= 45.3 ms−1 for waves with wavenumber kLR = 1.
Compared with Rossby waves at the tropopause these values are roughly in
the correct ratio but are somewhat high (suggesting that a lower value of
∆ = 1 × 10−4s−1 might be more appropriate). Chang (1999) estimates for the
Southern Hemisphere summer U0 ≈ 30ms−1, ω0/k =8-12 ms−1 and ω0k=22 ms−1.
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For mesoscale, oceanic baroclinic Rossby waves propagating on the Antarctic
Circumpolar Current, suitable scales might be U0 = 0.05 − 0.1 ms−1, LR = 36km
(Sinha and Richards, 1999).

We test the following two predictions of the weakly nonlinear theory.
(1) The frequency correction for finite amplitude wavetrains:
For the uniform wavetrain solution of the NLS equation given above, the
frequency correction is given by

ω = ω0 + ε2ω2 (37)

where ω0 and ω2 are as in equations (20) and (30) respectively.
(2) The growth rate of sideband disturbances to the uniform wavetrain:
In an infinite domain, from equation (35) the fastest growing sideband mode has
growth rate ε2ω2. However, in a periodic domain with dimension Lx the allowable
sideband wavenumbers satisfy εq = 2πnLx, where n= 1, 2, 3, ..., and the growth
rate is given by equation (34).

Unless otherwise stated in the following experiments the contour dynamics
model is initialised with a sinusoidal wavetrain (equation 14 with A≡ 1), plus
a small random perturbation. In these cases, because no attempt is made to
correct the wave shape an oscillation similar to that described by Nakamura and
Plumb (1994) occurs, where the wave oscillates between having a sinusoidal and
an ‘omega’-shape. Several experiments where the model was instead initialised
with η0 + ε2η2 were found to reduce the amplitude of this oscillation by a factor
of 10-50 for ε= 0.3 − 0.5. Using this more ‘accurate’ initialisation had no effect
on the calculated frequency of the fundamental or the sideband growth rates.

The growth rates and frequencies shown in Figures 3 and 4 are obtained
by careful analysis of the evolution of the wave spectrum, which is obtained at
each time-step by Fourier decomposition of the contour position. The frequency
of the fundamental wave may then be calculated from the evolution of the wave-
6 component. Linear sideband growth is diagnosed as taking place during the
early stages of the evolution of the wavetrain, when sidebands wavenumbers
grow exponentially in amplitude at a constant measurable rate as predicted by
equation (33). For example, during wave-1 sideband growth, wave-5 and wave-7
grow exponentially with the same growth rate (typically measured to agree to
within 1%). Wave-2 sideband growth involves the exponential growth of wave-4
and wave-8, and wave-3 sideband growth the exponential growth of wave-3 and
wave-9. Well-defined periods of sideband growth were detectable in all of the
experiments presented.

Figure 3 shows plots of predicted (ω0 + ε2ω2) and calculated frequency
against non-dimensional wave amplitude ε for uniform wavetrains of wavenumber
kLR = 1 (left) and kLR = 2 (right). This shows good agreement between the
numerical results (triangles) and the weakly nonlinear predictions (curves) up to
ε= 0.7.

Figure 4 shows predicted and calculated sideband growth rates for the kLR =
1 experiments. The dotted curve illustrates the predicted maximum sideband
growth rate Im σF in the case where the channel is infinite (see equation 35).
The solid curve shows the predicted growth rate of the wave-1 sideband (with εq =
2π/Lx) and the dashed curve the wave-2 sideband (with εq = 4π/Lx). Note that
the wave-1 sideband first becomes unstable only at ε≈ 0.264, as the wavelength
of the fastest growing sideband, which scales with ε−1, is longer than the channel
at lower wave amplitudes. To confirm convergence between theory and model
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we therefore made one experiment with double the channel length Lx = 24π/k
(12 waves in the channel). In this case the weakly nonlinear predicted growth rate
(long-dashed line in Figure 4) and calculated growth rate (cross) differed by less
than 1%. The weakly nonlinear predictions for wave-1 sideband growth rates are
reasonable for ε= 0.3, 0.4, but at higher values of ε they tend to overestimate the
growth rates. In addition the amplitude of transition from the wave-1 sideband
disturbance to the wave-2 sideband disturbance is predicted to take place at
ε≈ 0.592, but in fact occurs between ε= 0.6 and ε= 0.7. Dimensionally, using
the atmospheric scalings mentioned above, the e-folding timescale for sideband
growth at ε= 0.3 is 30 days and at ε= 0.7 is 7.5 days.

