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Abstract. The fluctuation-dissipation theorem (FDT) has example the UK Met office numerical weather prediction
been proposed as a method of calculating the response of theodelDavies et al.2005; however, it remains to be seen if
earth’s atmosphere to a forcing. For this problem the high di-it can be extended to the long time climate response. The hy-
mensionality of the relevant data sets makes truncation negaothesis explored in this paper is that a statistical approxima-
essary. Here we propose a method of truncation based upaion based upon the fluctuation-dissipation theorem (FDT),
the assumption that the response to a localised forcing is spasing only data on the unforced system, will have some skill
tially localised, as an alternative to the standard method oin predicting the response to a forcing. The form of the FDT
choosing a number of the leading empirical orthogonal func-that we consider predicts only the linear component of the
tions. For systems where this assumption holds, the respongesponse, i.e. the response of a (fully non-linear) system to
to any sufficiently small non-localised forcing may be esti- a sufficiently small forcing, and much in the same way that
mated using a set of truncations that are chosen algorithmisimulation is expensive in computational effort, the FDT is
cally. We test our algorithm using 36 and 72 variable ver- expensive in data. Some sort of truncation is necessary to re-
sions of a stochastic Lorenz 95 system of ordinary differen-duce the quantity of data required. In this paper we describe
tial equations. We find that, for long integrations, the bias ina method of truncating a data set locally for the purposes of
the response estimated by the FDT is reduced froi#b % applying the FDT. This method, inspired by the technique of
of the true response te 30 %. local simulation at high resolution, is a practical alternative
to the globally distributed truncation to a particular number
of empirical orthogonal functions (EOFs); sadliffe (2002
chapter 6. The linear nature of the FDT then allows for the
1 Introduction responses calculated with local truncation to many small lo-

_ ) o _ _calised forcings to be added together to give the global re-
An important problem in atmospheric sciences is how the C“'sponse to a forcing that is not localised.

mate responds to a forcing. For example how does the mean The expected response () of a system to a forcing as a
local temperature respond to an increase in carbon dioxidgynction of timer is denoted by

or a change in the incident solar radiation. Explicit simula-

tion can estimate the effects of a particular forcing; however,(5x (1)) = (x(1)) — (x(?)) ,

simulation can be prohibitively expensive if the response to

a large set of possible forcings is required. One method ofwvherex (r) represents the state vector of the system without
reducing the cost of a local estimate is to truncate the calforcing appliedx;(¢) represents the state vector of the sys-
culation to a local simulation at a high resolution forced by tem with the forcing applied and the angled brackets)
boundary conditions given by a low resolution global simu- denote the ensemble average over a large number of inde-
lation. For estimating the response to a forcing applied ovempendent realisations. Assuming that the system is sufficiently
a short time this regional approach seems effective, (see forandom and that its probability density function (PQiR)x)
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is differentiable, the linear component @f (¢)) is given by sufficiently larger. An alternative suggested 6yooper and
. Hayneg2011]) is to use the methods of non-parametric statis-
Vep (x0) 77 tics to approximate (x). Unfortunately, the non-parametric
(8x(1)) =— / <x () [W] >5f (t—7)dr, (1)  FDTthey suggestis susceptible to problems due to a high di-
mensional state vector and some form of truncation appears
helpful.

To explore possible truncation strategies a simple toy
model is an appropriate first step. We consider as our test
bed a stochastic version of the Lorenz 95 systéorénz
1995 whose state vectox = (x1,x2, x3,...,Xg) contains
d > 3 variables and is governed by

whereé f (1) represents a forcing vector at timand T de-
notes the vector transpose; see for exaniéconi et al.
(2008 for a recent review. Throughout this paper we make
the assumption that the meanxfas been subtracted and
therefore(x (1)) = 0.

