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Abstract. The fluctuation-dissipation theorem (FDT) has
been proposed as a method of calculating the response of the
earth’s atmosphere to a forcing. For this problem the high di-
mensionality of the relevant data sets makes truncation nec-
essary. Here we propose a method of truncation based upon
the assumption that the response to a localised forcing is spa-
tially localised, as an alternative to the standard method of
choosing a number of the leading empirical orthogonal func-
tions. For systems where this assumption holds, the response
to any sufficiently small non-localised forcing may be esti-
mated using a set of truncations that are chosen algorithmi-
cally. We test our algorithm using 36 and 72 variable ver-
sions of a stochastic Lorenz 95 system of ordinary differen-
tial equations. We find that, for long integrations, the bias in
the response estimated by the FDT is reduced from∼ 75 %
of the true response to∼ 30 %.

1 Introduction

An important problem in atmospheric sciences is how the cli-
mate responds to a forcing. For example how does the mean
local temperature respond to an increase in carbon dioxide
or a change in the incident solar radiation. Explicit simula-
tion can estimate the effects of a particular forcing; however,
simulation can be prohibitively expensive if the response to
a large set of possible forcings is required. One method of
reducing the cost of a local estimate is to truncate the cal-
culation to a local simulation at a high resolution forced by
boundary conditions given by a low resolution global simu-
lation. For estimating the response to a forcing applied over
a short time this regional approach seems effective, (see for

example the UK Met office numerical weather prediction
modelDavies et al., 2005); however, it remains to be seen if
it can be extended to the long time climate response. The hy-
pothesis explored in this paper is that a statistical approxima-
tion based upon the fluctuation-dissipation theorem (FDT),
using only data on the unforced system, will have some skill
in predicting the response to a forcing. The form of the FDT
that we consider predicts only the linear component of the
response, i.e. the response of a (fully non-linear) system to
a sufficiently small forcing, and much in the same way that
simulation is expensive in computational effort, the FDT is
expensive in data. Some sort of truncation is necessary to re-
duce the quantity of data required. In this paper we describe
a method of truncating a data set locally for the purposes of
applying the FDT. This method, inspired by the technique of
local simulation at high resolution, is a practical alternative
to the globally distributed truncation to a particular number
of empirical orthogonal functions (EOFs); seeJoliffe (2002)
chapter 6. The linear nature of the FDT then allows for the
responses calculated with local truncation to many small lo-
calised forcings to be added together to give the global re-
sponse to a forcing that is not localised.

The expected responseδx(t) of a system to a forcing as a
function of timet is denoted by

〈δx(t)〉 = 〈xf(t)〉 − 〈x(t)〉 ,

wherex(t) represents the state vector of the system without
forcing applied,xf(t) represents the state vector of the sys-
tem with the forcing applied and the angled brackets〈. . . 〉

denote the ensemble average over a large number of inde-
pendent realisations. Assuming that the system is sufficiently
random and that its probability density function (PDF)ρ (x)
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240 F. C. Cooper et al.: Response of high dimensional systems

is differentiable, the linear component of〈δx(t)〉 is given by

〈δx(t)〉 = −

t∫
0

〈
x (τ )

[
∇xρ (x(0))

ρ (x(0))

]T
〉
δf (t − τ)dτ , (1)

whereδf (t) represents a forcing vector at timet and T de-
notes the vector transpose; see for exampleMarconi et al.
(2008) for a recent review. Throughout this paper we make
the assumption that the mean ofx has been subtracted and
therefore〈x(t)〉 = 0.

For practical evaluation of (1) knowledge ofρ (x) is re-
quired. If it is assumed thatρ (x) is well approximated by
a Gaussian, (1) reduces to the Gaussian FDT (sometimes
called the quasi-Gaussian FDT)

〈δx(t)〉 ≈

t∫
0

C(τ )C(0)−1δf (t − τ)dτ , (2)

where C(τ ) is the lag τ covariance matrix.Gritsun and
Branstator(2007) amongst others have applied (2) to atmo-
spheric general circulation model simulations with promis-
ing results. The Gaussian FDT requires the inversion of a
covariance matrix which can be difficult when considering
a large state vectorx. In order to evaluate (2) Gritsun and
Branstator reduced the size of their state vector by first se-
lecting particular variables and truncating their system from
18 352 components to 1800 EOFs.Majda et al.(2010) sug-
gests some strategies for truncation in EOF space, however, a
general quantitative theory for such truncation, e.g. predict-
ing any biases introduced, has not yet been developed.