Figure 5 shows snapshots of the growing sideband disturbances for ε= 0.3
(left) and ε= 0.6 (right). A wave-1 sideband grows in the ε= 0.3 case and the
wavetrain evolves into a single wave packet. Although this wave packet resembles
an envelope soliton at time t= 800π∆−1, this is far from an invariant solution
and the envelope shape oscillates strongly until the end of this integration at
t= 2000π∆−1. For the ε= 0.6 case, the wave-1 unstable sideband also comes
to dominate and the wavetrain again breaks up into a single wave packet by
t= 200π∆−1. After this time, the largest wave in the wavetrain breaks, shedding
a filament as has been previously described by e.g. Polvani and Plumb (1992).
(This integration was repeated with renoding in order to validate the evolution
when high curvature develops in the breaking region.)

At higher amplitudes the weakly nonlinear theory cannot be used to predict
sideband growth rates. However a further series of experiments with ε= 0.7 − 2.0
each showed clear evidence of linear sideband growth of small perturbations to
the uniform wavetrain, of the form described by equation (33). Wave-2 sideband
growth is dominant for 1.2 > ε> 0.7 and a wave-3 sideband growth is found
to be dominant for ε> 1.5. Sideband growth rates were also found to peak at
around ε= 1.5, when the dimensional e-folding timescale is around 3.8 days, a
realistic timescale for wave packet formation in the southern hemisphere. Figure 6
shows the evolution of the wavetrain for ε= 1.2 and ε= 2.0. In the ε= 1.2 case
the wavetrain evolves into two wave packets, and in one of these packets the
largest wave eventually breaks, shedding a filament. For ε= 2.0, wave-3 sideband
growth dominates, and this sideband modulates the wave-6 wavetrain (reference
to ‘wave packets’ in this case might be misleading as there is little separation of
scales between the wave envelope and the waves). In this case the eventual wave
breaking has a different character, with small vortices being shed from the largest
waves.

Finally, we compared some experiments at higher amplitudes with those of
Nakamura and Plumb (1994) who looked at the short time evolution of uniform
wavetrains in a near identical model in order to investigate wave breaking. They
found that for kLR > 5.2 the required amplitude for wave breaking of the uniform
wavetrain was in the range ε≈ 2 − 2.5 (see their Figure 10, and note that we have
converted their quantities into the notation used in this paper) whereas in the
range 2< kLR < 5.2 the minimum breaking amplitude was higher at ε≈ 4.5-5.5.
Nakamura and Plumb describe how the jump in breaking amplitude at kLR ≈ 5.2
corresponds to a transition in the equilibrium shape of the waves between ‘omega’-
shaped and ‘sawtooth’-shaped. Note that we have shown that weakly nonlinear
waves are all ‘omega’-shaped to leading order, so this shape transition is strongly
nonlinear in that it takes place only at O(1) wave amplitudes. Our results (not
shown) confirm that at kLR = 1 wave breaking takes place for ε= 5.0. The
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character of the wave breaking in this unperturbed wavetrain is quite different to
that following sideband growth. Instead of shedding filaments or small vortices the
contour separates into a train of opposite signed vortices. A further experiment
with kLR = 10 confirmed the results of Nakamura and Plumb for short waves. In
this case the wave breaking mechanism for the uniform wavetrain with ε= 2.5
involves ‘sawtooth’-shaped waves that shed filaments.