For practical evaluation oflj knowledge ofp (x) is re-
quired. If it is assumed thai (x) is well approximated by  dx;
a Gaussian, 1) reduces to the Gaussian FDT (sometimesd_tj =xj-1(xj+1—xj-2) =xj + [ +8f; +ak, ©)

called the quasi-Gaussian FDT) where f is a constant equal to 8 in this paper. This choice

t of f makes the system chaoti¢=1,2,3,...,d, §f; rep-
(8x (1)) ~ /C(T)C(O)_le(t —7)dr, ) resents an additional small forcing represents a Gaussian
) white noise term with unit variance witha constant control-
ling its amplitude. The state vector is periodic, so that3n (
where C(t) is the lagt covariance matrixGritsun and  xp = x4, x_1 = x4—1 andxy+1 = x1. The precise details of
Branstator(2007) amongst others have applie?) fo atmo-  our integrations are detailed in Appendix A. (The Lorenz 95
spheric general circulation model simulations with promis- system is sometimes referred to as the Lorenz 96 system in
ing results. The Gaussian FDT requires the inversion of ahe literature due to a confusion regarding the dates of first
covariance matrix which can be difficult when considering publication.) This particular system is appropriate to this in-
a large state vector. In order to evaluate2) Gritsun and  vestigation because the dimensionality of its phase space is
Branstator reduced the size of their state vector by first seeasy to vary and can be made large enough to allow explo-
lecting particular variables and truncating their system fromration of the effectiveness of truncation, itis symmetric in the
18 352 components to 1800 EOM4ajda et al.(2010 sug- sense that each point has the same relation to its neighbours,
gests some strategies for truncation in EOF space, however,and its solution with an appropriate choice ffis chaotic.
general quantitative theory for such truncation, e.g. predict-ln addition, the system is local in the sense that each element
ing any biases introduced, has not yet been developed. of the state vector only directly effects its close neighbours.
In the context of global climate modelling aspects of the More distant elements of the state vector are only affected
dynamical system, such as separation of timescales assodndirectly allowing for the possibility of correlation decay-
ated with hydrostatic and geostrophic balance, can be exing with distance as in many physical systeingcarini and
ploited to facilitate truncation. For exampRing and Plumb  Sarno(2011) demonstrate that the Lorenz 95 system pos-
(2008 use the solution of an “Eliassen problem” based onsesses many of the properties required for investigation using
geostrophic balance to truncate an idealised general circulasome form of linear response theory alldramov and Ma-
tion model by expressing all variables in terms of the zonaljda (2007 tested the various forms of their blended response
wind. Their truncation is then used, for example, to convertalgorithm (that requires a tangent linear model) to predict the
a particular forcing of global temperature into an equivalentresponse of the Lorenz 95 system. They reported predictions
forcing of the zonal wind, that can then be used in a truncatedvith similar accuracy to those of this paper. We must bear
version of (). in mind that the Lorenz 95 system may have a very different
One problem with?) is that the assumption of Gaussianity underlying nature to that of the true climate system, so the
where it is not appropriate may cause unacceptably large eresults reported here may or may not be applicable to that
rors in a response predictioB¢oper and Hayneg2013. An case.
alternative approach, appropriate for short time responses, is The response after a long time has elapsed of each element
to use an ensemble adjoint techniqlgyiak et al, 2004). of x to a continuous unit forcing applied to a single poipt
Equation () is recast into a different form that depends upon of the Lorenz 95 systen8] is plotted in Fig.1. The response
a tangent linear model. This technique overcomes the probis estimated from two long integrations &)(with §f; =0
lem of an unknown PDF, but is valid only up to a maximum and 1, respectively. An initial period, longer than any corre-
lag t, and requires the availability of the tangent linear modellation times, is discarded and the experiment is repeated ten
(and hence cannot be used with data derived from measurdimes for robustness; see Appendix A for details. The final
ments) Abramov and Majd42007) introduce a “blended re-  element ofx in each plot is linked by3) to the first. The re-
sponse algorithm” that extends thgink et al. (2004 ap- sponse to the left of the applied force is relatively small and
proach to longer lags by assuming thaj {s accurate for almost completely restricted to two points. The response to
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the right is larger in places with the amplitude reducing in (@ g,

241

a non-monotonic manner with distance. The overall impres-
sion is that the response is somewhat local to the forcing and
does not strongly depend upon the dimensionality ofn
effect, the extra points in thé = 72 system do not make a
significant contribution to the response and we should be able

<Ox>

-0.2

to simply ignore them when making a response estimate. The
experiment repeated fof = 18 andd = 144 does not alter