In the context of global climate modelling aspects of the
dynamical system, such as separation of timescales associ-
ated with hydrostatic and geostrophic balance, can be ex-
ploited to facilitate truncation. For example,Ring and Plumb
(2008) use the solution of an “Eliassen problem” based on
geostrophic balance to truncate an idealised general circula-
tion model by expressing all variables in terms of the zonal
wind. Their truncation is then used, for example, to convert
a particular forcing of global temperature into an equivalent
forcing of the zonal wind, that can then be used in a truncated
version of (1).

One problem with (2) is that the assumption of Gaussianity
where it is not appropriate may cause unacceptably large er-
rors in a response prediction (Cooper and Haynes, 2013). An
alternative approach, appropriate for short time responses, is
to use an ensemble adjoint technique (Eyink et al., 2004).
Equation (1) is recast into a different form that depends upon
a tangent linear model. This technique overcomes the prob-
lem of an unknown PDF, but is valid only up to a maximum
lagτ , and requires the availability of the tangent linear model
(and hence cannot be used with data derived from measure-
ments).Abramov and Majda(2007) introduce a “blended re-
sponse algorithm” that extends theEyink et al. (2004) ap-
proach to longer lags by assuming that (2) is accurate for

sufficiently largeτ . An alternative suggested byCooper and
Haynes(2011) is to use the methods of non-parametric statis-
tics to approximateρ(x). Unfortunately, the non-parametric
FDT they suggest is susceptible to problems due to a high di-
mensional state vector and some form of truncation appears
helpful.

To explore possible truncation strategies a simple toy
model is an appropriate first step. We consider as our test
bed a stochastic version of the Lorenz 95 system (Lorenz,
1995) whose state vectorx = (x1,x2,x3, . . . ,xd) contains
d > 3 variables and is governed by

dxj

dt
= xj−1

(
xj+1 − xj−2

)
− xj + f + δfj + aξ , (3)

wheref is a constant equal to 8 in this paper. This choice
of f makes the system chaotic.j = 1,2,3, . . . ,d, δfj rep-
resents an additional small forcing,ξ represents a Gaussian
white noise term with unit variance witha a constant control-
ling its amplitude. The state vector is periodic, so that in (3)
x0 = xd , x−1 = xd−1 andxd+1 = x1. The precise details of
our integrations are detailed in Appendix A. (The Lorenz 95
system is sometimes referred to as the Lorenz 96 system in
the literature due to a confusion regarding the dates of first
publication.) This particular system is appropriate to this in-
vestigation because the dimensionality of its phase space is
easy to vary and can be made large enough to allow explo-
ration of the effectiveness of truncation, it is symmetric in the
sense that each point has the same relation to its neighbours,
and its solution with an appropriate choice off , is chaotic.
In addition, the system is local in the sense that each element
of the state vector only directly effects its close neighbours.
More distant elements of the state vector are only affected
indirectly allowing for the possibility of correlation decay-
ing with distance as in many physical systems.Lucarini and
Sarno(2011) demonstrate that the Lorenz 95 system pos-
sesses many of the properties required for investigation using
some form of linear response theory andAbramov and Ma-
jda (2007) tested the various forms of their blended response
algorithm (that requires a tangent linear model) to predict the
response of the Lorenz 95 system. They reported predictions
with similar accuracy to those of this paper. We must bear
in mind that the Lorenz 95 system may have a very different
underlying nature to that of the true climate system, so the
results reported here may or may not be applicable to that
case.

The response after a long time has elapsed of each element
of x to a continuous unit forcing applied to a single pointxk

of the Lorenz 95 system (3) is plotted in Fig.1. The response
is estimated from two long integrations of (3), with δfk = 0
and 1, respectively. An initial period, longer than any corre-
lation times, is discarded and the experiment is repeated ten
times for robustness; see Appendix A for details. The final
element ofx in each plot is linked by (3) to the first. The re-
sponse to the left of the applied force is relatively small and
almost completely restricted to two points. The response to

Nonlin. Processes Geophys., 20, 239–248, 2013 www.nonlin-processes-geophys.net/20/239/2013/



