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ABSTRACT

The zonal modulation of baroclinic disturbances is studied in a quasigeostrophic two-layer periodic channel. The
system is relaxed toward an unstable state with a uniform flow in each layer. For small criticality, two weakly
nonlinear systems are then developed, which differ in the choice of boundary condition used for the correction to
the basic flow. Each system is described by an amplitude equation that determines the evolution of the wave
envelope over ‘‘long’’ time- and space scales. For the first system the amplitude equation allows wave packet
formation. Depending upon the ratio of the length scale of the packets to the channel length, either a steady wave
train, stable solitonlike wave packets, or chaotically evolving wave packets are observed. The mechanism that leads
to wave packet formation is then discussed with reference to the instability criterion of the amplitude equation.
For the second system the amplitude equation is found to allow convergence to a steady, uniform wave train only.

A numerical model is then used to investigate the finite criticality extension of the second weakly nonlinear
system. At low criticality, the assumptions that underpin the weakly nonlinear theory are tested by analyzing
the convergence to a uniform wave train. As the criticality is increased, the effects of full nonlinearity cause
the weakly nonlinear theory to become invalid. Initially, resonant triads of waves that have fixed amplitudes
become excited owing to the dissipative nature of the system. As the criticality is increased further, other waves
are excited and the system approaches full baroclinic chaos. Wave packet–like structures are then observed that
evolve rapidly, growing, decaying, merging, and dividing.

1. Introduction

Baroclinic instability is studied chiefly because it is
regarded as the fundamental mechanism behind the for-
mation of midlatitude synoptic-scale weather systems.
Modern study of the subject has followed two distinct
paths, each of which are outlined in a recent review by
Pierrehumbert and Swanson (1995).

The first approach involves the study of nonlinear
initial value problems, in which an unstable flow is per-
turbed by a small disturbance. This results in a cycle of
exponential growth, nonlinear saturation, and, depend-
ing on the system in question, subsequent nonlinear de-
cay. Simmons and Hoskins (1978) studied the evolution
of a wavenumber 6 disturbance on a sphere and ob-
served the baroclinic-growth–barotropic-decay cycle,
which has characterized many similar experiments. In
a subsequent investigation (Simmons and Hoskins
1979), they introduced full zonal resolution. This study
detailed the development of baroclinic waves down-
stream of a zonally localized initial disturbance in the
midlatitudes. More recently, Swanson and Pierrehum-
bert (1994) considered the evolution of a zonally lo-
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calized disturbance on an unstable jet in a two-layer
channel model. They showed that as the disturbance
spreads downstream, modes at the leading edge of the
resultant wave packet attain the largest amplitude and
eventually dominate.

The second direction of study has considered forced–
dissipative baroclinic systems, which are closer to those
observed in nature. In these systems there is a statistical
equilibrium between the forcing of the flow by an active
eddy field, and its relaxation toward an unstable state by
external forcing. Therefore the disturbances seldom, if
ever, are observed to grow from small perturbations to an
unstable jet. The statistical equilibrium of such ‘‘turbulent’’
baroclinic systems has been the subject of recent study,
for example by Whitaker and Barcilon (1995), who in-
vestigated wavenumber selection in the two-layer model.

It has recently been shown, in both observations, by
Chang (1993), and in a range of numerical models, by
Lee and Held (1993) (LH hereafter), that eddies in
forced–dissipative baroclinic systems organize sponta-
neously into groups or wave packets. Just as the pres-
ence of baroclinic waves in such a system may be un-
derstood through a normal-mode instability of an un-
stable flow, one explanation for the formation of these
wave packets may be as a secondary instability of the
zonally homogeneous steady wave train.

In this paper a simple forced–dissipative baroclinic
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model is investigated, using both analytical and nu-
merical techniques. This is primarily to determine the
presence of a secondary instability that could lead to
wave packets, and to assess its importance by comparing
the effects of finite criticality. The model in question,
which is described in section 2, is the two-layer qua-
sigeostrophic channel model. The flow is relaxed to-
wards a basic state, which is uniform in each layer. To
prevent the formation of barotropic jets the channel
width is taken to be of the order of the radius of de-
formation (e.g., Panetta 1993).

In section 3, a weakly nonlinear theory is developed
for small criticality e. Unlike other such analyses (e.g.,
Pedlosky 1970, 1972; Tan and Liu 1995), an idealized
local balance between the wave forcing of the background
zonal flow and its restoration by mechanical and radiative
forcing is assumed. A parameter j, which is the ratio of
the criticality e to the Rossby number Ro, determines the
boundary conditions for the basic flow correction. Phys-
ically, j determines the importance of ageostrophic effects
in modulating the background flow. Two limiting cases
are considered, which lead to two contrasting weakly non-
linear systems. These systems differ in the magnitude of
the (meridionally averaged) background flow response,
which results along the length of a wave packet. For sys-
tem A, in which this response is relatively large, the am-
plitude equation encourages wave packet formation for
certain parameter settings. These wave packets exhibit
both steady and chaotic wave packet behavior. Analysis
of the form of the equation as well as the results of nu-
merical integrations allow some insight into the mecha-
nism by which wave packets in system A are maintained.
In system B, however, the response of the background
flow to the wave packets was found to have structure so
as not to allow wave packet formation. The amplitude
equation for this system allows convergence to a zonally
symmetric steady wave train for every parameter setting
investigated.

In section 4, the model is investigated numerically for
finite criticality. This represents the finite e extension of
weakly nonlinear system B, in which the secondary in-
stability that leads to wave packet formation is absent. By
analyzing the flow as it converges toward a steady wave
train, the assumptions that underpin the weakly nonlinear
theory are shown to be valid at low criticality. It is then
illustrated that fully nonlinear effects at finite criticality
can also lead to zonal modulations of the wave train. As
the criticality is increased, wave–wave interactions cause
dissipative resonant triads to become excited. These are
characterized by a wave train that is modulated by a sym-
metric wave that is close in structure to a free mode of
the system. At higher criticality still, several baroclinic
waves attain finite amplitude in the time mean. This results
in packetlike structures that evolve rapidly, growing, de-
caying, merging, and dividing.

Any realistic model of the observed atmospheric flow
would also require the presence of a jet with strong bar-
otropic shear. This would allow the baroclinic waves to

break at the jet edges in the upper layer. The numerical
experiments described in section 4 isolate the effects of
full nonlinearity in the absence of this process. Briefly, in
the conclusion, separate experiments with a barotropic jet
are discussed, which will be described in a future paper.
Ideas from both sections 3 and 4 appear to be necessary
to understand the behavior of this more complicated sys-
tem.

2. The two-layer model: Linear theory

The quasigeostrophic two-layer model, as derived by
Phillips (1951), has been used extensively in the study of
baroclinic instability and related phenomena. Its highly
truncated vertical structure makes for considerable com-
putational and analytic economy. To appreciate the weakly
nonlinear analysis that follows in section 3, it is necessary
to understand the linear behavior of the two-layer model,
and in particular the way in which this behavior is per-
turbed by the effects of a small amount of dissipation.

The model is described by two coupled potential vor-
ticity equations of the form,

D Qi i 5 d i 5 1, 2, (1)iDt

where the subscript i correspond to the ith layer, i 5 1
is the upper layer, and i 5 2 the lower. In this equation,
Qi is the potential vorticity, di the forcing/dissipation,
and Di/Dt is the quasigeostrophic convective derivative
given by

D ] ] ]i 5 2 F 1 F . (2)iy ixDt ]t ]x ]y

The quasigeostrophic streamfunction Fi is related to the
potential vorticity through the relation,

2 i11Q 5 by 1 ¹ F 1 (21) F(F 2 F ), (3)i i 2 1

where F is the nondimensional internal Froude number
given by

2 2f L0F 5 , (4)
g9H

and b is the nondimensionalized gradient in the Coriolis
parameter f. Here, H and L are the vertical and hori-
zontal length scales, respectively, and g9 is the reduced
gravity due to the density difference between the layers.
The reader is referred to Pedlosky (1987) for details.

The terms Fi and Qi are expanded about a basic state
corresponding to a uniform flow in each layer, by writing
Fi 5 1 fi and Qi 5 1 qi, with 5 2Uiy and0 0 0F Q Fi i i

5 by 1 (21)i11F(U1 2 U2)y. If the dissipation, de-0Qi

noted by di above, takes the form of Ekman damping
in each layer, together with radiative relaxation of the
system back toward the basic-state shear, then the re-
sultant equations are given by



2822 VOLUME 54J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

] ]
21 U ¹ f 1 F(f 2 f ) 1 (b 1 FU )f1 1 2 1 s 1x1 2[ ]]t ]x

1 J (f , q )x,y 1 1

25 2E ¹ f 1 rF(f 2 f )1 1 1 2

] ]
21 U ¹ f 1 F(f 2 f ) 1 (b 2 FU )f2 2 1 2 s 2x1 2[ ]]t ]x

1 J (f , q )x,y 2 2

25 2E ¹ f 1 rF(f 2 f ). (5)2 2 2 1

Here, Jx,y(a, b) 5 axby 2 aybx is the Jacobian operator
and Us 5 U1 2 U2 is the shear in the basic state. These
equations are subject to the boundary conditions

fix 5 0 on y 5 0, Ly, i 5 1, 2, (6)

as well as a condition on the zonal mean streamfunction,
the derivation of which is reviewed in appendix A. (The
two limiting cases that result from this derivation become
the boundary conditions that define the two different weak-
ly nonlinear systems that will be presented.) Here, Ly is
the nondimensional width of the channel, Ei is the rate of
Ekman damping, and r is the rate of radiative relaxation,
both scaled with bF21/2 where values are quoted.