50 60 70

this conclusion. Figuré& suggests that the response will only ® g2
be well captured if the system is truncated locally rather than
in a non-local Fourier or EOF space. For the purpose of ap-
plying (1), we are interested in the linear component of the
response. For a forcing sufficiently small to be in the linear
regime, the response to forcing more than one element of

<dx>

-0.2

may be estimated as the sum of the responses due to forcini
the single elements separately. In the case of the Lorenz 9%

30 40 50 60 70
Grid point

system, all grid points are equivalent and we can calculate the© 0.2
response to any linear forcing by considering the response of

a single grid point. In other words, the linear response to any A :
v

combination ofsf; may be estimated using Fig. There-
fore, we restrict ourselves to forcigf only in the direction
of xi, sothatsfy =1 andsf; =0 for j # k.

To investigate possible truncations, we first split the state

vector into three components

Xk
Xd |,
Xi

X =

wherex; is the element to which a forcing is applied is

a vector of the components af that are closely related to
xx, andx; is a vector of the components otthat are in some
sense approximately independenkpfiuring an integration.

“w
\

30 40 50 60 70
Grid point

We now introduce a localised response approximation (LRA)Fig. 1. The responsddx) of the Lorenz 95 system to a forcing

that the PDFoy(q,iy of xx given a particular value of all of
the other state vector elements is equal to the BLFOf xi
given only the values af,

(4)

Okl(d,iy Xk | (xd, Xi)) ~ prd (Xk|xd) .

of §f1g=1.0 with the location of§f;g indicated by the vertical
dashed line. To compare with typical fluctuations during an inte-
gration, the standard deviation of a single element &br §f =0

is estimated as- 3.6 fora = 0. The number of elements in the state
vector for(a) and(c) is d = 36 and for(b) and(d) is d = 72. Plots

(a) and(b) correspond to the deterministic system witk= 0 and

This assumption is justified by the fact that changes to(c) and(d) correspond to the same system with additional stochas-

Ok|(d,i) are negligible given sufficiently small variationsxn
i.e. typical random or chaotic variations i are not large
enough to influence the value of. The utility of the LRA
therefore depends upon the relative dimensionpandx;.
We use the LRA of4) and the fact that

(x)
Pri@.i) (ok| (¥, Xi)) = W X
and
_ [p(x)dx
Pkld (X |xd) = W (6)
to write
p(x)= Pk,d (Xk, Xd) Pd,i (Xd,xi)7 (7)

pd(xd)

www.nonlin-processes-geophys.net/20/239/2013/

tic noise,a = 2. The integrations are sufficiently long to obtain an
accurate response, (2 standard deviations divided by the square root
of the number of integrations is smaller than graphical accuracy),
which is the same as that reported Algramov and Majd42007);

see their Fig. 2. The difference between the first 36 poinfa)asind

(b) or (c) and(d) is not significantly different from zero with this set

of integrations. Note that the response to linearly forcing multiple
grid points simultaneously is simply the sum of the responses to the
decomposed single grid point forcings.

where

od,i (xd, Xi) =[p(X)ka,
Pk,d (Xk, Xd) Z/p(X)dxi
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and
Pd(xd)Z//p(x)dxidxk-

Substituting {) into (1) and restricting forcing to the direc-
tion of x;, we obtain

t

wumw—/<uw

0

dpk,d (xx(0), x4(0))
0Xy

1
Pk,d (xk(0), x4(0))

Note that the response in the directionagfdue tosf is
Zero:

>8fk (—tydr.  (8)

(8xi(1)) ~ 0. )

The PDFp g in (8) is a function only ofx; andxq. De-
pendence upow; has been eliminated. If we now assume
Gaussianity, we can obtai)(for the system that involves
smaller covariance matrices obtained using onlyandxg.

Now suppose we are interested in the response to a forcing

3 f that is not restricted téf;, we may use the fact that we

are in the linear regime to compute the linear response to

forcing a single elemerdtf; for each;j and sum the results.