F. C. Cooper et al.: Response of high dimensional systems 241

the right is larger in places with the amplitude reducing in
a non-monotonic manner with distance. The overall impres-
sion is that the response is somewhat local to the forcing and
does not strongly depend upon the dimensionality ofx. In
effect, the extra points in thed = 72 system do not make a
significant contribution to the response and we should be able
to simply ignore them when making a response estimate. The
experiment repeated ford = 18 andd = 144 does not alter
this conclusion. Figure1 suggests that the response will only
be well captured if the system is truncated locally rather than
in a non-local Fourier or EOF space. For the purpose of ap-
plying (1), we are interested in the linear component of the
response. For a forcing sufficiently small to be in the linear
regime, the response to forcing more than one element ofx

may be estimated as the sum of the responses due to forcing
the single elements separately. In the case of the Lorenz 95
system, all grid points are equivalent and we can calculate the
response to any linear forcing by considering the response of
a single grid point. In other words, the linear response to any
combination ofδfj may be estimated using Fig.1. There-
fore, we restrict ourselves to forcingδf only in the direction
of xk, so thatδfk = 1 andδfj = 0 for j 6= k.

To investigate possible truncations, we first split the state
vector into three components

x =

 xk

xd
x i

 ,

wherexk is the element to which a forcing is applied,xd is
a vector of the components ofx that are closely related to
xk, andx i is a vector of the components ofx that are in some
sense approximately independent ofxk during an integration.
We now introduce a localised response approximation (LRA)
that the PDFρk|(d,i) of xk given a particular value of all of
the other state vector elements is equal to the PDFρk|d of xk

given only the values ofxd,

ρk|(d,i) (xk|(xd,x i)) ≈ ρk|d (xk|xd) . (4)

This assumption is justified by the fact that changes to
ρk|(d,i) are negligible given sufficiently small variations inx i ,
i.e. typical random or chaotic variations inx i are not large
enough to influence the value ofxk. The utility of the LRA
therefore depends upon the relative dimension ofxd andx i .
We use the LRA of (4) and the fact that

ρk|(d,i) (xk|(xd,x i)) =
ρ (x)∫

ρ (x)dxk

(5)

and

ρk|d (xk|xd) =

∫
ρ (x)dx i∫∫

ρ (x)dx idxk

(6)

to write

ρ (x) =
ρk,d (xk,xd)ρd,i (xd,x i)

ρd (xd)
, (7)
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Fig. 1. The response〈δx〉 of the Lorenz 95 system to a forcing
of δf18 = 1.0 with the location ofδf18 indicated by the vertical
dashed line. To compare with typical fluctuations during an inte-
gration, the standard deviation of a single element ofx for δf = 0
is estimated as∼ 3.6 for a = 0. The number of elements in the state
vector for(a) and(c) is d = 36 and for(b) and(d) is d = 72. Plots
(a) and(b) correspond to the deterministic system witha = 0 and
(c) and(d) correspond to the same system with additional stochas-
tic noise,a = 2. The integrations are sufficiently long to obtain an
accurate response, (2 standard deviations divided by the square root
of the number of integrations is smaller than graphical accuracy),
which is the same as that reported byAbramov and Majda(2007);
see their Fig. 2. The difference between the first 36 points of(a) and
(b) or (c) and(d) is not significantly different from zero with this set
of integrations. Note that the response to linearly forcing multiple
grid points simultaneously is simply the sum of the responses to the
decomposed single grid point forcings.

where

ρd,i (xd,x i) =

∫
ρ (x)dxk,

ρk,d (xk,xd) =

∫
ρ (x)dx i

www.nonlin-processes-geophys.net/20/239/2013/ Nonlin. Processes Geophys., 20, 239–248, 2013



242 F. C. Cooper et al.: Response of high dimensional systems

and

ρd (xd) =

∫ ∫
ρ (x)dx idxk .

Substituting (7) into (1) and restricting forcing to the direc-
tion of xk, we obtain

〈δx(t)〉 ≈ −

t∫
0

〈
x(τ )

∂ρk,d (xk(0),xd(0))

∂xk

1

ρk,d (xk(0),xd(0))

〉
δfk (t − τ)dτ . (8)

Note that the response in the direction ofx i due toδfk is
zero:

〈δx i(t)〉 ≈ 0. (9)

The PDFρk,d in (8) is a function only ofxk and xd. De-
pendence uponx i has been eliminated. If we now assume
Gaussianity, we can obtain (2) for the system that involves
smaller covariance matrices obtained using onlyxk andxd.
Now suppose we are interested in the response to a forcing
δf that is not restricted toδfk, we may use the fact that we
are in the linear regime to compute the linear response to
forcing a single elementδfj for eachj and sum the results.

