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Motivated by the goal of improving and augmenting stochastic Lagrangian models
of particle dispersion in turbulent flows, techniques from the theory of stochastic
processes are applied to a model transport problem. The aim is to find an efficient
and accurate method to calculate the total tracer transport between a source and a
receptor when the flow between the two locations is weak, rendering direct stochastic
Lagrangian simulation prohibitively expensive. Importance sampling methods that
combine information from stochastic forward and back trajectory calculations are
proposed. The unifying feature of the new methods is that they are developed using
the observation that a perfect strategy should distribute trajectories in proportion
to the product of the forward and adjoint solutions of the transport problem, a
quantity here termed the ‘density of trajectories’ D(x, t). Two such methods are
applied to a ‘hard’ model problem, in which the prescribed kinematic flow is in
the large-Péclet-number chaotic advection regime, and the transport problem requires
simulation of a complex distribution of well-separated trajectories. The first, Milstein’s
measure transformation method, involves adding an artificial velocity to the trajectory
equation and simultaneously correcting for the weighting given to each particle under
the new flow. It is found that, although a ‘perfect’ artificial velocity v∗ exists, which
is shown to distribute the trajectories according to D, small errors in numerical
estimates of v∗ cumulatively lead to difficulties with the method. A second method
is Grassberger’s ‘go-with-the-winners’ branching process, where trajectories found
unlikely to contribute to the net transport (losers) are periodically removed, while
those expected to contribute significantly (winners) are split. The main challenge of
implementation, which is finding an algorithm to select the winners and losers, is
solved by a choice that explicitly forces the distribution towards a numerical estimate
of D generated from a previous back trajectory calculation. The result is a robust and
easily implemented algorithm with typical variance up to three orders of magnitude
lower than the direct approach.
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1. Introduction
A common scenario in scalar transport problems in fluids is that a tracer is released

at one location (the ‘source’ S ) and at some later time is measured at another
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(the ‘receptor’ R). In many practical problems, there is little interest in the tracer
concentration at locations far from R. For this type of problem, a grid-based Eulerian
transport model, designed to provide global solutions for the tracer concentration, is
evidently inefficient. For certain flow set-ups, a Lagrangian model will offer greater
efficiency, provided that sufficient numbers of trajectories are advected from source
to receptor, i.e. the relative tracer concentration at the receptor is large in some sense.
The present work addresses the opposite situation, in which the relative concentration
at the receptor is not large, because the flow of particles from source to receptor is
(in a certain sense) weak. The aim is to alleviate the difficulty associated with this
situation by modifying and applying variance reduction/importance sampling methods
developed for stochastic differential equations (SDEs) (e.g. Kloeden & Platen 1992;
Øksendal 2007; Gardiner 2009), such as are widely used in mathematical finance
and statistical physics, in order to redirect trajectories into the region of interest.
Subsequently, we will refer to this process as adaptive trajectory modelling.

There are many possible practical applications. Consider, for example, an isolated
release of a chemical that is highly toxic at low concentrations, with the receptor
an isolated centre of population. Alternatively, the source could be an erupting
volcano and the receptor an airport or flight corridor (e.g. Devenish et al. 2011).
Further, a common problem for meteorological and atmospheric chemistry aircraft
measurement campaigns (e.g. Methven et al. 2006) is to quantify the influence of
an upstream airmass (e.g. near a chemical source) upon another airmass downstream
where measurements have been made. In addition to atmospheric dispersion modelling,
adaptive trajectory modelling will have applications in ocean tracer studies (e.g. Proehl
et al. 2005; Spivakovskaya, Heemink & Deleersnijder 2007), and the modelling
of pollutants in ground water, i.e. flow through porous media (e.g. Dagan 1987;
Zimmermann, Koumoutsakos & Kinzelbach 2001). There are also no significant
obstacles to extending our results to more sophisticated atmospheric models of
turbulent dispersion, for example, the so-called ‘Lagrangian particle dispersion
models’ (LPDMs) (e.g. Thomson 1987; Rodean 1996; Stohl et al. 2005), which
are more sophisticated than the advection–diffusion set-up considered here. More
broadly, the application of importance sampling detailed here may serve as a useful
model problem for the development of ‘particle filters’ in data assimilation problems
(Ades & van Leeuwen 2013), where many similar issues arise. For fluid dynamicists,
the problem is of fundamental interest in that it brings to the fore some interesting
connections between Lagrangian and Eulerian descriptions of advection–diffusion
problems (see e.g. Majda & Kramer 1999).

Here, two specific importance sampling techniques will be considered in the context
of a model problem. These are the measure transformation method of Milstein (1995)
(see also Kloeden & Platen 1992; Milstein & Tretyakov 2004) and the ‘go-with-the-
winners’ (GWTW) branching process (Grassberger 1997, 2002). Both methods have
recently (Haynes & Vanneste 2014) been used with some limited success in simple
parallel flows, to obtain far-field concentrations in Taylor dispersion problems (Taylor
1953). Owing to their relative simplicity, however, parallel flow problems obscure key
issues as to how these methods might be applied effectively in situations of practical
interest, such as large-scale atmospheric or oceanic transport.

The model problem to be investigated is chosen to highlight some of the key
issues arising in practical atmosphere–ocean fluid transport problems. One important
feature, perhaps unlikely to be encountered in the finance or molecular dynamics
problems for which importance sampling methods have been developed, is ‘chaotic
advection’, i.e. the exponential divergence of nearby trajectories of the underlying
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deterministic flow. It will be argued below that in the chaotic advection regime an
important class of importance sampling techniques of the ‘small noise’ type, which
are based on results from large-deviation theory (e.g. Vanden-Eijnden & Weare
2012), are rendered impracticable. Here the advection–diffusion equation is solved
in a periodic channel bounded by sidewalls, with the prescribed flow in the channel
consisting of a uniform current, on which is superimposed a linear combination of
two waves propagating with different frequencies. Previously this flow has been used
to explore chaotic advection in Rayleigh–Bénard convection (Weiss & Knobloch
1989) and in geophysical flows dominated by Rossby waves (Pierrehumbert 1991;
Haynes, Poet & Shuckburgh 2007). Other aspects of the model problem are also
relevant to layer-wise two-dimensional (near-isentropic) transport in the extratropical
troposphere and stratosphere (e.g. Plumb 2002). For example, the Péclet number
Pe is relatively high (Pe = 5000 in the numerical calculations below), and the flow
exhibits a partial barrier to mixing (for details see Haynes et al. (2007)). This partial
mixing barrier, which is approximately co-located with the region of maximum flow
speed, is representative of observed geophysical phenomena such as the edge of the
stratospheric polar vortices, the extratropical tropopause, or the core of ocean currents
such as the Gulf Stream and Kuroshio, as well as in the Southern Ocean (see e.g.
Weiss & Provenzale 2008). The focus here will be on the (weak) transport across the
barrier, which often needs to be quantified in practical applications.

A further reason for investigating the chosen model problem is that, provided
the diffusivity exceeds a numerically determined threshold, a spectral method can
be used to solve the advection–diffusion equation in the channel to very high
accuracy (the ‘partial differential equation (PDE) solution’ hereafter). It is to be
emphasised that our model problem has been selected with the availability of this
numerical PDE solution in mind. In a more general setting, a global PDE solution
will be expensive and (typically) less accurate, and the advantages of the Lagrangian
approach (e.g. flexibility, positivity, effortless computational parallelisation) will
be more to the fore. Here, however, the PDE solution will act to benchmark the
Lagrangian methods developed, and crucially can be used to deduce much about
what an optimal importance sampling strategy should look like.