Our experiments have shown that Benjamin-Feir instability leads to Rossby
wave breaking for contours with similar initial non-dimensional wave amplitudes
to those observed for tropopause Rossby waves. The transition that takes place
in our experiments, between low amplitude waves that eventually break to shed
filaments (ε= 0.6 case in Figure 5) and higher amplitude waves that break forming
cut-off vortices (ε= 2 case in Figure 6), may be compared to different types of
observed wave breaking at the tropopause, as exemplified by the paradigms LC1
and LC2 described in detail by Thorncroft et al., (1993). In a previous contour
dynamics-based modelling study of wave breaking at the tropopause, Peters and
Waugh (1996) found that cut-off vortices typically formed only in regions of
diffluent background flow. Here, by allowing the Benjamin-Feir instability to
develop, we have shown that this type of wave breaking can develop from an
initially uniform background flow. Cut-off vortices are known to form due to
wave breaking near the tropopause in non-diffluent regions, so it is reasonable to
conclude that the presence of wave packets due to Benjamin-Feir instability may
be necessary for their development.

4. Conclusions

In this paper we have used a single contour model of a potential vorticity
front to show that Benjamin-Feir instability is a viable mechanism for wave
packet formation on the extratropical tropopause. The instability was found to
develop on timescales of a few days, leading to the formation of two wave packets
encircling the globe as seen in observations (c.f. Figure 1), when a uniform wave-
train with realistic wave amplitude (ε∼ 1) was used as an initial condition. As
in the well-known water wave example (Hasimoto and Ono, 1972) as well as for
a class of Rossby waves in a β-channel discussed by Plumb (1977), the uniform
wavetrain was found to be primarily unstable to sideband disturbances that grow
exponentially and cause the development of nonlinear wave packets. In the weakly
nonlinear limit the wave amplitude evolves according to the nonlinear Schrödinger
(NLS) equation. Wave growth due to baroclinic instability and decay due to
dissipation are therefore not necessary ingredients for wave packet formation,
although both effects are present in the two-layer model study of Esler (1997).
In the latter study the wave amplitude is governed by the Ginzburg-Landau
equation, the complex nonlinear coefficient of which has strong dependence on
the damping coefficients. Direct comparison with the contour model is difficult as
the model assumptions render the equation invalid in the limit of weak damping.

The weakly nonlinear results presented here also indicate that equivalent
barotropic Rossby wavetrains are unstable for all zonal wavenumbers kLR > 0
and that the sideband growth rate is fastest for short waves (kLR →∞). For
short waves, however, the most unstable sideband scales with LR, so a uniform
wavetrain would need to contain many wavelengths in order that the instability be
expressed. For long waves (kLR → 0) the grow rate of the instability tends to zero.
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In a finite periodic domain such as the extratropical atmosphere, the Benjamin-
Feir instability is therefore strongest for waves with a scale comparable to the
Rossby radius, kLR ∼ 1, i.e. observed synoptic-scale waves. Another notable
result is that sideband growth leads to the breaking of Rossby waves with much
lower initial amplitudes compared with initially uniform wavetrains, and this
wave breaking is spatially localised. If the initial wave amplitude is sufficiently
large (ε> 1.2), then this wave breaking leads to the formation of small cut-
off vortices. Cut-off vortex formation is a ubiquitous process at the tropopause
(e.g. Thorncroft et al., 1993) that has not previously been noted to develop in
contour dynamics integrations except where initial conditions are significantly
asymmetric.

In the oceans PV barriers or fronts supporting Rossby waves are known
to exist in the Antarctic circumpolar current and the Atlantic gulf stream (see
Rhines 1994, for a discussion of these and other geophysical flows) and it is
possible that careful analysis of observations in these regions may reveal Rossby
wave packet formation. Similarly, the banded jets on the giant planets are likely
associated with a series of PV fronts, each supporting Rossby waves.
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Appendix A

Evaluation of the Velocity Field from the Contour Displacement

In this appendix we show how the velocity fields (u(x), v(x)) along the
contour are obtained up to the third order in ε, given the contour position function
η, using the integral expression (12). Concentrating first on the meridional
velocity v we have

v(x) = ε ∆
2π

∫∞
−∞ K0 (|x− x′|/LR) η′0(x

′) dx′ (I.1)