If we neglect the nonlinear terms, Eqs. (5) have a
linear plane-wave solution of the form

ik(x2ct)f 5 Re[Ae sinly]1

ik(x2ct)f 5 Re[gAe sinly], (7)2

where the phase speed c is given in terms of k and l
(5np/Ly for integer n) by the dispersion relation,

2 2 21 2a Fri a (a 1 F)(E 1 E )i1 22 2 2c 5 (U 1 U )a (a 1 2F) 2 2b(a 1 F) 2 27 1 22 22a (a 1 2F) k k

4a
2 2 2 4 2 4 2 26 4b F 2 U a (4F 2 a ) 1 [4E E a (a 1 2F)]s 1 225 k

4a
2 2 2 2 21 [4F (E r 1 E r 2 r ) 2 (a 1 F) (E 1 E ) ]1 2 1 22k

1/2
2 2 2 2 22U a (a 1 2F)(a 2 F)(E 2 E )i 4ba F (E 1 E 2 2r)is 2 1 2 11 1 , (8)86k k

FIG. 1. A contour plot showing the scaled growth rate 2bviÏ
against wavenumber and b for the inviscid case. The contour interval
is 0.0125 and the dashed line marks the curve of critical b, below
which the growth rate is exactly zero.

where a2 5 k2 1 l2. An expression for the constant g
controlling the relative phase and amplitude of the dis-
turbance in the second layer relative to the first is given
by Eq. (38) in appendix B. Note that with dissipation
present g is generally a complex quantity. Here, U2 has
been taken to be zero without any loss of generality.
For consistency with the previous literature, throughout
this paper it is taken that Us 5 1.0, F 5 0.5, and b is
used as a measure of the criticality of the system. Also,
where values are quoted, it is taken that Ly 5 2p, and
n 5 1. Here, Ei and r are both scaled with bF21/2. One
time unit is defined by U21L where U is the velocity
scale for the shear.

Before proceeding to the nonlinear problem, it is
important to appreciate the destabilizing effect of the
dissipation, which will be denoted by the vector {E1,
E2, r}, on the dispersion relation (8). The real part of
the linear frequency of the waves vr (not shown) was
found to be altered only slightly by this dissipation, at
least at values typical of that quoted in this paper. It
is the effect of the dissipation on the imaginary part
of the frequency vi that has important consequences
for any weakly nonlinear expansion. Figure 1 is a con-
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FIG. 2. As in Fig. 1 but for the case of very weak damping {E1 5
0.0005, E2 5 0.0025, r 5 0.0005}. The dashed line marks the new
curve of critical b, and the dot–dash line the inviscid curve. In the
shaded region between these curves the waves have a very low growth
rate, of the order of the damping. Below the lower curve the waves
are very weakly decaying.

FIG. 3. As in Fig. 1 but for the damping coefficients at setting 1:
{E1 5 0.05, E2 5 0.25, r 5 0.05}. The dotted curves denote negative
values of 2bvi. The inviscid point of minimum critical shear isÏ
marked by the unlabeled ‘‘3.’’

tour plot of vi in the absence of dissipation, against
wavenumber k and criticality b. It is characterized by
a critical curve, denoted by the dashed line, below
which the waves are marginally stable (vi 5 0) and
above which the waves are unstable. The critical value
of b below which some waves become unstable is giv-
en by bI 5 0.5, and the wavenumber to first become
excited is kI0 5 221/2.

Figure 2 shows how this picture is altered by a small
amount of dissipation {E1 5 0.0005, E2 5 0.0025, r 5
0.0005}. In this diagram the inviscid critical curve is now
denoted by a dot–dash line, while the actual critical curve
is the lower dashed curve. In the shaded region between
these two curves the growth rate of the waves is of the
order of the dissipation, which is small compared to the
growth rate of the waves in the region above the inviscid
curve. It is important to point out that the position of the
new critical curve is a function of the form rather than
the magnitude of the damping, see Romea (1977). Any
weakly nonlinear expansion about the new critical point
(bc, k0) will be relevant only to the waves in the shaded
region, as the gradient of the growth rate with respect to
the criticality in this region is very small.1

Figure 3 shows that for more typical values of the

1 Boville (1981) showed numerically that in the limit of vanishing
dissipation the waves formed for b # bi had identical properties to
waves in the inviscid model, and partly for this reason the weakly
growing waves formed for values bc . b . bi, which were first
studied by Romea (1977), have been thought of as a peculiarity of
the Phillips’ Model.

damping {E1 5 0.05, E2 5 0.25, t 5 0.05} (hereafter
referred to as setting 1) the growth rate vi is no longer
influenced by the inviscid critical curve, and instead
varies smoothly in the region surrounding (bc, k0). This
means that in this case a weakly nonlinear expansion
about the critical point (bc, k0) can be expected to have
a much larger range of validity than when the damping
is very small, and this justifies the weakly nonlinear
analysis that follows.

3. Weakly nonlinear behavior

With a uniform flow present in each layer, the two-
layer model shows a variety of nonlinear behavior, par-
ticularly when no forcing or dissipation is present (e.g.,
Pedlosky 1970, 1972; Warn and Gauthier 1989). How-
ever, to describe a forced baroclinic system by weakly
nonlinear theory, it is necessary to adopt a dynamical
balance that reflects the competition between the wave
forcing of the background zonal flow and its restoration
by forcing/damping. The wave forcing of the flow is
nonzero even if the waves are not growing, due to the
presence of dissipation. If we take the zonal average of
(5), we get the equations

]q i 1 (y9q9)i i y]t
i115 2E f 1 (21) rF(f 2 f ), i 5 1, 2,i iyy 1 2

(9)

where overbars denote zonal mean quantities, and
primes the deviations from these. The divergence of the
eddy potential vorticity flux ( )y effectively providesy9q9i i
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a wave-driven forcing of the zonal mean potential vor-
ticity. If an assumption is made that the background
zonal flow varies over time and space scales that are
large compared with those of the eddies, the wave-forc-
ing terms ( )y will primarily be balanced locally byy9q9i i

the forcing/dissipation terms on the right of the equa-
tion. This is the idea that underpins the study of the
limiting case that follows. If we take the meridional
derivative of (9), the steady-state equation for u is

( )yy 5 2Eiuiyy 1 (21)i11tF(u1 2 u2).y9q9i i (10)

An important point is that ( )yy is not, in general,y9q9i i

equal to zero at the boundaries where ui 5 0. For a
steady state to be possible therefore, it is necessary that
Ei is nonzero in each layer. This also proves to be nec-
essary in the numerical experiments of section 4 to pre-
vent small scales developing at the boundaries.

The nonlinear balances relevant here were first con-
sidered by Romea (1977). The analysis that follows was
developed independently from that of Romea and in-
cludes the possibility of packet behavior by the inclusion
of a ‘‘long’’ space variable X and an ‘‘intermediate’’
time variable T. Furthermore, a more general form of
damping is used, in the form of asymmetric Ekman
friction and radiative relaxation, which allows the am-
plitude equations derived to exhibit a much broader
range of behavior.

It is assumed that there exists some critical value of
b 5 bc for which there are no growing modes, and for
which there exists at least one marginally stable wave-
number k0, which is unstable for all values of b , bc.
This ensures that ci(bc, k0) 5 0 and that ]vi/]k(bc, k0)
5 0.

The multiple long time and space variables2 are de-
fined as

X 5 ex, T 5 et, T9 5 e2t, (11)

where e is a measure of the criticality defined by the
equation, b 5 bc(1 2 De2), D 5 61. Here, D is included
in order that the amplitude equation covers the case of
decaying waves (D 5 21), as well as growing waves
(D 5 11). We can use the method of separation of scales
to derive the full nonlinear asymptotic equations for
small e. These are

2 A long space variable X9 5 e2x is not included as the first-order
behavior of the amplitude equation is captured by the variables X, T,
and T 9. For example, the channel may be thought of as being periodic
in X. However, the higher order behavior in X9 may be obtained by
making the transformation T 9 ° T 9 2 X9/cg in the equations that
follow. This is a consequence of the linear expansion.

] ]
2 21 U [¹ f 1 F(f 2 f )] 1 (b 1 FU )f 1 E ¹ f 2 rF(f 2 f )s 0 1 2 1 s 1x 1 0 1 1 21 2]t ]x

2] ] ] ] 2] f121 e 1 U [¹ f 1 F(f 2 f )] 1 (b 1 FU )f 1 E 1 1 Us 0 1 2 1 s 1X 1 s51 2 1 2 6]T ]X ]t ]x ]x]X

2 2] ] ] 2] f ] ] ] f1 12 21 e [¹ f 1 F(f 2 f )] 1 1 U 1 E 1 1 U 2 Dbf0 1 2 1 s 1 s 1x25 1 2 1 2 6]T9 ]T ]X ]x]X ]t ]x ]X

22] f12 21 J (f , ¹ f 1 F(f 2 f )) 1 eJ (f , ¹ f 1 F(f 2 f )) 1 eJ f , 5 0, (12)x,y 1 0 1 2 1 X,y 1 0 1 2 1 x,y 11 2]x]X

and

]
2 2[¹ f 1 F(f 2 f )] 1 (b 2 FU )f 1 E ¹ f 2 rF(f 2 f )0 2 1 2 s 2x 2 0 2 2 1]t

2] ] 2] f221e [¹ f 1 F(f 2 f )] 1 (b 2 FU )f 1 E 10 2 1 2 s 2X 25 1 2 6]T ]t ]x]X

2 2] ] 2] f ] ] f2 22 21e [¹ f 1 F(f 2 f )] 1 1 E 1 2 Dbf0 2 1 2 2 2x25 1 2 1 2 6]T9 ]T ]x]X ]t ]X

22] f22 21 J (f , ¹ f 1 F(f 2 f )) 1 eJ (f , ¹ f 1 F(f 2 f )) 1 eJ f , 5 0, (13)x,y 2 0 2 1 2 X,y 2 0 2 1 2 x,y 21 2]x]X
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where
2 2] ]

2¹ 5 10 2 2]x ]y

is the O(1) part of the Laplace operator.
To solve these we attempt a series expansion in e

fi 5 ( 1 1 1 . . . ).(0) (1) 2 (2)f ef e fi i i

At leading order the solution is simply the linear so-
lution described earlier,

(0) ik(x2ct)f 5 Re(A(X, T, T9)e sinly)1

(0) ik(x2ct)f 5 Re(gA(X, T, T9)e sinly),2

where c is in this instance real as we are at the critical
value bc.