In § 2 the model problem is described, benchmark results from both forward
and adjoint PDE solutions are presented, and a quantity termed the density of
trajectories D(x, t) is introduced. It is argued that the aim of an optimal importance
sampling strategy for S → R transport should be to distribute particles in proportion
to D. In § 3 the stochastic representations of the forward and adjoint problems are
introduced. Milstein’s measure transformation method is then reviewed from an
applied mathematics perspective. The choice of correcting velocity is discussed, and
it is shown that, under Milstein’s optimal choice, trajectories are indeed distributed
in proportion to D(x, t). The resulting insight is used to define an effective scoring
strategy for the GWTW algorithm. In § 4 practical ‘adaptive’ Lagrangian strategies to
solve the model problem are developed and assessed using the PDE solution. A gain
of several orders of magnitude in efficiency is shown to be possible. Section 5 gives
the conclusions.

2. The model problem
2.1. The forward problem

The broad class of advection–diffusion problems that concern us here satisfy

(∂t + u · ∇)c − ∇ · (κ · ∇c) = s(x, t). (2.1)
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Here c(x, t) is a passive tracer mixing ratio, u(x, t) is a known ‘smooth’ incompressible
velocity field, κ(x, t) is a symmetric diffusivity tensor and s(x, t) a source term. The
relevance of (2.1) as a model for large-scale transport in the atmosphere, at least in
regions where the flow is dominated by stratification and rotation (i.e. away from
the planetary boundary layer and regions of active convection), is well established
(see e.g. Haynes (2011) and references therein). In atmospheric applications, the
‘smoothness’ property of u applies only to a suitably temporally or spatially averaged
flow, with the effects of three-dimensional turbulent perturbations about this averaged
flow incorporated into the eddy diffusivity κ (see e.g. Majda & Kramer (1999) for
discussion of the applicability and limitations of the eddy diffusivity approach).

In the model problem to be considered, (2.1) will be solved in a domain D , a
channel that is periodic in the x direction and is bounded by sidewalls in the y
direction, with dimensions 2π × π. No-flux boundary conditions are applied on the
boundaries ∂D (i.e. the sidewalls at y = 0, π),

n · κ · ∇c = 0 on ∂D . (2.2)

The flow velocity u = −k × ∇ψ is specified by the streamfunction

ψ(x, t) = −0.5y + sin x sin y + � sin(x − ct)sin2y, (2.3)

with the amplitude and phase speed of the second wave taken below to be � = 0.6 and
c = 0.3, respectively. A geophysical interpretation of the flow associated with (2.3)
is that of a steady meandering jet supporting a travelling Rossby wave, hence (2.3)
serves as a qualitative model of the flow experienced by fluid parcels on isentropic
surfaces in (for example) the extratropical troposphere or stratosphere. At low values
of �, complete barriers to transport exist in the flow (2.3), most strikingly at the
location of the jet core (region of maximum flow), which divides the channel into
two (Haynes et al. 2007). At the present value � = 0.6, no formal barrier exists.
Nevertheless, very little fluid is advected across the jet core, i.e. in practice there is
a ‘leaky’ or partial transport barrier at the jet (see also Esler 2008). In the numerical
simulations here, the diffusivity κ is uniform and isotropic, i.e. κ = κ I , where I
is the identity matrix and κ = 2 × 10−4. With the given non-dimensionalisation, κ
can be identified with the inverse of the flow Péclet number Pe = UL/K, which is
more generally defined in terms of the dimensional magnitudes U, L and K of the
flow speed, flow length scale and diffusivity, respectively. Here Pe = 5000. Several
integrations have also been performed for other values of κ , including for spatially
non-uniform configurations, for which the qualitative results described below have
been reproduced.

The particular focus here will be on transport between a small isolated source region
S active at t = 0 and a similar receptor region R at t = T . Hence the source in (2.1)
will have the form s(x, t) = S(x)δ(t). This choice is equivalent to setting s = 0 in (2.1)
and solving the initial value problem with c(x, 0) = S(x). However the formalism of
(2.1) is retained, as it allows the straightforward extension of all our results to sources
with a more general time dependence. A general measurement is here defined as an
integral quantity of the form

I =
� ∞

−∞

�

D

c(x, t)r(x, t)dxdt, (2.4)
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FIGURE 1. (Colour online) (a,c,e,g) Snapshots from the PDE simulation of the forward
problem (2.1). The quantity contoured is log10 c(x, t), for t = 0, 20, 30 and 50, with
contour interval 0.5 (see greyscale/colour bar). (b,d, f,h) Scatterplot of 104 solutions Xt
of the SDE (3.1) at the same times.

where the receptor function r(x, t) can in general be any integrable function. The
special case of the instantaneous receptor at t = T is recovered by setting r(x, t) =
R(x)δ(t − T).

The stochastic Lagrangian methods described below will be verified against a
numerical PDE solution of (2.1). The numerical method is a standard spectral method,
exploiting the fact that, taking the Fourier transform of (2.1), the complex amplitudes
of each Fourier mode of c satisfy an ordinary differential equation that is coupled
only to its near neighbours in wavenumber space. High accuracy is possible once
a resolution threshold is crossed, because the spectral power of c drops off rapidly
for wavenumbers k � κ−1/2. The integrations used below, mainly at a resolution of
512 × 256 wavenumbers, have been verified against a 1024 × 512 calculation, with
excellent agreement.

The specific initial condition S(x) = exp(−|x − xs|2/2W2
s ), centred on xs = (π, π/4)†

and with horizontal scale Ws = 1/20
√

2, is applied at t = 0. Figure 1(a,c,e,g) shows
snapshots of the developing PDE solution (note the logarithmic contour interval) at
t = 0, 20, 30 and t = 50 = T , where T is the receptor time, which corresponds to
approximately five cycles of the periodic flow (2.3). The partial barrier to transport is
evident in figure 1, because the tracer is stirred and mixed across the lower left of
the domain, with little penetrating into the upper right. The receptor function, which
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is chosen to pick out a typical tracer filament (not visible in the t = 50 panel in
figure 1 as its concentration c � 10−5), is taken to be R(x) = exp(−|x − xr|2/2W2

r )

with xr = (4.35, 2.05)† and Wr = 1/5
√

2 (see the circle in the t = 50 panel). Although
concentrations in R are relatively low, the quantity I can be calculated to high
accuracy by the PDE method (I = 1.522583 × 10−7 to seven significant figures). The
focus of all that follows is to develop efficient Lagrangian methods that can be used
to estimate both I and the (weighted) distribution of tracer c(x, T)R(x) throughout
the receptor region at the end of the simulation.

2.2. The adjoint problem
In the Lagrangian methods to be described below, a central role is taken by
the solution, or approximate solution, of the adjoint of (2.1) (sometimes the
‘retro-transport equation’ (e.g. Hourdin & Talagrand 2006)), which provides an
alternative means of obtaining I . A brief review is warranted. The retro-transport
equation is obtained by first expressing (2.1) using the operator formalism,

L c = s, (2.5)
where

L ≡ ∂t + (u · ∇) − ∇ · (κ · ∇) (2.6)
is the forward linear transport operator. Next it is necessary to define an inner product
for integrable functions f (x, t) and g(x, t) defined on D ×R,

� f , g� =
� ∞

−∞

�

D

f (x, t)g(x, t)dxdt. (2.7)

The inner product (2.7) can be used to define the adjoint L † of L , according to the
usual definition � f , L †g� = �L f , g� for all admissible f and g. It is a straightforward
exercise in integration by parts to show that the adjoint transport operator satisfies

L † ≡ −∂t − (u · ∇) − ∇ · (κ · ∇). (2.8)
In terms of the inner product, the integral quantity (2.4) is given by I = �c, r�. If

we now define the retro-transport equation to be
L †c∗ = r, (2.9)

then I can be manipulated as follows:
I = �c, r� = �c, L †c∗� = �L c, c∗� = �s, c∗�. (2.10)

In other words, rather than solving (2.1) to obtain I , an alternative is to solve (2.9)
for c∗, and then obtain I by evaluating the inner product with s. It is clear from
the sign of the diffusion term in L † that, for (2.9) to remain well posed, it must be
solved backwards in time. In the case of our instantaneous receptor at t = T , (2.9)
takes initial conditions c∗(x, T) = R(x).