2 Atruncation algorithm

An algorithm that finds the appropriate truncation of phase

space according t@f may now be developed. We define

X
xr:< k)
Xd

Now we do not know in advance which elementsxofo
include inxq and therefore truncate iteratively towards nu-
merical convergence of our estimate of the respqfis€)).
Our starting point will be the maximum truncation possible,
i.e. settingx; to have only the element to which the forcing
is applied,x (t) = (xx(¢)). We then obtain an estimate for
(8x(¢)) using a non-parametric FDT algorithmX) which
we denote bys}r(t); see Appendix A for details. Next we

try a truncation that in addition includes another grid point

and see if the estimated response of grid pkiohanges. If

it does change, then using two grid points gives us a more

accurate estimate @f(x) present in {) and approximated in

(8), see Fig2. On the other hand if it does not change then
perhaps poink and the tested point are independent. We re-

peat this process, checking poinwith all other grid points

and pick the grid point that contributed the largest change

in éx(¢) to include in our truncated state vecter. For ex-

ample, if grid pointk + 3 caused the estimated response to
change the most, then for the next round of testing we choos§~

Xk

Xr = .
Xk+3
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Fig. 2. The contours of a two dimensional marginal PRfx1, x2)
(a). Integratingp2(x1, x2) in the xo direction gives the one dimen-
sional marginal PDkp1(x1) (b). In this case the plots illustrate that
the quantitiesp,/dx1 anddpq/9x1, which may be used ir8f are
different.

The entire process is then repeated to find the next points to
add toxy, this time looking at the largest change in the re-
sponse at points andk + 3, (estimated using the normalised
root mean squared difference, RMS)

> (Bxe (1) = 8y 0))?
> (8 (0)

RMS distance=

wherea’}w(t) is the response estimated from the previous
round of tests and’ indicates the current dimensionality
of x;. We continue to successively add more and more grid
points tox; until the estimated response no longer changes.
At this point we assume that we have a good approximation
of the optimal truncation so tha8)is a good approximation

of (1).

One problem with our truncation algorithm is that we are
comparing a response estimated usitiggrid points with
response estimated usitdg+ 1 grid points. Our estimate

x () is biased by an amount depending somehow upon the
dimensionality of phase space; see Eq. (21Lobper and
Haynes(2011). We must account for this or otherwise any

www.nonlin-processes-geophys.net/20/239/2013/
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change in the estimated response may be due to bias rathe()

than a genuine interaction of variables. We do so by adding gl ' gm%
a variable of Gaussian distributed random numbers (with ap- ' °°¢°
proximately the same variance as thakpfto the truncated o§ 0.5} f | \%
state vectory. So in the example above we would at some W !
point compare the response given the vectors !
0 L . . . . .
X (1) and xx (1) 10 20 30 40 50 60 70
xG(1) xk43() )7 (b) L . ,
wherexg represents the Gaussian random numbers. '.?3&’
2.1 Further truncation ﬁ 0.5} ;: %"% 1
£
It is necessary to estimate a subset of the domain to use as .wwd” ! \wmw;
starting point for the above calculation. This is because it is 0 10 '2'0 20 20 50 60 70
computationally expensive to apply the FDT to every single Grid point
grid point, several times, when the number of grid points is ()
large. One choice of region in an atmospheric context could 1r ' i '
be the setD of all points where the integral of absolute :;-;3
positive lagged correlations is greater than some threshold o sl " \'\Z
Cabsmins i.e. the set ' é:
D= {X . Capsj (X) > Cabsmin},

forall j =1,2,3,...,d, where

Caps(x) = / (X (@) (O] d (10)
0

Then the elements @fpsthat are greater thatypsmin Would
be the only points considered when looking for an appropri- , P ooy Rooa;
ate truncation. The zero in the lower limit indicates that we 10 20 30 4 50 60 70

are looking for the response to a forcing, rather than all vari- Grid point

ables that have some relationfo For the Lorenz 95 system,  Fig. 3. Evaluation of (0), plots(a) and(b), and (1), plots(c) and