At the next order, nonlinear terms due to the O(1)
phase difference of the waves induced by the dissi-
pation must be balanced. This is where the nature of
the analysis diverges from that of the inviscid problem
of Pedlosky (1970), where nonlinear terms enter the
problem at a higher order. We must seek a solution of
the form,

5 Re(Bieik(x2ct) sinly) 1 (y, X, T, T9), (14)(1) (1)f Fi i

and must equate wavelike and x independent terms sep-
arately. The condition for the removal of the secular
wavelike terms at this order is found to be the group
velocity condition:

] ]
1 c A(X, T, T9) 5 0. (15)g1 2]T ]X

Here cg 5 ]v/]k is a real quantity, since we are dealing
with the marginally stable mode with k 5 k0, for which
]vi/]k 5 0. Details are given in appendix B. We infer
from this that A 5 A(z, T9), where z 5 X 2 cgT. Solving
for B1, B2, we find after renormalization (see Pedlosky
1970), that,

B 5 0,1

B 5 ikA , (16)2 z

where k is a complex constant given in appendix B.
Equating the mean flow terms with those from the

nonlinear wave forcing, which enters the equation at
this order through the Jacobian, we arrive at the equa-
tions,

2 (1)] F1 (1) (1) 2E 1 rF(f 2 f ) 5 2g F|A| l sinly cosly1 2 1 i2]y
2 (1)] F2 (1) (1) 2E 1 rF(f 2 f ) 5 g F|A| l sinly cosly,2 1 2 i2]y

(17)

where gi 5 Img. These equations represent a balance
between the wave forcing of the basic-state vorticity
field and its restoration due to friction and thermal
relaxation, which is analogous to that in equation
(10).3

At this point the analysis diverges, as it is possible
to choose different boundary conditions for these
equations. The condition that applies depends upon
the value of j chosen, the ratio of the criticality e to
the Rossby number Ro. This is discussed in detail in
appendix A. The two sets of boundary conditions that
characterize the most extreme behavior, for j → 0 and
j → `, are

3 The upper-layer Ekman friction should not be regarded as param-
eterizing a particular physical process, but has instead been included
to allow a solution to Eq. (17). An alternative might have been to
use interfacial friction, 5 (21)iEI (¹2f1 2 ¹2f2). From the solution
to Eq. (17) with this friction included, the results would be similar
to those obtained when the ratio E2:E1 is large.

(1)(a) F 5 0 on y 5 0, L (local zonal flow condition), (18)iy y

X
(1) (1)(b) F 5 0 and F 9 5 0 on y 5 0, L (quasigeostrophic long wave condition) (19)iy i y

The prime in condition (b) denotes deviation from the
X average, which is denoted by the overbar. The phys-
ical difference between the two conditions is essen-
tially that condition (b) assumes that all X variations
in the background zonal flow must behave as quasi-
geostrophic waves. The assumption behind condition
(a) is that ageostrophic corrections can act over the

long length scale, with the result that the background
zonal flow is determined locally in X. It is condition
(a) that has been used in the literature (e.g., Tan and
Liu 1995), but condition (b) that is equivalent to that
used in the standard numerical model featured in sec-
tion 4. The two conditions effectively lead to two
different weakly nonlinear systems that differ in how
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the structure of the background zonal flow changes
along a wave packet. System A exhibits a weakly
nonlinear instability that allows wave packet forma-
tion, whereas in system B the steady wave train ap-
pears to be the stable solution to which the system
always converges.

a. System A: The local zonal flow system

Equation (17) may be solved with the boundary con-
ditions (18) to give

2 2g F|A| klL 2np ay ay cosha 2 1i y(1)F 5 sin2ly 2 sinh 2 cosh1 2 2 2 5 1 2 6[ ]2E (4n p 1 a ) a L L sinha1 y y

2 2g F|A| klL 2np ay ay cosha 2 1i y(1)F 5 2 sin2ly 2 sinh 2 cosh , (20)2 2 2 2 5 1 2 6[ ]2E (4n p 1 a ) a L L sinha2 y y

where a2 5 r(E1 1 E2)F /E1E2. The structure of this2Ly

mean flow correction is of principal importance in de-
termining the zonal stability of the steady wave train
solution to the problem.

To derive the amplitude equation we must go to the
next order. We may ignore all nonlinear terms that enter
the equation at this stage, because they are balanced
with the second-order background flow correction terms

. It only remains to seek a solution,(2)Fi

5 Re(Cieik(x2ct) sinly),(2)fi

for the wavelike terms and discover the condition for
the removal of those secular terms that would otherwise
invalidate the expansion. Details are again given in ap-
pendix B. Once we have integrated across the channel
to remove y dependence, we arrive at the amplitude
equation:

AT 9 1 mAzz 5 DrA 1 nA|A|2. (21)

This is the Ginsburg-Landau equation, also known as
the nonlinear Schröedinger equation with complex co-
efficients.

The explicit representation of the coefficients m 5 mr

1 imi, r 5 rr 1 iri, and n 5 nr 1 ini is given in appendix
B; however, it is a consequence of the linear expansion
that

2]v i ] v
r 5 i and m 5 2 , (22)

2]b 2 ]k

both evaluated at the point of marginal stability (bc, k0)
(Moon et al. 1983). This means that at the point of mar-
ginal stability, mr # 0 (as ] 2vi/]k2 # 0) and rr $ 0 (as
]vi/]b # 0) for the marginally stable mode. In all that
follows ri will be taken to be zero, as it is easily removed
from (21) by the transformation A → , which isir T′iAe
equivalent to a global O(e2) correction to the frequency
of the baroclinic waves.

1) PROPERTIES OF THE AMPLITUDE EQUATION FOR

SYSTEM A AND THE MECHANISM FOR WAVE

PACKET FORMATION

Equation (21) has solutions that remain finite in time
only if the condition nr , 0 is met. Otherwise the so-
lutions will ‘‘burst’’ to infinite magnitude (Hocking and
Stewartson 1972). It was found that nr , 0 at the point
of marginal stability, for every case investigated in this
paper. However, Fig. 4 shows a plot of nr, as defined by
Eq. (51), against wavenumber for different values of b
(for setting 1). The picture shows that for values of b .
bc, for which all the waves are linearly stable, nr can be
greater than zero. This is suggestive of subcritical insta-
bility (see Lee and Held 1991). Given that nr , 0, the
qualitative behavior of (21) is determined by the values
of (mi /mr) and (ni /nr) alone. The equation can be rescaled
so that , (2mr /rr)1/2, and (2rr /nr)1/2 become the scales21rr

for T9, z, and |A|, respectively.
The simplest solution of Eq. (21) is independent of z,

and the modulus of A evolves according to
2 2r T9r2r |A | er 02|A| 5 . (23)

2 2r T9rn [vb1 2 |A | (1 2 e )]r 0

This simply represents convergence to a uniform wave
train with |A| → (2rr/nr)1/2 as T9 → ` and was shown
by Romea (1977) to be the solution if no modulation of
the wave packets is allowed in the zonal direction. Clear-
ly, the z-stability criterion of the above solution is of
paramount importance to our investigation of the pos-
sibility of wave packets in this model.4 This was inves-
tigated by Newell (1974), who examined the linear be-
havior of a sideband, and derived the following condition
for instability,

4 The equation is known to support other steady amplitude traveling
waves of the form A 5 ei(qz1sT 9), the stability of which were inves-
tigated by Stuart and Diprima (1978). All were shown to have regions
of stability smaller than that given above.
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FIG. 4. Here, nr[(n)(r)] as calculated from (51), against wavenumber, for different values of b.
Damping coefficients are at setting 1, as in Fig. 3.

mini 1 mrnr , 0. (24)

Moon et al. (1983) among others have studied the tran-
sition to chaos that governs the behavior of the unstable
sidebands, with the constraint (mi /mr) 5 2(ni /nr) on the
values of their coefficients. Even when such a constraint
is placed on the coefficient values, Moon et al. showed
that the amplitude equation (21) still exhibits a wide range
of behavior. It was therefore decided to integrate (21)
numerically in a channel with imposed periodicity, using
values of the coefficients actually obtained from the ex-
pressions for r, m, and n in appendix B.

Table 1 shows the values of bc, k0, c, cg, m, r, and n
obtained for a range of different values of the damping
coefficients {E1, E2, r}. The system is very sensitive to
changes in these parameters; in particular, the linear group
velocity cg 5 dv/dk varies a great deal at the critical
point. The variation of those quantities that determine
the wave train stability, (mi /mr) and (ni /nr), is shown in
Fig. 5. The three curves show the changing properties of
the wave train as each damping parameter is varied from
its setting 1 value. If the ratio E2:E1 is high, and the value
of r is relatively small, then the coefficients of (21) will
fall within the unstable region, according to (24), and
wave packet formation will be possible. From (20) it can
be shown that if the ratio E2:E1 is high, then the correction
to the background flow is confined mostly to the upper
layer. In this case not only is the shear between the layers
reduced but importantly the strength of the mean west-
erlies (averaged between the layers) is also reduced. Fig-
ure 6a shows the typical meridional and vertical structure
of the background zonal flow correction when the pa-
rameters are at setting 2 {E1 5 0.05, E2 5 0.05, r 5

0.05}, a setting for which wave packet formation is pos-
sible. By contrast, Fig. 6b shows the structure for {E1 5
0.05, E2 5 0.05, r 5 0.05}, a setting for which wave
packets do not form.

This result can be understood if one considers the non-
linear self-focusing behavior exhibited by the Ginsburg-
Landau equation [see the recent review by Balmforth
(1995) and references]. The instability criterion for the
steady wave train (24) may be intepreted as a competition
between this nonlinear self-focusing to form wave pack-
ets, which occurs if nimi , 0 (nonlinear defocusing occurs
if nimi . 0), against a diffusive tendency to converge to
the steady wave train (which is always present as nrmr

. 0). If the nonlinear Schröedinger limit (mi /mr), (2ni /
nr) → ` is considered, the wave packets formed by the
self-focusing mechanism are thought to become the well-
known steady soliton solutions of that equation (see again
Balmforth 1995). Closer to the critical curve defined by
(24), wave packets are often observed to be formed by
self-focusing and subsequently ‘‘break’’ by dissipation
after some finite time.

If the nonlinear term in (21) is considered, then the
nonlinear coefficient n can be related to the effective
change in the complex frequency v 5 vr 1 ivi of the
waves induced by a mean flow correction with structure
given by (20). In a steady wave train this relationship is
given by dvi 5 e2|A|2nr and dvr 5 2e2|A|2ni. The first of
these relations describes the stabilizing effect of the back-
ground flow correction on the waves, and the second
describes the correction to the frequency of the waves
induced by the background flow.

The nonlinear self-focusing mechanism can be under-
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TABLE 1. Coefficient values at the critical value of b 5 bc, and the marginally stable wave k 5 k0 for a range of different values of the
damping parameters E1, E2, and r.