A formal interpretation of the adjoint solution c∗(x, t) is that it denotes sensitivity of
I with respect to a small change in the source s at location (x, t), as can be expressed
mathematically using the Fréchet derivative c∗ = δI /δs. Alternatively, a more physical
interpretation is that c∗ is a measure of the quantity of fluid at a given point that will
subsequently arrive at the receptor at time t = T , weighted by R(x). Figure 2(a,c,e,g)
shows snapshots from the PDE solution of (2.9) at times t = 50, 30, 20 and 0. The
transport barrier is again evident, as c∗ remains low in the lower left of the domain.
The accuracy of the solution can be checked directly by recalculating I = �s, c∗�.
Agreement with the forward calculation (I ≈ 1.522583 × 10−7) is obtained to
11 significant figures, demonstrating the accuracy of the PDE algorithm.
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FIGURE 2. (Colour online) (a,c,e,g) Snapshots from the PDE simulation of the forward
problem (2.1). The quantity contoured is log10 c∗(x, t), for t = 50, 30, 20 and 0, and with
contour interval 0.5. (b,d, f,h) Scatterplot of 104 solutions Xτ of the SDE given by (3.1)
again at τ = 0, 20, 30 and 50 (equivalently t = 50, 30, 20 and 0).

2.3. The density of trajectories
A useful quantity is the product of the solutions of (2.1) and (2.9), i.e. the density
of trajectories D(x, t) = c(x, t) c∗(x, t). Some intuition as to why D is significant
for importance sampling follows if one interprets c(x, t) as (proportional to) the
probability density of a trajectory originating in S at t = 0 arriving at x at time t.
Then c∗(x, t) is the analogous quantity measuring the probability of the trajectory at
(x, t) ending up in R at t = T . The product D(x, t) is therefore proportional to the
probability of a trajectory passing through (x, t) as it travels from S →R. Intuitively,
an optimal Lagrangian algorithm for S → R transport should distribute trajectories
in proportion to D(x, t), as will be demonstrated below.

Figure 3(a,c,e,g) shows snapshots of D(x, t) for our model problem. The t = 20 and
t = 30 panels illustrate at a glance why we have described our problem as ‘hard’. The
greater part of the D(x, t) field is seen to occupy around 10 or so small and disjoint
regions of the domain. An effective adaptive trajectory algorithm must sample each
of these disjoint regions efficiently without wasting trajectories elsewhere.

A property of D(x, t) (e.g. Hourdin & Talagrand 2006) is that, during times when
the source function s(x, t) and receptor function r(x, t) are zero, its domain integral
is constant. The divergence theorem in two dimensions can be used to show this, as
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FIGURE 3. (Colour online) (a,c,e,g) Snapshots of the density of trajectories D(x, t) defined
in § 2.3 and calculated from the numerical solutions of forward (2.1) and retro (2.9) PDEs.
The quantity contoured is log10(D(x, t)), for t = 0, 20, 30 and 50, and with contour
interval 0.5. (b,d, f,h) Scatterplot of 104 solutions Yt of the SDE experiment CHEAT also
at t = 0, 20, 30 and 50. CHEAT solves (3.7) with the correcting velocity v given by (3.18),
as interpolated from the numerical solution of (2.9).

follows:
d
dt

�

D

D(x, t) dx =
�

D

[ct(x, t)c∗(x, t) + c(x, t)c∗
t (x, t)] dx

=
�

D

{[−u · ∇c + ∇ · (κ · ∇c)]c∗ + c[−u · ∇c∗ − ∇ · (κ · ∇c∗)]}dx

=
�

D

∇ · (ucc∗ + c∗κ · ∇c − cκ · ∇c∗) dx

=
�

∂D

[u · ncc∗ + c∗(n · κ · ∇c) − c(n · κ · ∇c∗)]ds = 0, (2.11)

where n is the unit normal to ∂D . The final equality follows from there being no
normal flow at the boundary ∂D (i.e. u · n = 0) and the no-flux boundary conditions
(2.2) for c and c∗ on ∂D .

For our problem it follows that
�

D

D(x, t) dx = I at all times t ∈ [0, T]. (2.12)
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3. Stochastic representations of the advection–diffusion problem
3.1. Direct and adjoint stochastic representations

The direct stochastic Lagrangian model corresponding to (2.1) consists of an Itô-type
SDE for the particle position Xt. The SDE in question is chosen in order that the
probability density p(x, t) of the random variable Xt evolves in time according to a
Fokker–Planck equation (sometimes forward Chapman–Kolmogorov equation) that is
identical to (2.1). The method for deriving an SDE from a given Fokker–Planck PDE
(or vice versa) is standard in stochastic calculus (e.g. section 4.3.4 of Gardiner 2009).
In the case of (2.1), the SDE is

dXt = (u(Xt, t) + ∇ · κ(Xt, t)) dt + (2κ)1/2(Xt, t) · dWt, X0 ∼ S(x)/S00, (3.1a,b)

where dWt are the increments of a two-dimensional Brownian (Wiener) process,
and the square root of a symmetric positive-definite tensor κ follows the standard
definition. Notice that in (3.1) the probability density of the initial particle position
X0 is specified to ensure p(x, 0) = S(x)/S00 (where the normalising constant S00 is the
domain integral of S(x)). The consequence is that at subsequent times the respective
distributions are in direct proportion, i.e. p(x, t) = c(x, t)/S00.

Figure 1(b,d,f,h) shows scatterplots of Xt for an ensemble of N = 104 realisations
of (3.1). Equation (3.1) is solved numerically using a suitable second-order Runge–
Kutta time-stepping scheme for time-dependent SDEs (see Tocino & Ardanuy (2002)
and note that their scheme simplifies considerably when the diffusivity is constant
and isotropic). Note that the Tocino–Ardanuy scheme is ‘weak’ in the sense that it
converges only in probability as step size is reduced, as opposed to being ‘strong’ in
the sense of converging to individual sample paths of the stochastic process. It is weak
convergence that is appropriate for the problem in hand. In comparison tests with
the PDE solution, using the kernel density method described below, a time step of
δt = 0.01 was found to be adequate to ensure that the numerical error was significantly
less than the statistical error when using N = 106 particles. It is immediately evident
in figure 1 that the distribution of Xt follows that of c(x, t) as expected. It is equally
apparent that exactly zero particles end up in the receptor region R (based on the
PDE solution, the probability of a particle arriving in R at T = 50 under (3.1) is
about 2 × 10−5). The integral I can be estimated from the stochastic process using

I = S00 E(R(XT)) = S00

�

D

R(x)p(x, T) dx = �c, r�. (3.2)

Figure 1 makes clear, however, that efforts to calculate I by estimating the
expectation in (3.2) will require very large ensembles. Estimators based on (3.2)
are described as ‘high-variance’ estimators in the stochastic calculus literature, and
efforts to improve them are called ‘variance reduction methods’ (e.g. Kloeden &
Platen 1992).

The same approach can be taken with the adjoint ‘retro-transport’ equation (2.9). Its
stochastic representation is

dX̄τ = (−u(X̄τ , τ )+∇ ·κ(X̄τ , τ ))dτ + (2κ)1/2(X̄τ , τ ) ·dWτ , X̄0 ∼R(x)/R00, (3.3a,b)

where τ = T − t runs backwards in time, and I is obtained from

I = R00 E(S(X̄τ=T)). (3.4)
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Figure 2(b,d, f,h) shows scatterplots of solutions of (3.3). The distribution of X̄τ=T−t
by design matches c∗(x, t).