Cabs is plotted in Fig.3 which shows that the (normalised) (q), for the deterministicd = 0) Lorenz 95 system is indicated by
absolute value of the response lies under the (normalisedhe black lines. The grey lines indicate the absolute value of the
values ofcyps Note that in any suitably random system, el- responsel(éx)|. The number of elements in the state vector for
ements ofcaps cannot be zero because we take the absolutda) and (c) is d = 36 and for(b) and(d) is d = 72. The vertical
value of the correlation estimate which, in turn, is subject toScale has been normalised so thgds; = co,x = [0x¢| = 1 where
statistical uncertainty. Therefore, if we are able to estimatet = 18. The location of the forcingfyg is indicated by the vertical
the contribution of this uncertainty, for example from two in- dashed line and statistical error, 2 stapdard_devnatlons divided by_the
dependent integrations, we can pick an appropriate value fozgzsrrgcroot of the number of integrations, is smaller than graphical
our threshold:apsmin. For the Lorenz 95 integrations consid- 4

ered here the normalised value @bsmin ~ 0.12 and from
Fig. 3 we would be able to eliminate about one third of the

oints from the 72-element system and none of the point )
?rom the 36-element system y P fact the absolute value of row of the matrle(;>o C(r)dr

Equation (0) specifies a rather conservative estimate of_that appears in the expression fo_r the Gausgan RO
the region to consider and as such may not solve the prob'-s related to the spectral density via Parseval’s theorem. The

lem given limited computational resources. For this investi- Metivation for not simply usingd) to estimate our trunca-

gation, rather tharmaps @ more useful truncation region is tior_1 region is. thaf[given_a large state vz_actor and “’T“.‘ed data,
based upoie, which is given by WhICh. is typ|f:al in a climate contgxt, it C_a{1 be difficult or
even impossible to accurately estim&€0)~-. In any case
x® where (1) is zero, @) gives zero response anyway. Figdre
Co= / (x(t)xx (0))dt (1)) shows that in our case the region estimatedltiy {s a much
tighter fit to the response region and the number of points to

é/vith a threshold:g min estimated in the same way. This is in

0
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consider is reduced considerably. However, to find an appropendix A. As the dimensionality’ of phase space increases,

priate threshold valueg min, accurate evaluation ofLg) is the integral over alk, of the kernel function must remain

necessary. This may not always be possible and is not sucbonstant. Fixing an acceptable level of variance in the pre-
a problem for 10). Another problem with 11) is that it is  dictions of the FDT and increasing the dimensionality has
only a good approximation for systems with close to Gaus-the effect of requiring a broader kernel to approximate the
sian statistics. If a system is extremely non-Gaussiat), ( PDF with. Eventually, the kernel is so broad that one may as
may be a poor approximation and we must resort to usingvell approximate the convolution of the data and the kernel

(10) instead. with a single Gaussian blob with non-isotropic covariance. If
this is true for our system then the response predicted by the
2.2 Application of the algorithm Gaussian form of the FDT2f and Eq. 1) using our estima-

tor, should be approximately the same; see big.

By invoking the LRA @), we now have an algorithm that The fact that our estimator approximates a smoothing con-
we can actually apply to high dimensional data sets providedsolution of the PDF leads us to suspect that it has skill
the response to a localised forcing is sufficiently local. Usingwhen applied to stochastic systems where the white noise
Fig.3c and d, we consider only the region between pdinrts  term leads to a genuinely smooth underlying PDF. Although
7 tok + 16 inclusive and apply the FDT for each truncation. it may appear slight, the FDTAL) has more skill for
The RMS difference between the true response at all gridhe stochastic case whetsie= 2 than the deterministic case
points, (found by integratindggf), and the response predicted wherea = 0; see Fig4. Given sufficient smoothing (by in-
by our estimation of§) and Q) is plotted as a function of the creasing the value af), we eventually get to the situation
number of elements included i in Fig. 4 (black circles). where the non-Gaussian aspects of the underlying PDF are

Figure4 demonstrates that for the Lorenz 95 system, pre-small corrections to @ dimensional Gaussian. In this case
dictions of the response using our estimator@)f{ave some the Gaussian approximatiof)(is a good one.
skill. This figure illustrates that for a truncation to 10 grid
points of the 36-element system, with the noise term 0,
the RMS error squared (i.e. the mean squared difference), i8 Conclusions
made up by variance due to a finite run length %, missing
responses due to truncatien29 % and bias in the FDT al- If we wish to apply the fluctuation-dissipation theorem
gorithm~ 66 %. For the 36- and 72-element systems, the re{FDT) to predict the response to forcing in general circula-
sults have similarities which indicates that for the Lorenz 95tion models, reanalysis data sets, and measurements of the
system we may be close to the point where the predictiveclimate system, truncation of the huge state vector present
skill of our algorithm is independent of the dimensionality of in these systems seems necessary. We have argued that trun-
the full state vectox. Similar results (not shown here) were cation of the state vector to include only the locality of the
obtained with an 18-element system. forcing (according to variations in predictions of the FDT)