+ ε2 ∆
2π

∫∞
−∞ K0 (|x− x′|/LR) η′1(x

′) dx′ (I.2)

+ ε3 ∆
2π

∫∞
−∞ K0 (|x− x′|/LR) η′2(x

′) dx′ (I.3)

+ ε3 ∆
2π

∫∞
−∞

K′

0
(|x−x′|/LR)
2|x′−x| η′0(x

′) (η0(x
′) − η0(x))

2 dx′ (I.4)

+ O(ε4)

In order to evaluate the first part of this integral (I.1) we note that

η0(x
′) =

1

2k
A(X ′

, T, T̃ )eikx′
−iω0t + c.c.

=
1

2k

“

A(X, T, T̃ ) + ε(x′ − x)AX(X, T, T̃ )

+
ε2

2
(x′ − x)2AXX(X, T, T̃ ) + O(ε3)

«

e
ikx′

−iω0t + c.c.

giving

η
′

0(x
′) =

1

2k

„

ikA(X, T, T̃ ) + εik(x′ − x)AX(X, T, T̃ ) +
ε2

2
ik(x′ − x)2AXX(X, T, T̃ )

+ εAX(X, T, T̃ ) + ε
2(x′ − x)AXX(X ′

, T, T̃ ) + O(ε3)
”

e
ikx′

−iω0t + c.c.
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Under a change of variables x̃= x′ − x and using the integral identities listed in
Appendix B, (I.1) can be straightforwardly evaluated giving

(I.1) = ε
∆LR

4(1 + k2L2
R)1/2

(

iA(X, T, T̃ )eikx−iω0t + c.c.
)

+ ε2
∆LR

4k(1 + k2L2
R)3/2

(

AX(X, T, T̃ )eikx−iω0t + c.c.
)

+ ε3
3∆L2

R

8k(1 + k2L2
R)5/2

(

iAXX(X, T, T̃ )eikx−iω0t + c.c.
)

The leading order term yields the expression for v0 (19) given in section 2, and
the linear dispersion relation is recovered. From the renormalisation arguments
discussed in section 2, it turns out that η1 ≡ 0 and hence (I.2) ≡ 0. The next
order meridional velocity v1 is therefore given by (23) and the group velocity
condition (24) is obtained. At next order, however, the nonlinear integral given
by expression (I.4) must be evaluated. To leading order we find that

η
′

0(x
′)
`

η0(x
′) − η0(x)

´2
=

1

8k2

“

i|A|2Ae
ikx−iω0t

“

3e
ikx̃ − e

−ikx̃ − 2e
2ikx̃

”

+ c.c.
”

+
“

iA
3
e
3(ikx−iω0t)

“

e
ikx̃ − 2e

2ikx̃ + e
3ikx̃

”

+ c.c.
”

where to leading order we can take A=A(X, T, T̃ ) in each case. Using the
appropriate Bessel function identities listed in Appendix B this expression allows
(I.4) to be evaluated, giving,

(I.4) = ε
3 ∆LR

4k2L2
R

h

2i|A|2A
“

(1 + k
2
L

2
R)1/2 − (1 + 4k

2
L

2
R)1/2

”

e
ikx−iω0t

+ iA
3
e
3(ikx−iω0t)

“

(1 + k
2
L

2
R)1/2 − 2(1 + 4k

2
L

2
R)1/2 + (1 + 9k

2
L

2
R)1/2

”

+ c.c.
i

From (12) the integral expression for the O(ε2) correction to the zonal velocity
u1 takes the form

u1 =
∆

2π

∫ ∞

−∞

K ′
0 (|x− x′|/LR)

2LR|x′ − x|
(

η0(x
′) − η0(x)

)2
dx′.

This can be evaluated as above giving

u1 = − ∆LR

16k2L2
R

[

4|A|2
(

(1 + k2L2
R)1/2 − 1

)

+
(

Ae2(ikx−iω0t) + c.c.
) (

2(1 + k2L2
R)1/2 − (1 + 4k2L2

R)1/2 − 1
)]

.

which yields the following expression needed for equation (18)

u1η0x = − ∆LR

32k2L2
R

[

i|A|2A
(

2(1 + k2L2
R)1/2 + (1 + 4k2L2

R)1/2 − 3
)

eikx−iω0t

+iA3e3(ikx−iω0t)
(

2(1 + k2L2
R)1/2 − (1 + 4k2L2

R)1/2 − 1
)

+ c.c.
]

.