Kernel density methods (e.g. Silverman 1986; Wand & Jones 1994) can be used to
estimate c and c∗ from ensembles (e.g. X(i)

t , i = 1, . . . , N) of solutions of (3.1) and
(3.3), respectively. In terms of a symmetric kernel function K(x) with unit integral and
finite variance, suitable estimators are

c̄(x, t) = 1
Nh

N�

i=1

K

�
x − X(i)

t

h

�
+ ‘image terms’,

c̄∗(x, t) = 1
N∗h

N∗�

i=1

K

�
x − X̄(i)

τ=T−t

h

�
+ ‘image terms’.






(3.5)

Here h is a (small) kernel bandwidth, and ‘image terms’ refer to contributions from
the images of trajectories, introduced to satisfy the boundary conditions. Formally,
there are an infinite number of images generated by repeated reflection in the
boundaries at y = 0, π, and located at periodic intervals of 2π in x. In practice,
however, only the former need be considered and only for particles close to the
boundaries. The accuracy of the estimate c̄∗ of the adjoint solution will prove
important in the construction of the Lagrangian estimators to be developed in § 4
below.

It is worth commenting that, if the kernel density estimates (3.5) are used to
estimate I using the density of trajectories formula (2.12), the ‘forward–reverse’
representation of Milstein, Schoenmakers & Spokoiny (2004) is recovered as a
straightforward consequence,

I ≈
�

D

c̄(x, t)c̄∗(x, t) dx = 1
NN∗h

N�

i=1

N∗�

j=1

K(2)

�
X(i)

t − X̄(j)
τ=T−t

h

�
+ ‘image terms’. (3.6)

Here K(2) is a new kernel generated from the self-convolution of the original kernel K
(see e.g. p. 49 of Silverman 1986). In many practical circumstances, particularly where
source and receptor regions S and R are spatially and temporally localised, the
forward–reverse estimator will have lower variance. It is particularly useful when the
Green’s function of the transport operator L (in the terminology of probability theory,
the transition density) is sought (corresponding to source S and receptor R being
points in D , for which case the estimator (3.2) has infinite variance). For non-localised
S and R, the estimator (3.6) is biased, and converges more slowly with ensemble
sizes N and N∗ compared with the unbiased estimator (3.2). However, because it can
have a much lower starting variance, it can often be of practical value (see e.g. the
ocean transport modelling study of Spivakovskaya et al. (2005)).

3.2. Importance sampling using Milstein’s measure transformation method
The measure transformation method of Milstein (1995) is based on Girsanov’s theorem
in stochastic calculus (e.g. Øksendal 2007, chap. 8). Usually, Girsanov’s theorem is
proved using results from measure theory, including the use of the Radon–Nikodym
derivative, which may be unfamiliar to some applied mathematicians. Consequently,
all of the results used here will be first proved using a relatively elementary (and, to
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the author’s knowledge, novel) PDE-based approach. The starting point of Milstein’s
method is the extended stochastic process

dYt = (u(Yt, t) + v(Yt, t) + ∇ · κ(Yt, t)) dt + (2κ)1/2(Yt, t) · dWt,

dΘt = −2−1/2Θt v(Yt, t) · κ−1/2(Yt, t) · dWt.

�
(3.7)

It is to be emphasised that it is the same three-dimensional Brownian increment dWt
in each equation of (3.7). The initial conditions of (3.7), which must be consistent
with the initial condition c(x, 0) = S(x) of (2.1), are in general given by

Y0 ∼ g(x)S(x)/G00, Θ0 = G00g(Y0)
−1, G00 =

�

D

g(x)S(x) dx. (3.8a−c)

In (3.7), v(x, t) is a smooth but otherwise arbitrary vector field defined everywhere
in D ; and similarly in (3.8), g(x) is a smooth function in D . Evidently, the particle
trajectories Yt in (3.7) differ from those of (3.1) in that they are advected by the
corrected velocity field u + v instead of by u. There is also an additional equation for
a stochastic variable Θt coupled to the trajectory equation. The key result obtained
from Girsanov’s theorem (following e.g. Kloeden & Platen 1992) is that, for any
choice of v and g, the process (3.7) satisfies

I =E(ΘTR(YT)). (3.9)

The result (3.9) will be established below using a PDE method. Note that the original
direct estimate (3.2) is recovered under the choice v = 0, g = 1. Note also that, in
order to frame our discussion in terms of ‘correcting velocities’, a form of the result
has been given that is valid only when the diffusivity tensor κ is everywhere strictly
positive definite, and thus invertible. In the more general situation in which one or
more eigenvalues of κ is(are) sometimes zero, care must be taken to restrict v to the
direction of the eigenvector(s) of κ associated with its non-zero eigenvalue(s).

The aim of Milstein’s method is to choose v and g judiciously in order that (3.9)
is a ‘lower-variance’ estimator of I compared with (3.2). The variable Θt can be
understood as a trajectory ‘weight’, which is constant in the uncorrected process
(3.1), but is here allowed to evolve. Under a particular choice of v, the system (3.7)
samples trajectories that, though (possibly) important for the problem of interest,
may be highly improbable under the direct process (3.1). The trajectory weight Θt
is designed to keep track of exactly how improbable the sampled trajectories are,
essentially by integrating the relative probabilities of stochastic increments in the
corrected versus the uncorrected process.

The result (3.9) can be established as follows. First, consider (3.7) as a three-
dimensional vector-valued stochastic process, i.e. for Zt = (Y1t Y2t Θt)

†. The Fokker–
Planck equation for the joint probability density p(y, θ , t) for Zt is then
obtained as

pt + ∇ · ((u + v)p) − ∇ · (κ · ∇p) + ∇ · (v(θp)θ) − 1
4(v · κ−1 · v)(θ 2p)θθ = 0, (3.10)

where ∇ ≡∇y acts on the spatial variable y only. Next consider the integrated quantity

P(y, t) =
� ∞

0
θp(y, θ , t)dθ . (3.11)
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Multiplying (3.10) by θ and then integrating leads to (following some integration by
parts)

∂tP + ∇ · (uP) − ∇ · (κ · ∇P) = 0. (3.12)

In other words (since here ∇ · u = 0), P satisfies our original advection–diffusion
equation (2.1). Noting that the SDE initial condition (3.8) corresponds to p(y, θ , 0) =
δ(θ − G00g(y)−1)g(y)S(x)/G00, it follows that the correct initial condition for (3.12),
i.e. P(y, 0) = S(x), also holds. Consequently

P(y, t) = c(y, t) (3.13)

at subsequent times t. The result (3.9) then follows from the definition of expectation:

E(ΘTR(YT)) =
�

D

� ∞

0
θR(y)p(y, θ , T)dθdy =

�

D

R(y)P(y, T) dy = �c, r� = I . (3.14)

The fact that the PDE analogue of Girsanov’s theorem/Milstein’s method involves
solving a PDE (3.10) in a higher-dimensional space than the original perhaps explains
why the approach has not previously been exploited in the context of PDE methods
for advection–diffusion problems. The great advantage of the stochastic representation
is that the extra dimension can be accommodated at little extra cost.

The key question remains how to choose v in (3.7) and g in (3.8). This is a
more delicate matter than might be supposed, as the following two examples will
demonstrate.