2 A truncation algorithm

An algorithm that finds the appropriate truncation of phase
space according to (8) may now be developed. We define

xr =

(
xk

xd

)
.

Now we do not know in advance which elements ofx to
include inxd and therefore truncate iteratively towards nu-
merical convergence of our estimate of the response〈δx(t)〉.
Our starting point will be the maximum truncation possible,
i.e. settingxr to have only the element to which the forcing
is applied,xr(t) = (xk(t)). We then obtain an estimate for
〈δx(t)〉 using a non-parametric FDT algorithm (A1) which
we denote byδ̂xr(t); see Appendix A for details. Next we
try a truncation that in addition includes another grid point
and see if the estimated response of grid pointk changes. If
it does change, then using two grid points gives us a more
accurate estimate ofρ (x) present in (1) and approximated in
(8), see Fig.2. On the other hand if it does not change then
perhaps pointk and the tested point are independent. We re-
peat this process, checking pointk with all other grid points
and pick the grid point that contributed the largest change
in δ̂xr(t) to include in our truncated state vectorxr. For ex-
ample, if grid pointk + 3 caused the estimated response to
change the most, then for the next round of testing we choose

xr =

(
xk

xk+3

)
.
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Fig. 2.The contours of a two dimensional marginal PDFρ2(x1,x2)

(a). Integratingρ2(x1,x2) in thex2 direction gives the one dimen-
sional marginal PDFρ1(x1) (b). In this case the plots illustrate that
the quantities∂ρ2/∂x1 and∂ρ1/∂x1, which may be used in (8) are
different.

The entire process is then repeated to find the next points to
add toxr, this time looking at the largest change in the re-
sponse at pointsk andk+3, (estimated using the normalised
root mean squared difference, RMS)

RMS distance=

√√√√√∑d ′

j=1

(
δ̂xr,j (t) − δ̂yr,j (t)

)2∑d ′

j=1

(
δ̂yr,j (t)

)2
,

where δ̂yr,j (t) is the response estimated from the previous
round of tests andd ′ indicates the current dimensionality
of xr. We continue to successively add more and more grid
points toxr until the estimated response no longer changes.
At this point we assume that we have a good approximation
of the optimal truncation so that (8) is a good approximation
of (1).

One problem with our truncation algorithm is that we are
comparing a response estimated usingd ′ grid points with
a response estimated usingd ′

+ 1 grid points. Our estimate
δ̂xr(t) is biased by an amount depending somehow upon the
dimensionality of phase space; see Eq. (21) ofCooper and
Haynes(2011). We must account for this or otherwise any
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F. C. Cooper et al.: Response of high dimensional systems 243

change in the estimated response may be due to bias rather
than a genuine interaction of variables. We do so by adding
a variable of Gaussian distributed random numbers (with ap-
proximately the same variance as that ofxk) to the truncated
state vectorxd. So in the example above we would at some
point compare the response given the vectors(

xk(t)

xG(t)

)
and

(
xk(t)

xk+3(t)

)
,

wherexG represents the Gaussian random numbers.

2.1 Further truncation

It is necessary to estimate a subset of the domain to use as a
starting point for the above calculation. This is because it is
computationally expensive to apply the FDT to every single
grid point, several times, when the number of grid points is
large. One choice of region in an atmospheric context could
be the setD of all points where the integral of absolute
positive lagged correlations is greater than some threshold
cabs,min, i.e. the set

D =
{
x : cabs,j (x) > cabs,min

}
,

for all j = 1,2,3, . . . ,d, where

cabs(x) =

∞∫
0

|〈x(τ )xk(0)〉|dτ . (10)

Then the elements ofcabsthat are greater thancabs,min would
be the only points considered when looking for an appropri-
ate truncation. The zero in the lower limit indicates that we
are looking for the response to a forcing, rather than all vari-
ables that have some relation toxk. For the Lorenz 95 system,
cabs is plotted in Fig.3 which shows that the (normalised)
absolute value of the response lies under the (normalised)
values ofcabs. Note that in any suitably random system, el-
ements ofcabs cannot be zero because we take the absolute
value of the correlation estimate which, in turn, is subject to
statistical uncertainty. Therefore, if we are able to estimate
the contribution of this uncertainty, for example from two in-
dependent integrations, we can pick an appropriate value for
our thresholdcabs,min. For the Lorenz 95 integrations consid-
ered here the normalised value ofcabs,min ∼ 0.12 and from
Fig. 3 we would be able to eliminate about one third of the
points from the 72-element system and none of the points
from the 36-element system.