Upper-layer
damping

E1

Lower-
layer

damping
E2

Thermal
damping

r

Critical
value

bc

Fastest
growing

mode
k0

Phase
velocity

c

Group
velocity

cg

m 5
2i ] v

2
22 ]k

Re r 5
]vi2
]b

Nonlinear
constant

n

0.05 0.05 0.05 0.496 0.67 0.036 0.490 22.862
22.535i

0.386 20.1378
20.1049i

0.05 0.08 0.05 0.506 0.68 0.059 0.550 21.262
22.186i

0.217 20.0690
20.0687i

0.05 0.1 0.05 0.513 0.69 0.071 0.582 21.307
21.350i

0.173 20.0529
20.0504i

0.05 (Setting 1) 0.25 0.05 0.548 0.74 0.135 0.749 20.647
21.174i

0.082 20.0271
10.0074i

0.05 (Setting 2) 0.5 0.05 0.549 0.78 0.221 0.847 20.396
20.778i

0.047 20.0215
10.0427i

0.05 1.0 0.05 0.495 0.80 0.265 0.900 20.228
20.565i

0.024 20.0182
10.0676i

0.01 0.25 0.05 0.728 0.93 0.201 1.025 20.208
20.704i

0.034 20.0077
10.0424i

0.02 0.25 0.05 0.647 0.84 0.168 0.918 20.351
20.935i

0.050 20.0128
10.0303i

0.1 0.25 0.05 0.483 0.68 0.121 0.599 20.888
21.138i

0.106 20.0474
20.0134i

0.25 0.25 0.05 0.403 0.61 0.128 0.396 20.849
20.704i

0.080 20.0850
20.0388i

0.5 0.25 0.05 0.340 0.54 0.159 0.270 20.505
20.365i

0.071 20.1091
20.0573i

0.05 (Setting 3) 0.25 0.0 0.616 0.76 0.122 0.743 20.516
21.167i

0.067 20.0356
10.0360i

0.05 0.25 0.025 0.578 0.75 0.127 0.740 20.587
21.179i

0.075 20.0291
10.0161i

0.05 0.25 0.1 0.504 0.72 0.136 0.742 20.797
21.156i

0.100 20.0266
10.0018i

0.05 0.25 0.5 0.387 0.64 0.090 0.701 21.112
20.419i

0.129 20.0230
10.0003i

stood with the help of these relations as follows. If one
considers a wave packet such as that illustrated in Fig.
7a, the effect of positive ni is to reduce the frequency of
the waves at the center of the packet. (See also Fig. 11,
which shows the corrections to the phase speed of the
fundamental along an idealized wave packet.) This causes
the wave packet to adjust to a state where the wavelength
is decreased toward the rear of the packet and increased
toward the front, as illustrated schematically in Fig. 7b
(see also Fig. 9.) As mi 5 2(d 2vr /dk2)/2) is generally
negative for the two-layer model at the point of criticality,
to first order the group speed cg 5 dvr /dk is greater for
waves of larger wavenumber. This means that the wave
envelope at the rear of the wave packet will radiate faster
than at the front, leading to convergence of wave activity
at the packet center. This causes steepening of the wave
envelope and packet growth.5 Nonlinear self-focusing can
take place (for mi , 0) only if the frequency of large
amplitude waves is decreased by the background flow

5 Similarly if mi . 0 and ni , 0, the wavelength would decrease
at the front of the packet, and the group speed of the packet would
then be greater at the rear of the packet—also leading to growth.

correction they induce. This explains why wave packets
can form when the structure of the mean flow response
is of the form shown in Fig. 6a, but not when it has
structure such as that shown in Fig. 6b. From the dis-
persion relation (8), the advection of the waves by the
vertically averaged velocity is one of the most important
terms in determining their phase speed. In Fig. 6a this is
reduced by the background flow correction and so the
frequency of the waves will be reduced approximately
in proportion to the square of the amplitude of the wave
train, allowing nonlinear self-focusing to take place. In
Fig. 6b the vertically averaged velocity is unchanged by
the background flow correction, and ni was found to be
negative (see Table 1), indicating nonlinear defocusing
of the wave packets.

The packet-forming mechanism has to compete
with the diffusive effects. The larger the magnitude
of mr 5 (d 2vi/d k2)/2 (which is always negative), the
more the spreading of wavenumbers within a wave
packet is inhibited, suppressing packet growth. Sim-
ilarly, the larger the magnitude of nr (also always
negative), the more strongly large amplitude waves
are stabilized by the correction to the background flow
that they induce.
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FIG. 5. A diagram showing how the stability properties of Eq. (21)
change as each damping coefficient is varied from its setting 1 value
{E1 5 0.05, E2 5 0.25, r 5 0.05}. Values of E1 (marked by triangles)
are { 0.01, 0.02, 0.05, 0.1, 0.25, 0.5}. Values of E2 (diamonds) are
{0.05, 0.08, 0.1, 0.25, 0.5, 1.0}. Values of r (squares) are {0.0, 0.02,
0.05, 0.1, 0.5}.

2) INTEGRATIONS OF THE AMPLITUDE EQUATION

FOR SYSTEM A

Some simple integrations of the amplitude equation
have been carried out using an implicit Crank-Nicholson
gridpoint scheme (see Taha and Ablowitz 1984). All the
integrations are carried out on a grid of 200 points, and
a time step of dT9 5 2dz is used. The numerical algorithm
was tested for known soliton solutions of the nonlinear
Schröedinger equation and was found to be accurate over
the number of time steps required. Two different coeffi-
cient settings are investigated, settings 2 and 3, which are
associated with values of the damping coefficients (see
Table 1 and Fig. 5). Periodic boundary conditions are
imposed in z, with the channel length z0 being a free
parameter in the problem. The effect of varying z0 may
be thought of as being equivalent to varying the criticality
e in the problem. If the physical length of the channel is
thought of as being a fixed size Lx, on which the long
space variable X, or equivalently z, is periodic, then the
domain size z0 is given by z0 5 eLx, so the larger the
domain size, effectively the larger e becomes.

Figure 8 shows the evolution of |A(z, T9)| in six ex-
periments. Figure 8a corresponds to an experiment with
the coefficients at setting 3, and with z0 5 50. The

diagram shows a perturbed wave train with maxima (|A|
ø 1.5) and minima (|A| ø 1.1) traveling eastward in
z—that is, propagating more rapidly than the linear
group velocity. Another experiment with the dissipation
coefficients at setting 3, and with z0 5 20 (not shown)
was carried out, and the system was observed to evolve
rapidly into a steady wave train with |A| constant. The
sideband instability that is excited at this parameter set-
ting therefore has a zonal scale intermediate between
these two channel lengths.

Figures 8b–f all correspond to experiments with the
coefficients at setting 2. The channel lengths are given
by z0 5 20, 24, 26, 28, and 40, respectively. An ex-
periment with z0 5 16 (not shown) was observed to
converge rapidly to a steady uniform wave train. Figure
8b shows that when z0 5 20, however, the wave en-
velope evolves into a single packet that propagates at
the linear group velocity. The packet is steady in the
sense that it has a fixed amplitude and half-width. As
this was the only steady solution obtained, it was in-
vestigated further to verify the theory of the nonlinear
self-focusing mechanism discussed above. The wave en-
velope was found to converge to a solution of the form

A(z, T9) → A(z) .(i f (z)2iv T )ce 9 (25)

The functions A(z) and f(z ) are shown in Figs. 9a and
9b, respectively. Here, vc denotes an O(e2) correction
to the frequency of the waves, which was found to take
the value 0.011. This solution also implies an O(e) cor-
rection to the local wavelength of the waves, of mag-
nitude f 9(z). From Fig. 9b this indicates an increase in
wavenumber to the rear of the wave packet and a de-
crease to the front, which is consistent with the nonlinear
self-focusing mechanism described in the last section.
Figure 9c shows a wave packet constructed with this
envelope (using the value e 5 0.45) of the form
A(z)ei f (z)2i(kx2vt). The corrections to the wavelength can
be clearly observed.

When the channel length is increased to z0 5 24 (Fig.
8c), we enter a regime in which packets grow and decay
at fixed positions in z, (i.e., grow and decay while prop-
agating at the linear group velocity). Over their life cycle
these packets map out a path in amplitude half-width
space. Figure 10 (top) shows that the packets start with
large amplitude and half-width, become narrower, and
then decay as they become broader again. The beginning
and end of the cycles mark the points at which the
packets become distinct from, or merge into, a steady
wave train. The group of 3’s at small amplitude mark
a small packet that appears just as the main packet pack-
et begins to decay. Figure 8d appears to show that the
system behaves in a similar fashion for z0 5 26. How-
ever Fig. 10 (bottom) shows that the evolution of the
packets in amplitude half-width space has become more
complex at this channel width. Figure 8e shows that the
system supports two packets when z0 5 28, but that
these are unstable, and merge into a wave train after a
long period, before reforming into two packets again.
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Figure 8f shows that if the channel length is increased
further any regularity is lost, and the system enters a
chaotic packet regime. This was verified in other inte-
grations (not shown) with longer channel length.

b. System B: The quasigeostrophic long wave system

If Eq. (17) is solved with the boundary conditions
(19), the leading order basic flow correction is given by

X
2 2X g F|A| klL 2np ay ay cosha 2 1i y(1)F 5 sin2ly 2 sinh 2 cosh ,1 2 2 2 5 1 2 6[ ]2E (4n p 1 a ) a L L sinha1 y y

X
2 2X g F|A| klL 2np ay ay cosha 2 1i y(1)F 5 2 sin2ly 2 sinh 2 cosh , (26)2 2 2 2 5 1 2 6[ ]2E (4n p 1 a ) a L L sinha2 y y

2 2g F(|A| )9klLi y(1)9F 5 sin2ly,1 2 2 22E (4n p 1 a )1

2 2g F(|A| )9klLi y(1)9F 5 2 sin2ly. (27)2 2 2 22E (4n p 1 a )2

The vertical and meridional structure of the zonal flows
derived from (26) and (27) are illustrated in Fig. 6c (for
damping values at setting 2). Following the derivation
of Eq. (21), results in the equation

AT 9 1 mAzz 5 DrA 1 nA|A|2 1 n2A(|A|2)9, (28)
X

where the complex coefficients m, r, and n are as for
system A, and n2, which is closely related to n, is given
in appendix B.

INTEGRATIONS OF THE AMPLITUDE EQUATION FOR

SYSTEM B

Integrations of Eq. (28) were carried out for co-
efficient values that corresponded to the damping pa-
rameters at settings 1, 2, and 3. A relatively long
channel length of z0 5 40 was used in each case. All
the experiments resulted in rapid convergence to a
steady wave train solution, with |A| 5 (2rr /nr)1/2.
Equation (28) is shown in appendix C to have the
same stability properties as Eq. (21) has with n 5 n2.
This is because it is the zonal gradient in the mean
flow correction that is important for packet formation.
All the values calculated for n2 result in mrn2r 1 min2i

. 0 so system B appears to be largely stable to wave
packet formation.