3.3. Milstein’s method with a uniform correcting velocity
Some intuition about the consequences of a poor choice of the correcting velocity v
follows from setting v = Vi, where V is a constant and i is the unit vector in the x
direction, together with g(x) = 1. For the case of the constant and isotropic diffusivity
problem under consideration, the trajectory weight (3.7) can be integrated explicitly
to give

Θt = Θ0 exp
�

−V2t
4κ

+ VW1t

(2κ)1/2

�
, (3.15)

where W1t is the x component of the vector-valued Wiener process Wt. It follows that
the random variable Θt/Θ0 has probability density

ρ(θ) = 1
(πt∗)1/2θ

exp

�
−(log θ + 1

4 t∗)2

t∗

�
, t∗ = V2t

κ
. (3.16)

The distribution ρ(θ) has a very long tail for t∗ � 1. It follows that, after sufficient
time, the estimator (3.9) will necessarily have very high variance, making it a poor
estimator of I . By way of illustration, figure 4(a,b) shows the evolution of the
distribution (3.16) at t∗ = 0.5, 1.5 and 2.5. The results are compared to histograms
of Θt at corresponding times t = 1, 3 and 5 in a numerical integration of (3.7), with
V = 0.01 (recall that κ = 2 × 10−4). Even though the correcting velocity V = 0.01 is
so small that it is difficult to distinguish by eye between corrected and uncorrected
particle distributions (not shown), it is obvious that the variance of Θt is already
alarmingly high after only 10 % of the total integration time.
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FIGURE 4. (Colour online) (a) Normalised histograms of trajectory weight Θt in the
UNIFORM correcting velocity experiment with V = 0.01 at times t = 1 (dark grey, blue
online), 3 (grey, red online) and 5 (light grey, green online), versus the corresponding
analytic solutions (curves) given by (3.16). (b) Histograms of ΘTR(Yt)/I in the CHEAT
experiments described in the text. Dark grey (blue online) histogram, interpolation time
�t = 0.1; light grey (red online) histogram �t = 0.2.

To make the above observations more precise, a lower bound can be derived for the
variance of the random variable Π ≡ ΘTR(YT). Exploiting the facts that E(Π) = I
(from (3.14)), that R(x) is bounded and that the distribution of ΘT is given by (3.16)
with t∗ = V2T/κ , it is shown in appendix A that

Var(Π)� X(t∗, I )S00I − I 2, (3.17)

where X(t∗, I ) is a function that, for fixed I > 0, can be shown at large t∗ to grow
exponentially. For problems with fixed κ and T , as here, the inequality (3.17) allows
an upper bound for V to be calculated, beyond which Var(Π) will certainly exceed
the variance of the original estimator Var(S00R(XT)). For the problem at hand (with
T = 50, κ = 2 × 10−4, I ≈ 1.52 × 10−7 and S00 ≈ 7.85 × 10−3), the bound obtained is
rather low, |V| < 0.03. As above, a correcting velocity V of this magnitude has a very
modest impact on the distribution of particles, making it clear that a naive application
of Milstein’s method with a uniform correcting velocity is worse than useless for our
problem.

The broader significance of this result is that it gives an explicit demonstration that,
unless v is chosen with great care, the variance of Θt will grow and overwhelm any
possible reduction in variance obtained from directing more particles into the receptor
region R. In fact, as will be demonstrated next for the problem under consideration,
great care is necessary in the choice of v to result in any variance reduction at all.

3.4. Milstein’s method with the optimal correcting velocity
Kloeden & Platen (1992) comment that, in principle, a ‘zero-variance’ estimator for
I , i.e. an optimal importance sampling strategy, can be constructed by setting v = v∗,
where v∗ is an ideal correcting velocity given by

v∗ = 2c∗−1κ · ∇c∗. (3.18)

Here c∗ is the solution of the retro-transport (adjoint) equation (2.9). The standard
proof for this is given in appendix B, where it is shown that the corresponding optimal
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choice in (3.8) is g(x) = c∗(x, 0). Of course, the expression (3.18) cannot be used
directly to construct a purely Lagrangian estimator, because it requires knowledge of
c∗, from which I can in any case be obtained directly using (2.10). Nevertheless,
investigating solutions of the SDE system (3.7) with v = v∗ is instructive, both in
providing intuition about how the ‘perfect’ importance sampling Lagrangian solution
behaves, and as a test of the numerical implementation of (3.7).

Some results regarding the optimal importance sampling strategy follow from the
observation that, when v = v∗ and g(x) = c∗(x, 0), the Fokker–Planck equation (3.10)
has the exact solution

p(y, θ , t) = δ(θ − I c∗(y, t)−1) c∗(y, t) c(y, t)I −1. (3.19)

The result (3.19) can be verified by the straightforward, if tedious, process of insertion
in (3.10), provided that care is taken over the properties of generalised functions,
i.e. the Dirac delta and its derivatives. That (3.19) is correctly normalised follows from
(2.12). The solution (3.19) reveals the following:
(a) In the optimal importance sampling strategy, the distribution of particles in the

domain is given by

p̄(y, t) =
� ∞

0
p(y, θ , t) dθ = D(y, t)I −1. (3.20)

In other words, Lagrangian particles are distributed according to the density of
trajectories defined in § 2.3. (Note that this result can also be obtained, avoiding
the use of generalised functions, by first integrating (3.10) with respect to θ to
obtain an equation for p̄.)

(b) In the optimal importance sampling strategy, the trajectory weights are everywhere
inversely proportional to the local value of the adjoint solution, i.e. Θt ∼
c∗(Yt, t)−1.

The results (a) and (b) show that the optimal strategy for Milstein’s method,
i.e. with v = v∗, is exactly consistent with the intuitive description of the importance
of D given in § 2.3. This intuition will be the basis of the purely Lagrangian strategies
developed to estimate I in § 4 below, including the means to choose ‘winners’ in
the GWTW algorithm to be discussed next.

Equation (3.7) has been solved numerically using a correcting velocity v = v∗

obtained from numerical interpolation of the Eulerian solution of (2.9) described in
§ 2.2 and shown in figure 2. The aim of this numerical experiment, named ‘CHEAT’
because the Eulerian solution that is being exploited can obviously be used to obtain
I independently, is to check the results above and to gain some insight into their
practical limitations. In the main experiment, cubic interpolation is used from the
1024 × 512 gridded Eulerian solution, with linear interpolation in time between
outputs at intervals �t = 0.1.

The particle positions for an ensemble of N = 104 realisations of CHEAT are
shown in figure 3(b,d, f,h). It is clear from figure 3 that the distribution of particles
in CHEAT closely follows D as predicted by (3.20). The trajectory weights, however,
deviate from the prediction (b). Figure 4(b) shows a histogram (dark grey, blue online)
of ΘTR(YT)/I for CHEAT. If v∗ were exact (and the numerics were perfect), then
ΘTR(YT)/I would be equal to unity. It is seen, however, to deviate substantially
from this deterministic ideal. The main source of error is found to come from the
linear interpolation in time between the calculated v∗ fields, which are stored at
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discrete time intervals �t = 0.1. Evidence comes from a test in which �t is increased
to 0.2 (light grey histogram, red online), which shows a large increase in the standard
deviation of ΘTR(YT)/I .

The sensitivity of the CHEAT results to �t is illustrative of a major practical
difficulty with Milstein’s method. Even relatively small errors in v∗ cumulatively lead
to large increases in the variance of the Lagrangian estimator. This finding influences
our approach in § 4 below.

3.5. Grassberger’s GWTW branching process
An alternative to Milstein’s method is the GWTW importance sampling strategy
(Grassberger 1997, 2002). GWTW is a branching process which in its simplest form
is applied at discrete intervals �t in time. Trajectories are first assigned an initial
position and weight Θ0, according to (3.8), exactly as for Milstein’s method. An
ensemble of N realisations of the direct SDE (3.1) is then integrated forwards from
t = 0, with each member of the ensemble having weight Θ0. However, in contrast
to Milstein’s method, in GWTW trajectory weights Θt are updated only at discrete
times t = tj (tj = j�t), instead of continuously in time. Nevertheless, the weight Θt
performs exactly the same function for each algorithm.

At each branching time tj = j�t (j=1,2,3, . . .), our implementation of the algorithm
proceeds as follows:
(a) A scoring algorithm (see below) is used to assign each trajectory in the ensemble

a score S(i)
tj (i=1, . . . ,N). The trajectories are then sorted into order of decreasing

score.
(b) The trajectories with the lowest scores are then considered sequentially. The

trajectory with the mth lowest score is designated as a ‘loser’ if its score is less
than one-third of the score of the trajectory with the mth highest score. The total
number of losers found is denoted L.