Equation (10) specifies a rather conservative estimate of
the region to consider and as such may not solve the prob-
lem given limited computational resources. For this investi-
gation, rather thancabs, a more useful truncation region is
based uponc0 which is given by

c0 =

∣∣∣∣∣∣
∞∫

0

〈x(τ )xk(0)〉dτ

∣∣∣∣∣∣ (11)
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Fig. 3. Evaluation of (10), plots(a) and(b), and (11), plots(c) and
(d), for the deterministic (a = 0) Lorenz 95 system is indicated by
the black lines. The grey lines indicate the absolute value of the
response,|〈δx〉|. The number of elements in the state vector for
(a) and (c) is d = 36 and for(b) and (d) is d = 72. The vertical
scale has been normalised so thatcabs,k = c0,k = |δxk | = 1 where
k = 18. The location of the forcingδf18 is indicated by the vertical
dashed line and statistical error, 2 standard deviations divided by the
square root of the number of integrations, is smaller than graphical
accuracy.

with a thresholdc0,min estimated in the same way. This is in
fact the absolute value of rowk of the matrix

∫
∞

0 C(τ )dτ

that appears in the expression for the Gaussian FDT (2). It
is related to the spectral density via Parseval’s theorem. The
motivation for not simply using (2) to estimate our trunca-
tion region is that given a large state vector and limited data,
which is typical in a climate context, it can be difficult or
even impossible to accurately estimateC(0)−1. In any case
where (11) is zero, (2) gives zero response anyway. Figure3
shows that in our case the region estimated by (11) is a much
tighter fit to the response region and the number of points to
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244 F. C. Cooper et al.: Response of high dimensional systems

consider is reduced considerably. However, to find an appro-
priate threshold valuec0,min, accurate evaluation of (11) is
necessary. This may not always be possible and is not such
a problem for (10). Another problem with (11) is that it is
only a good approximation for systems with close to Gaus-
sian statistics. If a system is extremely non-Gaussian, (11)
may be a poor approximation and we must resort to using
(10) instead.

2.2 Application of the algorithm

By invoking the LRA (4), we now have an algorithm that
we can actually apply to high dimensional data sets provided
the response to a localised forcing is sufficiently local. Using
Fig.3c and d, we consider only the region between pointsk−

7 to k + 16 inclusive and apply the FDT for each truncation.
The RMS difference between the true response at all grid
points, (found by integrating (3)), and the response predicted
by our estimation of (8) and (9) is plotted as a function of the
number of elements included inxr in Fig. 4 (black circles).

Figure4 demonstrates that for the Lorenz 95 system, pre-
dictions of the response using our estimator of (8) have some
skill. This figure illustrates that for a truncation to 10 grid
points of the 36-element system, with the noise terma = 0,
the RMS error squared (i.e. the mean squared difference), is
made up by variance due to a finite run length∼ 5 %, missing
responses due to truncation∼ 29 % and bias in the FDT al-
gorithm∼ 66 %. For the 36- and 72-element systems, the re-
sults have similarities which indicates that for the Lorenz 95
system we may be close to the point where the predictive
skill of our algorithm is independent of the dimensionality of
the full state vectorx. Similar results (not shown here) were
obtained with an 18-element system.

An interesting point to make about Fig.4 is that there
appears to be an optimal truncation at aroundd ′

= 9. Un-
fortunately, we did not predict the precise location of
this optimum in advance. Initially the skill increases non-
monotonically as more grid points are added before reach-
ing the optimum truncation. The RMS error then increases
slowly up to its value when all grid points are included (with-
out any truncation). We can hypothesise as to the reasons be-
hind this behaviour. Firstly, we have no reason to believe that
high skill at predicting the response of the first point on its
own would translate to other dynamical systems in some gen-
eral case. Secondly, the reduction in RMS error with more
than four grid points could be due to the FDT calculation in-
cluding a better approximation of the underlying PDF in the
manner described in Fig.2. Thirdly, the increase in RMS er-
ror beyond the optimal truncation is at least partly due to the
bias present in our estimator of (8). An intuitive explanation
of the cause of this bias could be simply that complex shapes
present in a PDF become harder and harder to approximate
accurately as their dimensionality increases. In our case we
are approximating the underlying PDF by a convolution of
the data (from integrations) with a kernel function; see Ap-

pendix A. As the dimensionalityd ′ of phase space increases,
the integral over allxr of the kernel function must remain
constant. Fixing an acceptable level of variance in the pre-
dictions of the FDT and increasing the dimensionality has
the effect of requiring a broader kernel to approximate the
PDF with. Eventually, the kernel is so broad that one may as
well approximate the convolution of the data and the kernel
with a single Gaussian blob with non-isotropic covariance. If
this is true for our system then the response predicted by the
Gaussian form of the FDT (2) and Eq. (1) using our estima-
tor, should be approximately the same; see Fig.5.