In order to help to explain why system A allows
wave packet formation while system B does not, it
was interesting to compare the gradients in both linear
growth rate and linear phase speed of the fundamental
that would exist across a wave packet in each system.
The amplitude | A| of the idealized wave packet in
question is pictured in Fig. 11a. The complex phase
speeds were calculated for the zonal flows constructed
by adding the mean flow corrections for system A,
calculated from (20), and system B, calculated from

(26) and (27), to the basic-state flow. To calculate the
linear growth rates with respect to a meridionally non-
uniform zonal flow, it was necessary to solve the com-
plex eigenvalue problem detailed in Swanson and Pier-
rehumbert (1994). For each system, setting 2 was chosen
for the damping parameters, and b 5 0.500 so that e
5 0.297. The maximum amplitude of the wave packet
that determines the mean flow correction was chosen so
that the X-averaged corrected flow given by Fi 5 0Fi

1 e 2 is marginally stable to wave growth (this X-X
(1)Fi

averaged flow is the same for systems A and B). Figure
11b shows the linear growth rates of the fastest growing
mode along the wave packet, for each system. The gra-
dient in the linear growth rate along the packet for sys-
tem A is roughly twice that for system B.6 This shows
that the effects of dissipation on the wave packet are
twice as strong for system A compared with system B.
Figure 11c shows that the linear phase speeds of the
waves are reduced at the packet center for system A,
but increased for system B. This means that while the
wave packet in system A will undergo nonlinear self-
focusing, the system B wave packet will undergo non-
linear defocusing. This explains why the symmetric
wave train is a stable solution for system B but not
system A at this parameter setting.7

6 This is perhaps not surprising as the background shear is reduced
much less across the wave packet for system B than for system A,
as pressure gradients are not allowed along the sidewalls for system
B [cf. the structure of the correction to the background flow in Fig.
6c (dashed line) to Fig. 6a.]

7 It worth noting that it is possible to recover reasonable approx-
imations for (ni/nr) and (n2i/n2r) from Fig. 11, as they equal (2svr /
svi) for systems A and B, respectively.
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FIG. 6. Showing the vertical and meridional structure of the mean flow response to finite-amplitude waves as calculated from (20) (system
A) and (26) and (27) (system B). The upper-layer response is the deviation from the upper dotted line, and the lower-layer response is the
deviation from the lower dotted line. (a) The response for system A when the damping is at setting 2 {E1 5 0.05, E2 5 0.5, r 5 0.05} and
wave packet formation is possible. (b) The response for system A when the damping has values {E1 5 0.05, E2 5 0.05, r 5 0.05} and
wave packet formation is not possible. (c) The response of the X-averaged flow for system B (solid lines), along with the structure ofX(1)Fiy

the quasigeostrophic wave response ( )9 (dashed lines), which would be observed along a wave packet. The damping is as in (a).(1)Fiy

FIG. 7. A schematic picture illustrating the mechanism behind non-
linear self-focusing. See text for description.

4. Transition to full nonlinear baroclinic chaos in
system B: Numerical experiments

To integrate Eq. (1) numerically, a higher-order dif-
fusion term is introduced to inhibit any cascade to sub–
grid scales,

D Qi i 45 d 1 n ¹ f i 5 1, 2. (29)i 0 iDt

The boundary conditions applied at the sidewalls are
(6) along with

5 0 on y 5 0, Ly.
x

fiy
(30)

This is equivalent to imposing the quasigeostrophic
long-wave condition (19) in the weakly nonlinear sys-
tem (see appendix A.) In the limit of low criticality, the
numerical model therefore behaves as weakly nonlinear
system B, and must be expected to allow convergence
toward a steady wave train for all parameter settings
investigated.

The model used is spectral in the zonal direction, with
64 waves, and grid point in the meridional direction,
with 100 grid points. For consistency with the analytic
work, it is again taken that Us 5 1.0, F 5 0.5, and Ly

5 2p. Here, Lx 5 20 2p is the channel length. SeveralÏ
integrations with the damping parameters at setting 2,
{E1 5 0.05, E2 5 0.5, r 5 0.05}, were carried out for
different values of the criticality b. Other experiments
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FIG. 8. Contour plots showing the evolution of |A(z, T 9)|. In (a) the damping is set to setting 3, {E1 5 0.05, E2 5 0.25,
r 5 0.00} and with the channel length set to z0 5 50. In (b)–(f) the damping is set to setting 2, {E1 5 0.05, E2 5 0.5,
r 5 0.05}, with channel lengths z0 5 20, 24, 26, 28, and 40, respectively. Contour intervals are (a) 0.1 (values above
1.4 in light shading, and above 1.5 in heavy shading), (b)–(e) 0.4, (0.8, 1.2), and (f) 0.5, (1.0, 1.5).
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FIG. 9. Plots illustrating the steady solution for the integration with damping at setting 2 and z0

5 20 (see also Fig. 8b). (Above) Packet envelope A(z ), (middle) phase lag f(z ), (below)
A(z )ei f(z )1i(kx2vt) with e 5 0.45 so that wave 5 is the dominant wavenumber in the channel.

with a range of different damping parameters were also
carried out, and the qualitative behavior for the set pre-
sented was found to be representative. For each exper-
iment, sufficient spinup time was allowed until a state
of statistical equilibrium was reached before results
were analyzed. The different experiments are summa-
rized in Table 2, along with the values of e that cor-
respond to the weakly nonlinear system.

For each experiment, the deviation of the zonal flow
field from its time-mean state, denoted by , was an-eui

alyzed using a cross-sectional EOF method. This meth-
od is described in appendix D. The intended purpose of
this method was to isolate in an objective way the mean
structure of the baroclinic waves, which are meridion-
ally antisymmetric in , and the primary long waves,eui

which are forced by any zonal asymmetries in the bar-
oclinic waves, which are symmetric in . This enableseui

the zonal propagation of these modes to be viewed in-
dependently in the form of a longitude–time plot. For
comparative purposes, the linear complex phase speeds
of the waves in the time-mean zonal flow were also
determined by solving the complex eigenvalue problem,
which is analogous to that in Swanson and Pierrehum-
bert (1994).

These numerical results are important for two reasons.
First, they allow verification of the assumptions used in
the weakly nonlinear theory of section 3 at finite crit-
icality. Second, as the criticality of the system is in-
creased, other fully nonlinear effects such as wave–wave
interaction become important. These also lead to mod-
ulations of the zonally symmetric wave train. To assess
the importance of a weakly nonlinear mechanism for
packet formation, the importance of these finite criti-
cality effects must also be evaluated. As system B ex-
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FIG. 10. Shows wave packets moving repeated along the same
curves in amplitude/half-width space. Wave packet amplitude and
half-width at each time step are marked by an ‘‘3.’’ Arrows show
the sense of packet evolution in time. Above: experiment c (damping-
setting 2, channel length 5 24). Below: experiment d (damping setting
2, channel length 5 26).

hibits no weakly nonlinear instability, any wave packet–
like behavior in these experiments must be due to fully
nonlinear effects.

Figure 12 shows a plot of the square of the absolute
value of the streamfunction for each zonal wavenumber
integrated over both layers for several different exper-
iments. These illustrate the different regimes of behavior
discovered. At low criticality, in experiment b, only the
baroclinic wave, which is wave 10 (k 5 221/2), is sig-
nificantly excited. However, before it converges to a
steady wave train it can be shown to be modulated in
a weakly nonlinear fashion by wave 1. In experiment
c, however, waves 3 and 7 are also excited and these
form a dissipative resonant triad with wave 10. Exper-
iment f is also characterized by such a triad between
wave 5 and 10, although now there is some nonlinear
excitation of other waves. Experiment h is much closer
to full baroclinic chaos, as waves 7–10 are all baro-
clinically unstable, and interact to excite many other
waves.

a. In a weakly nonlinear regime: Experiments
a and b

Figure 13 shows results from experiment a, in which
the baroclinic waves converge toward a steady wave

train. This is the behavior predicted by Eq. (28). Various
fields are shown at a time just before the wave train has
reached its final symmetric state, in order that both the
equilibrium state and the background flow response to
zonal variations in the wave envelope can be tested
against the predictions of weakly nonlinear theory.

1) THE AMPLITUDE OF THE WAVE TRAIN

Figure 13a is a snapshot of the upper-layer pertur-
bation streamfunction f1 at the center of the channel, y
5 Ly/2. Weakly nonlinear theory predicts a value for
the amplitude of the wave envelope8 of e|A|5 e( /2r9r
nr)1/2 5 0.571, which gives good agreement with the
diagram. The slight shortfall is possibly due to the dis-
cretization of the wavenumbers in the numerical ex-
periment.

2) THE TIME-MEAN FLOW CORRECTION

Figure 13b shows the time-mean flow correction for
the upper and lower layers, denoted by . The merid-tui

ional structure is close to that predicted by (26) and
shown in Fig. 6c (solid lines). According to (26), 5tu1

2(E2/E1) . For this reason, the dotted line also showstu2

2E2/E1 times . The vertical structure was found alsotu2

to be in good agreement with the weakly nonlinear pre-
diction. (It was found that E2 ø 2E1 for each oft tu u2 1

experiments a–i, although there was some variation in
the meridional structure of in those experiments intui

which more waves were excited.)

3) THE STRUCTURE OF THE FORCED SYMMETRIC

WAVE

Figure 13c shows the third cross-sectional EOF for
the experiment, which has the structure of the symmetric
wave, which is forced by the wavenumber one signal
in the wave envelope. Weakly nonlinear theory predicts
that it has structure given by ( )y, calculated from(1)F 9i

(27), and shown in Fig. 6c (dashed lines). Similarly, one
expects ( )y 5 2(E2/E1)( )y. Agreement with(1) (1)F 9 F 91 2

weakly nonlinear theory is not quite so accurate, it pre-
dicts slightly too large a response in the lower layer.