(c) The weights of the L loser trajectories are then randomly, with probability one-
half, either doubled Θtj → 2Θtj or set to zero. The W (≈L/2) trajectories with
score zero are then removed from the calculation.

(d) The W trajectories with the highest scores, designated as the ‘winners’, are then
split into two trajectories, each with half the weight of its parent, i.e. Θtj/2.

The steps (a)–(d) act to reduce the variance of the distribution of scores
{S(i)

tj , i = 1, . . . , N} at each branching time. This variance reduction occurs because
any trajectory with a score less than around half of the ensemble mean score will
be identified as a loser, and will either have its score doubled or will be removed
completely. Any trajectory with a score much greater than two or three times the
ensemble mean will be identified as a winner, and will be reproduced, with each
daughter trajectory having half its score. Provided that steps (a)–(d) are implemented
sufficiently frequently in time, the net effect is to keep all scores within a factor of
two or so of the ensemble mean. Crucially, this is achieved without changing either
the number of trajectories or the overall expectation of the process.

The effectiveness of GWTW evidently depends upon the selection of an appropriate
score Stj for each trajectory, together with the choice of g(x) in the initial condition
(3.8). There is a clear analogy between choosing Stj and choosing the correcting
velocity v in Milstein’s method. Just as with Milstein’s method, we have found that
a poor choice leads to poor performance. Based on the above, the ideal choice can
be guided by result (b) in § 3.4, which gives the trajectory weights in the ‘perfect’
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FIGURE 5. (Colour online) Solution c∗(x, 0) of the retro-transport equation (2.9) versus
kernel density reconstructions c̄∗(x, 0) from ensembles of solutions of (3.3) with N = 104,
105 and 106 trajectories, respectively. The Gaussian kernel widths h = 0.015, h = 0.02 and
h = 0.04 are used, which are close to the optimum value in each case.

implementation of Milstein’s method. If the ideal score at time t is taken to be the
product of the trajectory weight and the local value of the adjoint solution, i.e.

St = Θt c∗(Xt, t), (3.21)

then, based on the arguments given above, the GWTW algorithm will ensure that
the distribution of values of St will remain within a factor of two or so of the
ensemble mean �St�. Hence the trajectory weights will satisfy (�St�c∗(Xt, t)−1)/2 �
Θt � 2�St�c∗(Xt, t)−1, i.e. at any instant in time Θt is approximately inversely
proportional to c∗, as it is in the ideal implementation of Milstein’s method. Of
course, as with Milstein’s method, the exact field c∗ is not available, but the result
(3.21) will nevertheless guide our practical implementation of GWTW described in
§ 4.2 below.

4. Adaptive Lagrangian estimators for S → R transport
Motivated by the above analysis, we proceed by considering forward estimators

of I in which importance sampling is controlled by an estimate of the adjoint
solution c∗, which is generated from a preliminary ensemble of integrations of the
retro-transport SDE (3.3). Much depends on the quality of the estimate c̄∗ of c∗,
of which some illustrative examples generated using the kernel density method are
shown in figure 5.

Alternative approaches are possible. For example, Vanden-Eijnden & Weare (2012)
describe how results from large-deviation theory can be used to obtain an estimate of
v∗ for Milstein’s method that is asymptotically exact in the limit of small noise. To
do this, it is necessary solve a variational problem for each trajectory at regular time
intervals, with this problem being posed on the time interval [t, T]. Our efforts to use
this method for our model problem have not been successful for reasons to be given
below.

The restriction here to forward estimators is simply to focus the discussion. Indeed,
because both forward and backward trajectories are used, each of our approaches can
be straightforwardly adapted to exploit the forward–reverse representation of Milstein
et al. (2004) (see (3.6) above), which may lead to significant further improvements,
particularly for very localised sources and receptors.
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4.1. Estimators based on Milstein’s measure transformation method
A purely Lagrangian forward estimator for I can be created using the following four-
stage algorithm:
(a) Generate an ensemble, of size N∗, of solutions of the retro-transport SDE (3.3).
(b) Use the kernel density method (3.5) to generate a gridded estimate c̄∗ at time

intervals �t of the retro-transport solution c∗ of (2.9), using the back trajectory
ensemble.

(c) Use the field c̄∗ to generate a correcting velocity v̄∗ based on (3.18). This is
multiplied by a smoothed step function F�(·) designed to smoothly reduce v̄∗ to
near zero in regions where c̄∗ is low, i.e.

v̄∗ = 2F�(c̄∗) c̄∗−1κ · ∇c̄∗. (4.1)

Here F�(x) approaches unity for x � � and decays monotonically and rapidly to
zero for x � � (below, F�(x) = exp(−8(log x/log �)12) is used).

(d) Solve (3.7) using correcting velocity v = v̄∗ from (4.1), using initial conditions
(3.8), where the function g(x) = � + c̄∗(x, 0). This particular choice for g(x) is
consistent with trusting the estimate c̄∗ to be a reasonable approximation for c∗

only in regions where c̄∗ � �.
The algorithm above requires the selection of a large number of numerical

parameters (e.g. retro-ensemble size N∗, kernel size h, grid spacing �x, time interval
�t, etc.), in addition to those associated with the SDE solutions themselves (e.g. time
step), and the choice of the function F�(·). A complete numerical analysis and
optimisation is therefore a formidable task, which we do not attempt here. Instead,
we focus on the key, and not immediately transparent, role of the parameter �. The
reason that a finite � is required is that Milstein’s method will fail whenever the
trajectory passes through regions where the estimate v̄∗ differs significantly from
the ideal v∗. The failure can be explained by analogy with the ‘uniform correcting
velocity’ problem of § 3.3, which showed that the increase in Var(Θt) due to a poorly
directed correcting velocity can rapidly overwhelm any variance reduction due to
redirecting trajectories into the region of interest.

In our problem, the estimate v̄∗ is poor where there are few adjoint trajectories
contributing to c̄∗, i.e. in all regions where c̄∗ is small, and it turns out to be effective
to set the correcting velocity v to be zero in these regions. It seems that such a fix
will be necessary regardless of the method used to estimate c̄∗, because the relative
error in c̄∗, which controls v̄∗, will inevitably be higher where c̄∗ is low. The smoothed
step function in (4.1) acts to suppress v̄∗ everywhere that c̄∗ � �. Broadly speaking, it
turns out to be important to choose � to be sufficiently large so that the estimate (4.1)
is accurate throughout the region with c∗ � �. It will be seen below that the algorithm
is not sensitive to the precise value of �, with near optimal results obtained provided
� is within an order of magnitude or so of its optimal value.

Figure 6 shows the trajectory positions at t = 20 and t = 50 in the CHEAT
experiment and in Milstein’s method with N∗ = 105 and � = 10−5. In the CHEAT
experiment, trajectories are distributed almost exactly according to D(x, t), so CHEAT
serves here as a reference that allows us to determine easily where the other methods
are over- and under-resolved in terms of their distribution of particles. It can be
seen in the t = 20 panel that Milstein’s method integration with � = 10−5 maintains
some resolution in all relevant regions, but is over-resolved where c(x, t) is relatively
large (compare figure 1) and somewhat under-resolved elsewhere. The distributions
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FIGURE 6. Trajectory distributions at t = 20 (a,c,e,g) and t = 50 (b,d, f,h) in (a,b) the
experiment CHEAT described in § 3.4, (c,d) Milstein’s method with N∗ = 105 and � = 10−5,
(e, f ) GWTW with N∗ = 105 and � = 10−5 and (g,h) GWTW with N∗ = 105 and � = 10−7.

of trajectories for runs with other values of � (not shown) are similar, but with fewer
particles reaching R as � is increased. It appears from figure 6 that the errors in
Milstein’s method primarily stem not from a failure to simulate some of the S → R
transport pathways, but from the excess variance in ΘT introduced due to errors in v∗,
as discussed in §§ 3.3 and 3.4 above. Because Var(ΘT) decreases as � is increased,
there is an optimal value of � for which sufficient trajectories reach R with Var(ΘT)
not too large, and this optimal value depends on the details of the problem.