The fact that our estimator approximates a smoothing con-
volution of the PDF leads us to suspect that it has skill
when applied to stochastic systems where the white noise
term leads to a genuinely smooth underlying PDF. Although
it may appear slight, the FDT (A1) has more skill for
the stochastic case wherea = 2 than the deterministic case
wherea = 0; see Fig.4. Given sufficient smoothing (by in-
creasing the value ofa), we eventually get to the situation
where the non-Gaussian aspects of the underlying PDF are
small corrections to ad ′ dimensional Gaussian. In this case
the Gaussian approximation (2) is a good one.

3 Conclusions

If we wish to apply the fluctuation-dissipation theorem
(FDT) to predict the response to forcing in general circula-
tion models, reanalysis data sets, and measurements of the
climate system, truncation of the huge state vector present
in these systems seems necessary. We have argued that trun-
cation of the state vector to include only the locality of the
forcing (according to variations in predictions of the FDT)
may be appropriate to some chaotic high dimensional sys-
tems and have tested this hypothesis using a 36- and 72-
element Lorenz 95 system. The practical implications of this
localised response approximation (LRA) are, for example,
that if we consider the atmospheric response to a heating
over one small part of the planet, perhaps there are regions
that contribute very little to the response. If these regions ex-
ist then they may be safely ignored in a FDT calculation.

One method of truncation that has previously been applied
(see for exampleGritsun and Branstator, 2007) is to use only
a given number of leading EOFs. Each EOF is described by
a fixed global pattern and the associated principal compo-
nent time series describes its evolution in time. For systems
where the response to a local forcing is spatially localised,
a localised truncation seems preferable. To illustrate this we
note that the responses of the 36- and 72-element Lorenz 95
systems to a good level of accuracy are the same, i.e. the
extra points in the 72-element system can be ignored. Trun-
cation in EOF space does not take advantage of this fact but
localised truncations do. In addition, if the response to a lo-
cal forcing is sufficiently localised, truncation to these points
allows us to apply the FDT to data sets of any dimensionality.
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Fig. 4. RMS difference between the response of the Lorenz 95 system estimated by integrating (3) and using the non-parametric FDT (A1)
where the number of elements in the full state vector for (a) and (c) isd =36 and for (b) and (d) isd =72. Plots (a) and (b) correspond to the
deterministic system witha =0 and plots (c) and (d) correspond to the same system with additional stochastic noise,a = 2. The black circles
indicate the RMS difference of the entire state vector using(8) and (9). The grey circles indicate the RMS difference of only the elements to
which the calculation is applied using (8). The solid line atthe bottom of each plot indicates the minimum possible RMS difference of the
grey circles with this data set. I.e. the difference betweenthe responses estimated using two independent sets of data found by integrating
(3). The straight horizontal line is the RMS difference between integrating (3) and the response estimated using the Gaussian form of the
FDT (2) for the 36 element system, see figure (5) for a plot of this response. The dashed lines, indicating uncertainty, represent two standard
deviations divided by the square root of the number of independent integrations. An estimate with zero skill, (given by (9) with the entire
state vector being independent of the forcing), has a RMS difference of one using this normalisation. It is possible to doworse than this by
overestimating the response by a factor of greater than 2.