4) THE GROUP VELOCITY

Figure 13d is a contour plot of the phase of this EOF
as it evolves in longitude and time. This shows that this
wave number one signal, which is expected to travel at
the linear group velocity, propagates at around 0.69 of
the upper-layer basic-state velocity. This compares with
cg 5 0.847 predicted by linear theory (see Table 1). As
mentioned before, however, the group velocity is very

8 Note that a corrected value of r has been used (see appendix B).
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FIG. 11. A diagram showing the variation in the linear growth rate and phase speed of the fastest
growing mode along a wave packet in systems A and B. The background flow is calculated at
different positions in X, from (20) and from (26) and (27), respectively, with the damping coef-
ficients at setting 2, and the criticality set to e 5 0.297 (b 5 0.500). (a) The amplitude of the
wave packet against longitude. Its maximum value is set so that the zonal mean flow is marginally
stable to wave growth. (b) The imaginary phase speed ci for system A (squares) and system B
(triangles), respectively. (c) The real phase speed cr for system A (squares) and system B (triangles),
respectively.
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TABLE 2. A summary of the numerical experiments, with the
corresponding value of e in the weakly nonlinear problem.

b e n0

(Weakly nonlinear case) 0.548 — —
Experiment a
Experiment b
Experiment c
Experiment d
Experiment e
Experiment f
Experiment g
Experiment h
Experiment i

0.500
0.455
0.441
0.429
0.417
0.357
0.313
0.278
0.250

0.296
0.412
0.442
0.466
0.489
0.590
0.655
0.702
0.737

—
—
—
—
—

0.001
0.002
0.002
0.005

FIG. 12. A plot of the time-mean integral of the absolute value
squared of the streamfunction against zonal wavenumber over the
channel. Four different numerical experiments are shown: experi-
ments b, c, f, and h.

sensitive to small changes in criticality. The long-wave
response is slowly decaying as the system converges to
a steady wave train.

5) THE ZONAL LOCATION OF BACKGROUND FLOW

RESPONSE WITH RESPECT TO THE WAVE

ENVELOPE MAXIMUM

The snapshot in Fig. 13a corresponds to t 5 0 in
panel d. It is possible to see that the wave number one
perturbation to the wave envelope is in phase with the
long-wave response, and in the sense expected. It was
confirmed that the maximum of the background flow
response coincided with the wave envelope minimum
throughout the convergence to a steady wave train.

A similar agreement with weakly nonlinear theory
was found for experiment b. This shows that the as-
sumptions made in section 3 are relevant for a finite
range of the critical parameter b. If the criticality is
increased further, a new regime of wave–wave inter-
action is entered. In other experiments with a longer
channel length, wave–wave interaction was found to
occur for much smaller criticality.

b. Excitation of dissipative resonant triads:
Experiments c–f

A relatively small increase in the criticality of the
system from that for experiment b is all that is required
for the system to enter a different regime of behavior.
Weakly nonlinear resonant triads (e.g., Pedlosky 1975)
consist of sets of three waves that have the properties:

k 1 k 1 k 5 0,1 2 3

l 1 l 1 l 5 0,1 2 3

v 1 v 1 v 5 0, (31)1 2 3

where ki, li, vi, i 5 1, 2, 3 are, respectively, the zonal
and meridional wavenumbers and the frequencies of the
three waves. The consequence of these conditions being
met is that any pair of waves will then force only the
other, through the nonlinear J(fi, qi) terms in the equa-
tion, ensuring that the same three waves can persist

independently of any others, provided that two are ini-
tially excited.

The reason the resonant triads that have been iden-
tified in these experiments are described as dissipative
is that the linear frequencies of the waves in the time-
mean flow do not add to zero. This is because two of
the waves concerned are decaying by an O(1) amount
and the other is slightly unstable. This means that it is
necessary for O(1) forcing from the waves to alter the
phase speeds of each other, by wave–wave interaction,
before resonance can occur. The equilibrium amplitudes
of each waves in the triad are therefore fixed in an a
priori sense by the system, as any pair must provide
sufficient forcing to render the third wave marginally
stable. Tables 3 and 4 are a comparison of linear wave
speeds calculated from the time-mean flow and the ac-
tual frequencies measured in the model experiments c
and f, respectively.

Although the frequencies and structure of the waves
have been altered from their linear state by wave–wave
interaction, they remain relatively close to that state
when compared with the forced long waves of section
4a.

Figures 14 and 15 show the most of the significant
variability of the zonal flow from its time-mean state
for experiments c and f. The baroclinic waves are mod-
ulated by the symmetric waves, and the peaks in the
baroclinic wave train are seen to move at the same ve-
locity as the phase speed of the symmetric waves. The
linear group speed of the baroclinic waves is apparently
unimportant in this regime. The results for experiments
d and e were very similar to those for experiment c.

The question of the prediction of wavenumber selec-
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FIG. 13. (a) A snapshot of the upper-layer streamfunction f1 at the center of the channel (y 5
Ly/2) in experiment a. (b) The time-mean flow correction in each layer. The solid line correspondstui

to the upper layer (i 5 1), and the dashed line the lower (i 5 2). The dotted line shows 2E2 /tu2

E1. (c) The structure of the principal symmetric EOF over this period. Again the solid line
corresponds to the upper layer, the dashed line the lower, and the dotted line 2E2/E1 times the
lower-layer structure. The y-scale is arbitrary, and has been chosen so that when multiplied by
the phase given in panel (d), the contribution of the EOF to the zonal velocity ue is obtained at
that longitude and time. (d) A longitude–time plot showing the evolution of the phase of the EOF
shown in panel (c). The snapshot in panel (a) corresponds to t 5 0 in this diagram.

TABLE 4. A comparison of the linear frequencies calculated with
respect to the time-mean flow, with the actual frequencies of the three
waves with finite amplitude in experiment f.

Experiment f

Meri-
dional
mode

(n)
Linear

frequency
Actual

frequency

Zonal wave 10
Zonal wave 5
Zonal wave 5

1
2
1

0.148 1 0.014i
0.138 2 0.013i
0.009 2 0.019i

0.163
0.151
0.011

TABLE 3. A comparison of the linear frequencies calculated with
respect to the time-mean flow, with the actual frequencies of the three
waves with finite amplitude in experiment c.

Experiment c

Meri-
dional
mode

(n)
Linear

frequency
Actual

frequency

Zonal wave 10
Zonal wave 7
Zonal wave 3

1
2
1

0.122 1 0.004i
0.189 2 0.016i

20.016 2 0.040i

0.125
0.203

20.078

tion in these triads appears to be a difficult one to answer.
Figure 16 shows the real and imaginary phase speeds of
the waves with meridional modes 1 and 2, in both the
time-mean and radiatively balanced flows, for both ex-
periments c and f. There is nothing remarkable about the
phase speeds of those waves that form the resonant triad.
In fact v1 1 v2 1 v3 is closer to zero for alternative sets
of three waves in both cases. It can only be concluded
that in order to correctly predict which waves will be

selected, it is necessary to take account of how the growth
of any pair of waves affects the frequency of the other by
nonlinear means as they grow to O(1) size.

c. Transition to full baroclinic chaos:
Experiments g–i

Figures 17 and 18 show the evolution of the vari-eui

ability for experiments g and i. Wave packet–like structures
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FIG. 14. The top panels show the structure of the first two EOFs for experiment c. The solid
line corresponds to the upper-layer structure, and the dashed line the lower. The longitude–time
plots show the evolution of the phase of each EOF. The contour interval is 0.4 in both plots.

are present in each experiment, but persist over a short
timescale, particularly in experiment i. In both experi-
ments, but more noticeably in experiment i, the wave pack-
ets undergo seemingly random phenomenological behav-
ior, merging, growing, and decaying in a spontaneous fash-
ion. This is an equilibrium state that appears qualitatively
similar to the integrations of the weakly nonlinear Eq. (21).
The structure of the forced waves generated, as in exper-
iments c–f, however, shows that the dynamics are some-

what different. This is because any wave packet structures
forced in these experiments are a result of fully nonlinear
effects, as no weakly nonlinear packet forming instability
is present. In experiment i, any wave packet structure
would have a typical lifetime of approximately 50–100
model days (1 model day is defined by U21L). A crude
comparison with the equivalent weakly nonlinear exper-
iment for system A (see Fig. 8f) reveals that packets persist
for 100–300 long time units, which equates to 200–600



15 DECEMBER 1997 2839E S L E R

FIG. 15. As in Fig. 14 but for experiment f. The contour interval is 0.5 in both plots.

model days. The rapid evolution in experiment i can be
explained because the zonal variations in the wave en-
velope are simply due to several baroclinically unstable
waves attaining finite amplitude in the time-mean state.
The wave envelope will then evolve rapidly, as there is
little feedback from the background flow to help maintain
wave packet structure for any length of time. The relatively
long lifetime of packets in the weakly nonlinear system
A is because the background flow exerts a feedback on
the baroclinic waves to help maintain packet structures.

Figure 19 shows snapshots of some dynamical fields

from experiment h. The upper-layer meridional velocity
and potential vorticity plots show wave packets in the
channel. The lower-layer potential vorticity diagram in
particular shows some evidence of strong nonlinearity,
with much deformation of the contours and the presence
of cutoff vortices. There is also some evidence of wave
breaking in the upper layer in those regions where the
waves have large amplitude.

Plots similar to Fig. 10, showing the evolution of
wave packets in amplitude half-width space, were also
prepared for experiments g and i. However, despite some
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FIG. 16. Linear phase speeds and growth rates against wavenumber, for waves in the radiative equilibrium state and the time mean state for
experiments c and f. The diagrams on the left show the fundamental (n 5 1), and on the right show the second meridional harmonic (n 5 2).

clustering, especially for experiment g, there was no
evidence for the wave packets moving along fixed paths,
they rather meander around in a random fashion. This
is in contrast with the low resolution numerical results
from the upper-layer jet experiments of LH (see their
Fig. 9).

5. Summary and conclusions

In order to gain a better understanding of wave packet
formation in an idealized forced, dissipative baroclinic
system, the Phillips’ two-layer model with appropriate
forcing was investigated. In section 3, a weakly non-
linear balance was sought that represented a balance
between the stabilizing effects of the wave forcing, and
the restorative effects of the forcing/dissipation on the
mean state. The boundary conditions for the basic flow
correction were found to depend upon a parameter j,

the ratio of the criticality e to the Rossby number Ro.
Two particular limits, j → 0 and j → ` were investi-
gated, and these led to two separate weakly nonlinear
systems, namely system A and system B.

Each system was shown to be governed by an am-
plitude equation that determined the evolution of the
wave envelope over long time and space scales. The
tendency of the equations to exhibit wave packet be-
havior was investigated. For system A, it was found that
when the forcing/dissipation had a certain form, the
steady wave train solution to the equation was unstable
to small perturbations. In these cases, as the channel
length increased, the system equilibrated to either a so-
liton type steady wave packet solution or unstable pack-
ets that followed well-defined curves in amplitude–half-
width space, or chaotically behaving unstable wave
packets.