Appendix B
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Integral identities used in Appendix A

The following identities are valid for all real m, including m= 0, and are used
to evaluate the integral expressions in Appendix A (e.g. http://functions.wolfram.com/).

∫ ∞

−∞
K0(|x|) eimxdx = π(1 +m2)−1/2

∫ ∞

−∞
K0(|x|) x eimxdx = iπm(1 +m2)−3/2

∫ ∞

−∞
K0(|x|) x2eimxdx = π(1 − 2m2)(1 +m2)−5/2

∫ ∞

−∞

K1(|x|)
|x| eimxdx = −π(1 +m2)1/2

HereKn(x) is the modified Bessel function that is uniquely defined as the solution
of the equation

r2
d2ψ

dr2
+ r

dψ

dr
− (n2 + r2)ψ = 0, (B.1)

satisfying Kn(x) → 0 as x→∞. Note that K0 and K1 are related through the
identity

K ′
0(x) = −K1(x).
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Figure 1. Ertel’s Potential Vorticity Q = (1/ρ)∇θ.ζ where ρ is density, θ is potential temperature and
ζ is absolute vorticity on the θ =340 K isentropic surface on three consecutive days during 10-12 July
2000 (at 0600UT). The PV field is derived from ECMWF operational analysis. The domain shows the
southern hemisphere with latitude range -5◦ to -65◦. The contour interval is 0.5 potential vorticity units
(PVU, 1 PVU=1×10−6 K kg−1 m2 s−1). Stratospheric air, defined as having PV less than -2 PVU, is

shaded grey.
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Figure 2. (a) The third harmonic amplitude divided by fundamental amplitude for the weakly nonlinear
Rossby waves as a function of wavenumber kLR. (b) Showing the leading order correction to the shape
of the potential vorticity contour (solid line) η0 + ε2η2 predicted by equations (14), (26) and (36) for

kLR = 1 (with ε|A|=1). The dashed line shows the sinusoidal wave η0.

Figure 3. Non-dimensional wave frequency against wave amplitude ε. Model calculations (triangles)
are compared with weakly nonlinear predictions from (37), (curves). The left panel shows waves with
kLR = 1, with numerical experiments for ε = 0.01, 0.1, 0.3, 0.4, 0.5, 0.6 and 0.7 and in the right panel

kLR = 2, ε = 0.01, 0.1, 0.3, and 0.5.
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Figure 4. Sideband growth rate against wave amplitude ε. Model calculations (triangles) are compared
with weakly nonlinear predictions from (34). In the calculations the initial wavelength kLR = 1 and the
domain is periodic with length scale Lx = 12πk−1. The predicted growth rates of wave-1, wave-2 and
wave-3 sideband modulations (see text) are given by the solid, dashed and dot-dashed curves respectively.
The curve with long dashes shows the predicted wave-1 sideband growth rates in a domain with double
the size, and the dotted curve show the predicted sideband growth rates for an infinite domain. The
solid triangles show the wave-1 sideband growth rates for the numerical experiments, and the unfilled
triangles shows the wave-2 sideband growth rate. For ε = 0.7 and higher the wave-2 sideband growth

dominates.
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Figure 5. Snapshots of the contour evolution in the ε = 0.3 experiment (left panels) and the ε = 0.6
experiment (right panels). In the ε = 0.3 case the snapshots are for times t = 0, 300 and 400 ×2π∆−1,
and for ε = 0.6 they are for t = 0, 75 and 100×2π∆−1. The dashed curves show the same waves plotted

with 5× their actual amplitude for clarity.
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Figure 6. Snapshots of the contour evolution for ε = 1.2 (left) and ε = 2.0 (right) experiments. Time
units are again 2π∆−1.