The FDT applied here gives only the linear component of
the response of the non-linear system considered. This is a
good approximation for the full response if the forcing is suf-
ficiently small. Being linear, the sum of the responses esti-
mated separately for two different forcings is identical tothe
single response estimated for the sum of these two forcings.
We may therefore estimate the entire set of possible linear re-
sponses by appropriate summing of the responses to forcing

each grid point individually. Similarly, quantities such as the
response in the mean, or any other combination of several
variables, may be estimated from the appropriate combina-
tion of responses to separate local forcings. Forcings suffi-
ciently large to make the response strongly non-linear are in
general not susceptible to any simple linear decomposition
into localised forcings. In addition (1) only applies to thelin-
ear component of any response calculation and large forcings

Fig. 4. RMS difference between the response of the Lorenz 95 system estimated by integrating (3) and using the non-parametric FDT (A1)
where the number of elements in the full state vector for(a) and(c) is d = 36 and for(b) and(d) is d = 72. Plots(a) and(b) correspond to the
deterministic system witha = 0 and plots(c) and(d) correspond to the same system with additional stochastic noise,a = 2. The black circles
indicate the RMS difference of the entire state vector using (8) and (9). The grey circles indicate the RMS difference of only the elements to
which the calculation is applied using (8). The solid line at the bottom of each plot indicates the minimum possible RMS difference of the
grey circles with this data set, i.e. the difference between the responses estimated using two independent sets of data found by integrating
(3). The straight horizontal line is the RMS difference between integrating (3) and the response estimated using the Gaussian form of the
FDT (2) for the 36-element system; see Fig. (5) for a plot of this response. The dashed lines, indicating uncertainty, represent two standard
deviations divided by the square root of the number of independent integrations. An estimate with zero skill, (given by (9) with the entire
state vector being independent of the forcing), has a RMS difference of one using this normalisation. It is possible to do worse than this by
overestimating the response by a factor of greater than 2.

The FDT applied here gives only the linear component of
the response of the non-linear system considered. This is a
good approximation for the full response if the forcing is
sufficiently small. Being linear, the sum of the responses esti-
mated separately for two different forcings is identical to the
single response estimated for the sum of these two forcings.
We may therefore estimate the entire set of possible linear re-
sponses by appropriate summing of the responses to forcing
each grid point individually. Similarly, quantities such as the
response in the mean, or any other combination of several
variables, may be estimated from the appropriate combina-
tion of responses to separate local forcings. Forcings suffi-
ciently large to make the response strongly non-linear are in

general not susceptible to any simple linear decomposition
into localised forcings. In addition (1) only applies to the lin-
ear component of any response calculation and large forcings
require a generalisation (e.g.Boffetta et al., 2003). In some
situations, even with simple systems similar to that consid-
ered here, the response may be entirely non-linear (Lacorata
and Vulpiani, 2007).

The non-parametric FDT algorithm requires that we use
an approximation of a PDF using a convolution of the data
and a kernel function. The kernel function fills the gaps be-
tween data points. Given more data these gaps are smaller
and the kernel function can also be narrower leading to a bet-
ter PDF approximation. However, increasing dimensionality
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Fig. 5. Response of the deterministic (a = 0) Lorenz 95 system es-
timated using the Gaussian FDT (2), plots(a) and(b), and the dif-
ference between the Gaussian FDT (2) and the non-parametric FDT
(A1) as an estimator of (1) without truncation, plots(c) and(d). The
number of elements in the state vector for(a) and(c) is d = 36 and
for (b) and(d) is d = 72. The grey lines indicate the true response
plotted in Fig.1 and the RMS difference between the grey and black
points is∼ 75 % as indicated by the uppermost straight horizontal
lines in Fig.4. The location of the forcingδf18 is indicated by the
vertical dashed line and statistical error, 2 standard deviations di-
vided by the square root of the number of integrations, is smaller
than graphical accuracy.

necessarily increases the width of the kernel function relative
to the distance between data points leading to a worse PDF
approximation. In a high dimensional space, the kernel func-
tions significantly overlap and although we have not shown it
in any analytical way, the non-parametric FDT seems to ap-
proach the Gaussian FDT (Fig.5). If the response to a local
forcing is spread over a large number of grid points (and an
accurate transformation to a smaller number of grid points
is not available), then the dimensionality of phase space in
which the non-parametric FDT must approximate a PDF is

also large. If the PDF has a complex shape then its accurate
approximation is extremely difficult and is likely to require
more data than is possible to obtain. Deterministic systems
may even have a fractal PDF that makes use of (1) difficult
to justify. Other expressions such as the linear response rela-
tion of Ruelle(1998) may have to be considered.

In addition to using truncation, there are several improve-
ments that could be made to the non-parametric FDT algo-
rithm. It may be possible to obtain insight into its bias by
considering different kernels with the same data set, or to re-
duce the bias via adaptive density estimation, seeSilverman
(1986) andCooper and Haynes(2011). If restrictions such as
conservation laws can be placed upon a system’s PDF, per-
haps by analytical consideration of the underlying equations,
it may also be easier to approximate. Another approach may
be to adopt the tangent linear algorithm ofEyink et al.(2004)
with the “blended response” modification ofAbramov and
Majda(2007) which replaces estimation of the PDF by esti-
mation (or calculation if the underlying equations are avail-
able) of a tangent linear system.