These results identify a fundamental weakly nonlinear
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FIG. 17. As in Fig. 14 but for experiment g. The contour interval is 0.5 in both plots.

instability that could be claimed to lie at the root of
atmospheric baroclinic wave packet formation. The
mechanism, here termed nonlinear self-focusing, occurs
when wave packets induce a background flow correction
that has the feedback effect of reducing the frequency
of the waves at the packet maximum. This causes the
packet to adjust to a state where the waves at the rear
or upstream side have a shorter wavelength than those
at the front or downstream side. The enhanced group
velocity of the shorter waves at the rear of the packet
causes a convergence of wave activity at the packet

maximum, and thus is a potential source of packet
growth, which can oppose dissipation.

It is possible to draw parallels between this unstable
weakly nonlinear system, and experiments (to be re-
ported in a future paper) with an upper-layer jet present,
such as those in LH. If the upper-level waveguide is
well developed, in the sense that a region of strong PV
gradient has formed, surrounded by well-mixed critical-
layer regions, then nonlinear self-focusing of wave
packets can be detected. This is perhaps not very sur-
prising as there are some dynamical similarities between



2842 VOLUME 54J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 18. As in Fig. 14 but for experiment i. Contour intervals are left: 0.8, right: 0.6.

such a jet experiment and weakly nonlinear system A.
In each case waves are confined largely to a region of
strong PV gradient in the upper layer, in the jet exper-
iment by the well-mixed critical-layer regions and in
the weakly nonlinear case by the sidewalls. However,
the background flow is unconstrained in both cases, as
in system A pressure gradients on the sidewall are sup-
ported by the ageostrophic effects of friction.

The numerical experiments of section 4 then explored
the finite criticality extension of system B. At low crit-
icality, convergence toward a uniform wave train was

observed, as predicted by weakly nonlinear theory.
However, as the criticality of the system is increased in
experiments c–f, resonant triads of waves are excited,
which owing to the dissipative nature of the system,
equilibrate at a fixed amplitude. The nonlinear forcing
of any pair of waves contribute to force the third wave.
The amplitudes of the first two waves are fixed at a
value so that the frequency of the third wave becomes
real and equal to minus the sum of the first two waves.
Wave–wave interaction therefore causes the breakdown
of weakly nonlinear theory.
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FIG. 19. A snapshot of (a) meridional velocity, (b) upper-layer potential vorticity, and (c) lower-layer potential vorticity in experiment h. Contour
intervals are (a) 0.146, (b) 0.5, and (c) 0.16, respectively. It should be borne in mind that the axes are not in the correct ratio of 20 2:2.Ï

When b is further reduced, the interactions of the
baroclinic waves that are excited force nearly all the
waves in the system, and a state of baroclinic chaos is
approached. In these experiments (g–i), packetlike
structures are seen to decay and grow, as well as merge
and divide. These wave packet structures are likely to
be a consequence of several unstable baroclinic waves
reaching finite amplitude in the time-mean state. This
results in a zonally varying wave envelope that evolves

rapidly. This rapid evolution can be explained by the
absence of a feedback from the background flow upon
the waves that could maintain the wave packets for a
longer time.

In summary, this work has shown that two mecha-
nisms can lead to zonal modulations in the envelope of
baroclinic waves. The first of these, which is illustrated
by weakly nonlinear system A, requires the background
zonal flow forced by a wave packet to exert a feedback
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on the baroclinic waves, in order to maintain the packet
structure. The second mechanism is the effect of full
nonlinearity, which was illustrated in section 4. It was
shown that at high criticality, a rapidly varying wave
envelope would result, regardless of interactions with
the background flow. However, it seems baroclinic
waves must feel some sort of feedback from the back-
ground flow, such as that described by weakly nonlinear
system A, for wave packets to remain well defined and
persist for long periods.

Chang (1993) and LH have recently published ob-
servations of baroclinic wave packets in the atmosphere
in both the Northern and Southern Hemispheres. These
packets are observed to undergo some phenomenology
such as that discussed in section 4, but are usually dis-
tinct and well defined. To understand them fully, it is
necessary not only to take account of barotropic shear,
but also the effects of spherical geometry, storm track
structure, tropospheric variability, and their interaction
with low latitudes. This requires a hierarchy of models,
of which those presented in this paper may form a useful
part.
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APPENDIX A

The Application of the Sidewall Boundary
Conditions in the Weakly Nonlinear Analysis

The sidewall boundary conditions for Eq. (17) stem
from the boundary conditions for the quasigeostrophic
streamfunction fi. The first of these is fix 5 0 on y 5
0, Ly, [condition (6) in section 2]. A further boundary
condition for the zonal-mean streamfunction is needed,
which was first discussed by Phillips (1954). To un-
derstand the application of this boundary condition at
higher order in e for a weakly nonlinear problem, it is
necessary to review the derivation of Eq. (1). It is de-
rived by expanding the full two-layer shallow-water
equations in powers of the Rossby number Ro 5 U/ f0L
(Pedlosky 1970, 1987). The full perturbation pressure

and horizontal velocity ( , ) are expanded in RoF F Fp u yi i i

(e.g., 5 1 Ro 1 . . . ). When is suitablyF [0] [1] Fu u u pi i i i

scaled, the momentum equations become

[0] [0] [0] [0] [1]]p ]u ]u ] 1 ]u ]pi i i i i[0] [0] 2 [0] [1] [0] [0]2y 1 1 Ro 1 U 1 (u ) 1 y 2 y 2 byy 1 1 E u ,i i i i i i i i5 6[ ]]x ]t ]x ]x 2 ]y ]x
21 O(Ro ) 5 0, i 5 1, 2, (32)

and

[0]]pi[0]u 1 1 O(Ro) 5 0 i 5 1, 2. (33)i ]y

From the leading order form of (32) and (33), it is clear
that the quasigeostrophic streamfunction fi [ . Con-[0]pi

dition (6) follows from the fact that 5 0 on the rigid[0]y i

boundaries.
To determine how the boundary conditions apply to

the streamfunction of the basic flow correction, , it(1)Fi

is necessary to make some assumption about the relative
magnitudes of the two small parameters in the weakly
nonlinear problem, e and Ro. This can be done without
loss of generality by writing

e 5 j Ro. (34)

It turns out that j is a measure of the importance of
ageostrophic effects in modulating the response of the

zonal flow to wave forcing, which varies on the long
length scale X. After the transformations

] ] ] ]
2→ 1 e 1 e and

]t ]t ]T ]T9

] ] ]
→ 1 e , (35)

]x ]x ]X

the x-average of the O(Ro) part of (32) becomes
x x

[0] [0]]u x ]p xi i[1] [0]2 y 1 j 1 E u 5 0, i 5 1, 2.i i i]t ]X
(36)

When we insert the mean flow correction e2 ( y, X 2(1)Fi

cgT, T9) for , we get the general sidewall boundary
x[0]pi

condition for ,(1)Fi

j 1 Ei 5 0, on y 5 0, Ly, i 5 1, 2. (37)(1) (1)F FiX iy

Although Eq. (17) can be solved with (37), we have
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FIG. A1. A longitude–time plot showing the evolution of the principal antisymmetric cross-
sectional EOF of the zonal wind ue, beside a similar plot of the upper-layer meridional wind ,ey 1

averaged across the channel. The two plots have similar structure, particularly if the p/2 phase
lag is taken into account, as they both measure the signal from the baroclinic waves. Contour
intervals are left: 0.8, right: 0.16.

restricted ourselves in this paper to the two special cases
of j → 0 and j → `. The limit j → 0 describes the
case where ageostrophic effects allow the background
flow to be determined locally in X, and (37) becomes
condition (18),

5 0 on y 5 0, Ly,(1)Fiy

(local zonal flow condition).

This is the traditional boundary condition used in this
problem (e.g., Tan and Liu 1995). Physically it can also
be understood as a high viscosity limit, if (37) is inter-
preted as a balance between frictional effects and the
pressure perturbations on the long length scale. As
ageostrophic effects are important in the allowing the
zonal flow to be determined locally, this boundary con-

dition is not correct for the standard numerical model
described in section 4. As there is no formal separation
of scales in the numerical model, all the waves must be
quasigeostrophic. This means that for the weakly non-
linear analysis to correspond to the numerical model,
the appropriate limit is j → ` (which can similarly be
understood as a low viscosity limit), which leads to the
boundary condition (19),

5 0 and 5 0 on y 5 0, Ly,
X

(1) (1)F F 9iy i

(quasigeostrophic long wave condition).

The prime in this equation denotes deviation from the
X-average, and the condition forces all X variations in
the background flow to fit the boundary conditions of
quasigeostrophic waves.

APPENDIX B

Details of the Derivation of the Amplitude Equations and the Explicit Representation
of their Coefficients

In this appendix we include the details of the derivation of Eqs. (21) and (28) in section 3, as well as the
explicit representations of the quantities referred to in sections 2 and 3. Where appropriate, they have been shown
numerically to be equal to their linear formulations.

First, in section 2, the complex constant giving the relative phase and amplitude of the linear baroclinic waves
in the lower layer to those in the upper, g, is given by

2rFi E a i rFi12(c 2 U )(a 1 F) 1 b 1 FU 1 1 cF 1s s k k k
g 5 5 . (38)

2rFi rFi E a i22(c 2 U )F 1 c(a 1 F) 1 b 2 FU 1 1s sk k k
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In section 3, Eq. (15) is derived from the second-order [O(e2)] balance for the wavelike terms in Eqs. (12) and
(13), which is given by

22ikE(B 2 gB ) 1 (gF 2 a 2 F)A2 1 T

21 U (gF 2 a 2 F)A 1 (b 1 FU )As X s X

2 21 2(ikE 1 k c 2 k U )A 5 0, (39)1 s X

22ikF (B 2 gB ) 1 [F 2 g(a 1 F)]A2 1 T

21 (b 2 FU )gA 1 2(ikE 1 k c)A 5 0, (40)s X 2 X

where

rFi
E 5 (c 2 U )F 1 , (41)s k

and

2rFi E a i22F 5 c(a 1 F) 1 b 2 FU 1 1 . (42)s k k

If we add F 3 (39) and E 3 (40), we arrive at Eq. (15), where the group velocity cg is given by

E i E i1 22 2 2F U (gF 2 a ) 1 2k c 2 U 1 1 b 1 E 2 c 1 k 1 g(b 2FU )s s s1 2 1 2[ ] [ ]k k
c 5 . (43)g 2 2F (gF 2 a 2 F) 1 E[F 2 g(a 1 F)]

It is a consequence of the linear expansion that cg 5 ]v/]k, which is real at the point of minimum critical shear.
This can be shown by implicit differentiation, with repect to k, of the dispersion relation when it is in the form