To quantify the influence of the quality of the estimate of c̄∗ and the selection of �,
figure 7(a) shows calculated variances of the Lagrangian estimators, i.e. Var(ΘTR(YT)).
The variance of the direct estimator (i.e. Var(S00R(XT))), calculated directly from the
PDE solution, is marked by the dotted line. The results are plotted as a function
of �, and are given for the three kernel density reconstructions of c̄∗, for N∗ = 104,
105 and 106, as shown in figure 5. The variance in each case is calculated from a
forward ensemble of size N = 105, using the standard statistical estimator. A difficulty
is that the random variable ΘTR(YT) becomes long-tailed for calculations with � =
10−6 or smaller, and in these case the values obtained for the variance are likely to
be underestimates due to poor sampling of the tail. Points for which the error in
the sample mean, compared to the expected value I , is greater than the calculated
value of 3(Var(ΘTR(YT))/N)1/2 (i.e. three standard deviations) are highlighted as being
inconsistent and are consequently marked in grey. If these points are ignored, the
results show that between one and two orders of magnitude of variance reduction is
possible, and confirm that performance improves with increasing N∗ as is expected.
The optimal value for � is seen to be in the range 10−4–10−5.
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FIGURE 7. (a,c) Calculated variance of the estimator ΘTR(YT), as a function of �,
for calculations using estimates of c̄∗ based on N∗ = 104, 105 and 106 trajectories:
(a) Milstein’s method; (c) go-with-the-winners. Points for which the calculated variance
is inconsistent with the error in the sample mean are shown in grey. The variance of the
direct estimator is indicated by the dotted line in each panel. (b,d) As above, but showing
MISE(T) (4.2) for the same calculations.

An alternative measure of the accuracy of the calculations is given by the mean
integrated square error (MISE) of the reconstructions of the tracer field within R.
Here MISE is defined to be

MISE(t) =
�

D

(c(x, t) − c̄(x, t))2R(x)2 dx, (4.2)

where the reconstructions are obtained from the weighted kernel density formula (cf.
(3.5))

c̄(x, t) = 1
Nh

N�

i=1

Θ (i)
t K

�
x − Y(i)

t

h

�
+ ‘image terms’. (4.3)

Contour plots of c(x, T)R(x) from the exact (PDE) solution, together with kernel
density reconstructions c̄(x, T)R(x) from the Milstein method (MILS) with N = 105,
N∗ = 105 and � = 1 × 10−5, are shown in figure 8 (optimal kernel sizes are used).
The results are clearly superior to the direct calculation with N = 106, for which only
around 20 trajectories arrive in R. Figure 7(b) shows MISE(T) for the same set of
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FIGURE 8. (Colour online) (a) Weighted PDE (Eulerian) solution log10 c(x, T)R(x) in
the vicinity of the receptor region R. (b–f ) Kernel density estimates of log10 c(x, T)R(x)
from the stochastic Lagrangian integrations: DIRECT with N = 106; CHEAT with N = 105;
Milstein with N = 105 (N∗ = 105, � = 10−5); GWTW with N = 105 (N∗ = 105, � = 10−5);
and finally an experiment combining both methods, also with N = 105.

simulations as in figure 7(a), confirming that performance improves with increasing
N∗ and that � = 10−4–10−5.

A further disadvantage of the implementation (a)–(d) of Milstein’s method is the
expense of calculating and storing the gridded correcting velocity v̄∗, as well as
interpolating it during the forward calculations. As is clear from figure 4(b), v̄∗ must
be obtained and stored at a relatively high temporal resolution (here �t = 0.1). The
overall cost of this increases the expense of our forward calculations by around a
factor of 10 compared to the direct calculations, significantly reducing the gains
made by variance reduction. Fortunately, better results are obtained with the GWTW
algorithm, as will be seen next.

4.2. Estimators based on GWTW
To create a purely Lagrangian estimator based on GWTW, steps (a) and (b) are
followed as above, followed by:

(c 2) A forward run with GWTW scored according to

St = Θt(c̄∗(Xt, t) + �). (4.4)

In close analogy with Milstein’s method, introducing an � > 0 acts effectively to
switch off GWTW in regions where c̄∗ � �, in order that particles are not removed
and added erroneously in regions where the estimate c̄∗ of c∗ is inaccurate.

The importance of choosing � to be sufficiently large is seen in the lower two
rows of figure 6, which show the trajectory positions in GWTW runs with N∗ = 105

and � = 10−5 (e, f ) and � = 10−7 (g,h). For the � = 10−7 GWTW run, from the
t = 20 panel it is clear that some S → R transport pathways are significantly
under-resolved, mainly in regions where c(x, t) is large (e.g. regions highlighted by
arrows). The under-resolution is due to trajectories being removed too rapidly from
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regions where c∗ is low, because in these regions there are no back trajectories,
meaning that c̄∗ is effectively zero and trajectory scores are too low. Elsewhere,
there is evidence of erroneous trajectory clustering on the scale of the kernel size h,
which is due to trajectories being reproduced close to local maxima in c̄∗ associated
with individual back trajectories. The consequence of the poor sampling of S → R
transport pathways in the � = 10−7 simulation is that, despite the spatial distribution
of particles at t = 50 appearing to be reasonable, there is increased variance in
statistics of the trajectory weights at t = 50, consistent with a relatively poor estimate
of I . Choosing � = 10−5 improves the sampling of S → R pathways, but at the
expense of over-resolving where c is large, and consequently a lower proportion of
trajectories reaching R at t = 50. As with Milstein’s method, there is evidently a
trade-off between competing effects, and an optimal value of � for the algorithm.

The performance of GWTW is quantified as a function of � and N∗ in figure 7(c,d).
It is clear that our implementation of GWTW performs substantially better than
Milstein’s method, with robust behaviour over a wide range of � centred on the
optimal value of around 10−5. For runs with N∗ = 105, the variance is reduced by 2.5
orders of magnitude, increasing to three orders of magnitude for N∗ = 106. An even
greater improvement over Milstein’s method is evident for MISE(T), which is also
apparent in the kernel density reconstructions of figure 8.

GWTW is also much cheaper to implement than Milstein’s method. Interpolation
of c̄∗ and sorting of winners and losers happens only at longer intervals �t = 0.1,
whereas v̄∗ in Milstein’s method must be obtained by interpolation at every SDE
time step δt = 0.01 in order to integrate the trajectory weight equation. As a result,
GWTW adds only 10 %–20 % to the cost of a forward run, making it remarkably
cheap as well as robust. For our model problem, the computational cost of integrating
N = 105 trajectories is comparable to that of using the kernel density method to make
500 constructions of c̄∗ from the results, hence the overall cost of the algorithm
(backwards run, construction of c̄∗, forwards run) is around three times that of the
direct method. In our model problem, fixing a level of accuracy required for I in
advance, the GWTW algorithm can obtain the required estimate at roughly 1 % of
the computational cost of using the direct method.

5. Conclusions
The focus of this work has been to address the following question: How is transport

in an advection–diffusion problem, between a pre-selected source region S and
receptor region R, modelled most efficiently using stochastic Lagrangian methods?
The main theoretical result, which underpins each of the methods subsequently
formulated, and which we believe to be fundamental to the understanding of
advection–diffusion problems, is that the ideal distribution of particles is proportional
to the density of trajectories field D(x, t) defined by (2.11). The field D is the
product of c, the solution of the forward transport problem (S → R), and the
adjoint solution c∗ (R → S ). The corresponding ideal particle weights are inversely
proportional to c∗.