Appendix A

Experiment specification

We test the FDT (1) using the stochastic Lorenz 95 sys-
tem introduced above where we choose the constantf = 8.
It is approximated by applying a fourth-order Runge–Kutta
method (Press et al., 2002) to the deterministic part of (3)
and the method of R̈umelin (Rümelin, 1982) to the stochas-
tic part using the Mersenne Twister algorithm (Matsumoto
and Nishimura, 1998) for random numbers. We choose state
vectors of sized = 36 andd = 72 and starting with random
initial conditions we use a time step of1t = 10−3 and af-
ter discarding 105 time steps iterate fromt = 0 to t = 106.
This may be compared with∼ 1.74, the value of the largest
Lyapunov exponent for the deterministic system (Abramov
and Majda, 2007). We perform 10 identically specified inte-
grations with different initial conditions for each experiment
in order to get a measure of the statistical uncertainty. Equa-
tion (8) is only valid in the linear regime, i.e. for a sufficiently
small forcing. In order to discover the range over which the
linear approximation is valid, we perform several integra-
tions of (3) with −8 ≤ δfk ≤ 8 andδfj = 0 for j 6= k and
k = 18. The average value of elements 18 and 19 of the state
vector of thed = 36, a = 0 integrations averaged over 1010

time steps is plotted in Fig.A1. For a forcing ofδf18 = ±1
the non-linear component of the response is small in compar-
ison with the size of the total response. A similar range and
accuracy of linearity is observed for all elements of the state
vector, and if the integrations are carried out withd = 72.

Taking care that the relevant integrals have sufficiently
converged, (10 is used to approximate infinity in the upper
limit of the integral), the Gaussian FDT (2) is evaluated using
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Fig. A1. The mean value of state vector elementx18 andx19 of a
36-element Lorenz 95 system as a function of forcing applied to
x18 to illustrate the range of linearity of the response. The dashed
lines indicate two standard deviations divided by the square root
of the number of independent integrations (of which there are 10).
Plots of the response of other vector elements or of the elements of
a 72-element or stochastic Lorenz 95 system yield similar ranges of
linearity with different gradients near the origin.

the standard unbiased estimator for the covarianceC(τ ). Fol-
lowing Cooper and Haynes(2011), we approximate (8) by
the non-parametric method

3̂(s1t) =

m∑
j=1

Xj+s

[∑n
i=1

(
Xj − Xi

)T
E

(
Xj ;Xi,h

)
h2

∑n
i=1E

(
Xj ;Xi,h

) ]

and

δ̂x(h) =

r∑
s=0

µs3̂(0)−13̂(s1t)δf , (A1)

where δ̂x(h) is the estimated response as a function of the
free parameterh and X is the appropriate segment of the

state vector recorded at a particular time. Here a unit of the
indicesi andj correspond to a time between recordings of
X of 10 and a unit of the indexs corresponds to a time be-
tween recordings of 10−3. So for example ifi = 5, j = 7 and
s = 137 then the values oft that Xi , Xj andXj+s corre-
spond to are 50, 70 and 70.137, respectively. To evaluate (A1)
we user = 104 (representing 10 time units to approximate
infinity as the upper limit of the integral in (8)), m = 105,
n = 105, µ0 = 0.51t andµs = 1t for s > 0 with our choice
being motivated by a trade off between accuracy and avail-
able computational power; seeCooper and Haynes(2011).
In Cooper and Haynes(2011), the functionE was repre-
sented byN , ad dimensional Gaussian with isotropic covari-
anceh. Here for computational efficiency we use the multi-
dimensional Epanechnikov kernel (Silverman, 1986) with-
out normalisation

E(x;y,h) =

{
h2

− (x − y)T (x − y) , |x − y| < h

0, otherwise.

(A2)

To estimate the response using (A1), a value of the free pa-
rameterh must be chosen. We choose the smallest guess ofh

that corresponds to the standard deviation of the estimated re-
sponse of elementx18 being no larger than five percent of the
estimate of its mean. Our choice ofh is not well optimised
because this is computationally expensive and the benefits of
improving upon a simple guess appear small; seeCooper and
Haynes(2011) for a discussion.
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