2 2[(v 2 U k)(a 1 F) 1 (b 1 FU )k 1 rFi 1 E a i]s s 1

2 23 [v(a 1 F) 1 (b 2 FU )k 1 rFi 1 E a i]s 2

22 [v 1 rFi][v 2 U k 1 rFi]F 5 0. (44)s

Without loss of generality, we may take B1 5 0 [as A(X, T, T9) may be renormalized], so this leaves the equation
for B2 [Eq. (16)], in which the complex coefficient k is given by

E i22 22k g c 1 1 g(b 1 FU ) 2 c (F 2 g(a 1 F))s g1 2k
k 5 . (45)

F k

Equation (21) is derived from the third-order balance [O(e3)] for the wavelike terms in Eqs. (12) and (13), which
(including y dependence) is given by

22ikE(C 2 gC ) sinly 1 (gF 2 a 2 F)A sinly 2 DibkA sinly2 1 T9

2 2 2 2E i g Fn p k |A| A1 i21 ikF(U 2 c ) 1 2ik(U 2 c ) 2 k U 2 c 2 A sinly 2 is g s g s zz 2 2 21 2[ ]k (4n p 1 a )E E1 2

2a
2 2 23 [E (4l 2 a 1 gF) 1 E F] sinly cos2ly 2 E 2 2 a 1 gF 1 E F2 1 2 125 1 2[ ]Ly

ay ay cosha 2 1
3 cosh 2 sinh sinly 5 0, (46)1 2 6[ ]L Ly sinhay

and
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2ikF (C 2 gC ) sinly 1 [F 2 g(a 1 F)]A sinly 2 DibkgA sinly2 1 T9

E i E i2 22 21 ik(a 1 F)c 1 ik(b 2 FU ) 2 ik 2c 1 c 1 g 1 k c 1 A sinlyg s g zz1 2 1 2[ ]k k

2 2 2 2g Fn p k |A| Ai 2 21 i · [E (4l g 2 a g 1 F) 1 E F) sinly cos2ly1 22 2 2 5(4n p 1 a )E E1 2

2a g ay ay cosha 21
22 E 2 1 F 2 a g 1 E F cosh 2 sinh sinly 5 0. (47)1 221 2 1 2 6[ ][ ]L L L sinhay y y

Similarly, if we add F 3 (46) and E 3 (47), once the y dependence has been removed by multiplying each
equation by sinly and integrating across the channel, we arrive at Eq. (21). The coefficients in Eq. (21) are given
by

E i kgD2 22 2F [(U 2 c )kF 1 k(3U 2 D )] 1 Ek c (a 1 F) 1 b 2 FU 1 2k c 1 2s g s 1 g s 1 2[ ]k k
m 5 i , (48)

2 2F (gF 2 a 2 F) 1 E [F 2 g(a 1 F)]

where

E iiD 5 c 1 2c 1 ,i g k

and

bk(F 2 Eg)
r 5 i . (49)

2 2F (gF 2 a 2 F) 1 E [F 2 g(a 1 F)]

In the calculation of the amplitude of the wave envelope corresponding to that in Fig. 13, a corrected expression
for r was used in order to allow for the scaling of the damping coefficients, {E1, E2, r} with b, this value is

2 2(ibk 2 a E 2 (1 2 g)rF)F 2 [ibkg 2 ga E 1 (1 2 g)rF]E1 2r9 5 . (50)
2 2F (gF 2 a 2 F) 1 E [F 2 g(a 1 F)]

Finally, the nonlinear coefficient n is given by
2 2 2g Fn p kin 5 2i

2 2 22(4n p 1 a )E E1 2

F P 1 EQ
3 . (51)

2 2F (gF 2 a 2 F) 1 E [F 2 g(a 1 F)]

In this expression the quanities P and Q are given by
2 2P 5 E (4l 1 gF 2 a )2

2a
21 E F 1 X E 2 1 gF 2 a 1 E F1 2 121 2[ ]Ly

2 2Q 5 2 E (4l g 1 F 2 a g)1

2a g
22 E gF 1 X E 2 F 1 a g 1 E gF2 1 221 2[ ]Ly

and
2 216n p (cosha 2 1)

X 5 .
2 2 2a sinha(4n p 1 a )
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The quantities m and r have been shown numerically to be equal to their linear formulations, which are given
in Eq. (22).

In the derivation of the amplitude equation for system B, which follows that for system A exactly, the quantity
n2 is given by (51) with the coefficient X set to zero in the expressions for P and Q.

APPENDIX C

The Stability Properties of the System B Equation
In this appendix the relationship between the stability

properties of Eqs. (21) and (28) is elucidated. Also,
expressions for the linear dispersion relations of side-
band modulations of the symmetric wave train are pre-
sented. Equation (28) may be written in the form

A 1 (m 1 im )AT9 r i zz

25 r A 1 (n 1 in )A|A|r 2r 2i

X
21 [(n 2 n ) 1 i(n 2 n )]A|A| , (52)r 2r r 2r

where nr, n2r, mr , 0, and rr . 0. Equation (21) can be
recovered as a special case by setting n2 equal to n. The
z-independent Stokes solution for (52) is given by

1/2
r r 2i(r n /n )T9r i rA 5 2 e . (53)ST 1 2n r

To determine the z-stability of this solution, a sideband
solution of the form

1/2
r r 2i(r n /n )T9r i rA 5 2 e1 2n r

i(qz2sT9) 2i(qz2s*T9)3 (1 1 A e 1 A e ) (54)1 2

may be inserted into (52) (where a* denotes the com-
plex conjugate of a), and then linearized with respect
to A1, A2 in order to obtain a dispersion relation of the
form s 5 s (q). Note that after linearization,

r r2 i(qz2sT9)|A| 5 2 [1 1 (A 1 A*)e1 2n r

2i(qz2s*T9)1 (A* 1 A )e ] (55)1 2

and

X r r2|A| 5 2 .
n r

(56)

After inserting (54) into (52), and linearizing further,
the following equations for A1 and A2 are obtained:

2isA 1 q (m 1 im )A1 r i 1

n 1 in2r 2i2 (A 1 A*)r 5 0, (57)1 2 r1 2n r

and
22 isA 1 q (m 1 im )A2 r i 2

n 1 in2r 2i2 (A 1 A*)r 5 0. (58)2 1 r1 2n r

The complex conjugate of (58) is

2isA* 1 q (m 2 im )A*2 r i 2

n 2 in2r 2i2 (A* 1 A )r 5 0. (59)2 1 r1 2n r

As the two equations in A1, must be self-consistent,A*2
the following condition must hold

n r2r r2 2 4 2 2s 1 2i 2 q m s 2q (m 1 m )r r i1 2n r

r r 21 2 (n m 1 n m )q 5 0. (60)2r r 2i in r

Solving for s,

2
n r n r2r r 2r r2 2s 5 2i 2 q m 6 2 2 q mr r1 2 1 2[n nr r

1/2
r r4 2 2 21 q (m 1 m ) 2 2 (n m 1 n m )q . (61)r i 2r r 2i i ]n r

Instability is only possible for si . 0. As mr , 0 we
know that

n r2r r 22 q m . 0, (62)r1 2n r

so for si . 0 to hold, we require

r r4 2 2 2q (m 1 m ) 2 2 (n m 1 n m )q , 0 (63)r i 2r r 2i in r

for some q. It is clear that as nr , 0 and rt . 0 this
condition will be met (for some small q) if and only if

n2rmr 1 n2imi , 0. (64)

By setting n2 5 n in (52) Newell’s criterion (24) for the
system A Eq. (21) is recovered. The dispersion relation
for sideband instabilities for system A is also obtained:

2 2 2 4 2 2s 5 2i(r 2 q m ) 6 2(r 2 q m ) 1 q (m 1 m )r r r r r i[
1/2

r r 21 2 (n m 1 n m )q .r r i i ]n r

(65)

APPENDIX D

A Method of Cross-Sectional EOFs

The method of empirical orthogonal functions (EOFs)
(North 1982), was adapted and exploited in order to
investigate the principal variance of the zonal flow in
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the experiments of section 4. In the experiments, the
quasigeostrophic two-layer model was forced in such a
way that in the long time mean, the model is zonally
invariant. This means that some of the statistical meth-
ods often used to investigate propagating signals, such
as complex EOFs (CEOFs) or principal oscillation pat-
terns (POPs), have certain limitations. Specifically, the
problem is that any accurately evaluated signal using
these methods will retain some zonal symmetry in com-
mon with the system. We are interested in wave packets,
which are a zonally asymmetric phenomenon on an in-
termediate timescale, and would be averaged out by the
above methods. An alternative statistical method was
devised and is described as follows.

For brevity, some familiarity with the method of eval-
uating EOFs is assumed (e.g., North 1982). The basic
premise of the method is to relax the constraint that
when evaluating the covariance matrix S, the matrix
must give the covariance between every spatial point
of each dimension. Instead, only the covariance between
spatial points in the meridional-height plane are taken,
with the zonal coordinate x being treated as an alter-
native time coordinate. Therefore the components of S
are given by

e eS 5 u (x, t)u (x, t), (66)Oij ( j ) (k)
x,t

where is the variation from the time-mean zonaleu( j )

flow at a position j in the meridional-height plane. Anal-
ogously to standard EOFs, the eigenvectors of this ma-
trix are orthogonal structures in the meridional-height
plane, which describe optimal amounts of the variance
of ue in time and the x direction, a measure of this
variance being given by the corresponding eigenvalue.
Maps of what are termed the principal components (de-
noted by P ), showing the propagation of these ‘‘opti-
mal’’ structures in longitude and time, are then easily
obtained by exploiting their orthogonality,

(a) (a) eP (x, t) 5 e u (x, t), (67)O ( j ) ( j )
j

where e(a) is the normalized eigenvector of interest.
These are the longitude–time plots given in section

4. In each of Figs. 14, 15, 17, and 18, over 90% of the
variance of ue in the (x, t) plane is described by the two
signals shown. To support the claim that the principal
components of the first eigenvector are a reliable mea-
sure of the baroclinic waves, Fig. A1 is a comparison
with a similar plot, for experiment f, of the meridional
velocity averaged across the channel. The latter is a
more typical measure of baroclinic waves in geophysical
flows (e.g., in LH), and the two methods are observed
to identify similar wave packet structures with waves
that are out of phase by p/2. The signals are out of

phase because y e is a ‘‘differentiated’’ quantity when
compared with ue.
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