Motivated by the above observations, a robust and flexible Lagrangian adaptive
algorithm has been developed based on the GWTW strategy (Grassberger 2002). The
algorithm uses both forward and back trajectories, with the selection of winners and
losers in the forward calculation controlled by an estimate of the adjoint solution,
which is obtained from the preliminary backward calculation. In our model problem,
trajectories in the adaptive calculation have variance three orders of magnitude lower
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than those of the direct calculation, with the computational cost increased by just
over a factor of two. There is also plenty of room for further optimisation, perhaps
most promisingly because the method can be combined with the complementary
forward–backward representation of Milstein et al. (2004).

The GWTW algorithm is particularly suited to advection–diffusion in the chaotic
advection regime, in which the underlying deterministic trajectories separate
exponentially. Alternative ‘small-noise’ approaches based on large-deviation theory
(e.g. Vanden-Eijnden & Weare 2012) appear to be prohibitively expensive and
complicated to implement in chaotic advection. In the method of Vanden-Eijnden
& Weare (2012), a variational problem is solved for each trajectory, at regular time
intervals, to obtain a correcting velocity v for use with Milstein’s method. In the
chaotic advection regime, the solutions to this variational problem are discontinuous
in time and space across multiple interfaces, which are not a priori predictable. This
means that a solution for a particular trajectory cannot be found reliably using an
iteration that begins with a previous solution.

The main weakness of the GWTW method described here is that it is limited by
the measurement ratio I /S00, i.e. the total tracer in the measurement region divided
by the total released. Unlike the small-noise methods discussed above, the GWTW
method will fail when the measurement ratio is sufficiently low that there is little or
no spatial overlap between forward and backward trajectories at intermediate times
in the calculation. The Péclet number (Pe) dependence of the GWTW method is
felt primarily through its influence on this measurement ratio. Further experiments
with the simple model here indicate that GWTW will succeed over a wide range
of Pe provided that the measurement region is chosen so that I /S00 is not too
small (i.e. I /S00 � 10−6–10−7 for the number of trajectories N = 105–106 used
here). However, note that, considering a sequence of flows with increasing Pe, the
measurement region R will be required to be located increasingly close to the
deterministic trajectories to maintain the measurement ratio. Although measurement
ratios much smaller than the value (≈2 × 10−5) considered here are unlikely to be
of much practical interest in fluid problems, it is notable that values of I /S00 in
the range 10−10–10−20 are typical in the molecular dynamics problems that have
motivated the development of the small-noise methods. For these problems, which
are generally not in the chaotic regime, the small-noise methods discussed above can
be used.

Will the GWTW algorithm be straightforward to implement in state-of-the-art
operational atmospheric Lagrangian trajectory models, such as FLEXPART (Stohl
et al. 2005) or NAME (Jones et al. 2007)? Some practical and technical issues
must be overcome, such as the increase from two to three dimensions, and the fact
that diffusivities in the atmosphere are highly anisotropic, with dispersion in the
horizontal primarily driven by a combination of vertical diffusivity and vertical shear
in the mean wind (cf. shear dispersion; Taylor 1953). Further, turbulent diffusivities
are spatially inhomogeneous, most notably at the top of the atmospheric boundary
layer, where there is a rapid decrease. Finally, Poisson (jump) processes are likely to
be required in regions of convection (Forster, Stohl & Seibert 2007). Notwithstanding
these potential difficulties, in principle there is no obstacle to the suitable adaptation
of the principles outlined in this work to the operational scenario.
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Appendix A. Lower bound on the variance of Milstein’s estimator with
uniform drift

In § 3.3, the estimator Π = ΘTR(YT) for I , given by (3.9), was discussed for the
case with a uniform correcting velocity v = Vi. Here we obtain the lower bound (3.17)
on its variance.

We will work under the assumption that R(x) is non-negative and bounded above
by a constant C (C = 1 in our example). The fact that Θ0 = S00 (because g(x) = 1)
can then be used to write the inequality

P(x < Π < ∞)� P(x/CS00 < ΘT/Θ0 < ∞). (A 1)

If the (unknown) probability density of Π is introduced as π(x), (A 1) can be
expressed as

Pπ(x)� P(x/CS00), (A 2)
where the cumulative densities Pπ and P are defined to be

Pπ(x) =
� ∞

x
π(q)dq, P(x) =

� ∞

x
ρ(q)dq, (A 3a,b)

and ρ(x) is the density of the random variable ΘT/Θ0 given by (3.16).
Next, note that the variance of Π can be written, using integration by parts, as

Var(Π) =
� ∞

0
x2π(x) dx − I 2 = 2

� ∞

0
T(x) dx − I 2, with T(x) =

� ∞

x
Pπ(q) dq,

(A 4)
where the fact that E(Π)=I has been used. Using the inequality (A 2) we can write

T(x) = I −
� x

0
Pπ(q) dq �I − S00C

� x/S00C

0
P(q) dq. (A 5)

Next define X = X(t∗, R), where R = I /S00C satisfies 0 < R < 1, to be the root of
the equation � X

0
P(q) dq = R

2
. (A 6)

After integrating, a nonlinear equation satisfied by X is found,

erfc
�

t∗ − 4 log X
4
√

t∗

�
+ X erfc

�
t∗ + 4 log X

4
√

t∗

�
= R, (A 7)

where erfc(·) denotes the complementary error function. The quantity X has been
defined in order that the inequality

T(x)�I /2, for 0 � x � S00CX, (A 8)

is satisfied. As a consequence, because T(x) is non-negative everywhere,

Var(Π) = 2
� ∞

0
T(x) dx − I 2 � 2

� XS00C

0
T(x) dx − I 2 �I 2(X/R − 1) (A 9)

which is (3.17) as required.
For the bound (3.17) to be useful, it is necessary to understand the behaviour of

X(t∗, R) as t∗ → ∞ for fixed R. Note that, for t∗ � 1, X ≈ R/2 and the bound is
negative (i.e. useless). At large t∗, the asymptotic behaviour of (A 7) can be seen to be
X ∼ exp(t∗/4), hence the bound will always become useful as t∗ (or V) increases. For
the results discussed in § 3.3, numerical solutions of (A 7) have been obtained using
a standard root-finding method.
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Appendix B. The zero-variance property of the ‘ideal’ estimator
The result that setting v = v∗ in Milstein’s method leads to a zero-variance estimator

is a standard one in stochastic calculus (see e.g. exercise 16.2.1 of Kloeden & Platen
1992) but is included here as a useful alternative perspective on the results of § 3.4.
To show the result, it suffices to apply the multivariate version of Itô’s lemma, which
states that, for a smooth function f (z, t) and a vector-valued random process Zt,

d f (Zt, t) = (∂t f ) dt + (∇z f ) · dZt + 1
2 dZt · ∇z∇z f · dZt. (B 1)

The lemma is applied to the stochastic variable Θt c∗(Yt, t), with the identification
Z†

t = (Y†
t Θt) as in § 3.2. Then,

d(Θt c∗(Yt, t)) = Θt(∂tc∗) dt + c∗ dΘt + Θt∇c∗ · dYt

+ 1
2Θt(dYt · ∇∇c∗ · dYt) + dΘt(dYt · ∇c∗). (B 2)

Next, using (3.7) to substitute for dYt and dΘt, and discarding terms of o(dt), after
some working it can be seen that

d(Θt c∗(Yt, t)) = Θt(∇c∗ − 1
2 c∗v · κ−1) · (2κ)1/2 · dWt − Θt L

†c∗ dt (B 3)
= 0 on setting v = v∗. (B 4)

Integrating in time, ΘT c∗(YT, T) = Θ0 c∗(Y0, 0) = const. provided we make the choice
Θ0 = G00c∗(Y0, 0)−1, or equivalently that g(x) = c∗(x, 0) as anticipated in § 3.4. Since
ΘT c∗(YT, T) = ΘTR(YT), we have the desired result that the latter is a deterministic
(i.e. zero-variance) estimator of I .
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