An interesting point to make about Fig.is that there may be appropriate to some chaotic high dimensional sys-
appears to be an optimal truncation at arodhe=9. Un-  tems and have tested this hypothesis using a 36- and 72-
fortunately, we did not predict the precise location of elementLorenz 95 system. The practical implications of this
this optimum in advance. Initially the skill increases non- localised response approximation (LRA) are, for example,
monotonically as more grid points are added before reachthat if we consider the atmospheric response to a heating
ing the optimum truncation. The RMS error then increasesover one small part of the planet, perhaps there are regions
slowly up to its value when all grid points are included (with- that contribute very little to the response. If these regions ex-
out any truncation). We can hypothesise as to the reasons bést then they may be safely ignored in a FDT calculation.
hind this behaviour. Firstly, we have no reason to believe that One method of truncation that has previously been applied
high skill at predicting the response of the first point on its (see for exampl&ritsun and Branstatp?007) is to use only
own would translate to other dynamical systems in some gena given number of leading EOFs. Each EOF is described by
eral case. Secondly, the reduction in RMS error with morea fixed global pattern and the associated principal compo-
than four grid points could be due to the FDT calculation in- nent time series describes its evolution in time. For systems
cluding a better approximation of the underlying PDF in the where the response to a local forcing is spatially localised,
manner described in Fig. Thirdly, the increase in RMS er- a localised truncation seems preferable. To illustrate this we
ror beyond the optimal truncation is at least partly due to thenote that the responses of the 36- and 72-element Lorenz 95
bias present in our estimator @&)( An intuitive explanation  systems to a good level of accuracy are the same, i.e. the
of the cause of this bias could be simply that complex shapegxtra points in the 72-element system can be ignored. Trun-
present in a PDF become harder and harder to approximateation in EOF space does not take advantage of this fact but
accurately as their dimensionality increases. In our case wépcalised truncations do. In addition, if the response to a lo-
are approximating the underlying PDF by a convolution of cal forcing is sufficiently localised, truncation to these points
the data (from integrations) with a kernel function; see Ap- allows us to apply the FDT to data sets of any dimensionality.

Nonlin. Processes Geophys., 20, 233438 2013 www.nonlin-processes-geophys.net/20/239/2013/
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Fig. 4. RMS difference between the response of the Lorenz 95 system estimated by inte@ading (sing the non-parametric FDAX)
where the number of elements in the full state vecto(ddand(c) is d = 36 and for(b) and(d) isd = 72. Plotga) and(b) correspond to the
deterministic system with = 0 and plotqc) and(d) correspond to the same system with additional stochastic nocis@. The black circles
indicate the RMS difference of the entire state vector usth@id ©). The grey circles indicate the RMS difference of only the elements to
which the calculation is applied using)( The solid line at the bottom of each plot indicates the minimum possible RMS difference of the
grey circles with this data set, i.e. the difference between the responses estimated using two independent sets of data found by integrating
(3). The straight horizontal line is the RMS difference between integraBphar{d the response estimated using the Gaussian form of the
FDT (2) for the 36-element system; see Fif) for a plot of this response. The dashed lines, indicating uncertainty, represent two standard
deviations divided by the square root of the number of independent integrations. An estimate with zero skill, (gBewittythe entire
state vector being independent of the forcing), has a RMS difference of one using this normalisation. It is possible to do worse than this by
overestimating the response by a factor of greater than 2.

The FDT applied here gives only the linear component ofgeneral not susceptible to any simple linear decomposition
the response of the non-linear system considered. This is mto localised forcings. In additiorij only applies to the lin-
good approximation for the full response if the forcing is ear component of any response calculation and large forcings
sufficiently small. Being linear, the sum of the responses estitequire a generalisation (e.Boffetta et al, 2003. In some
mated separately for two different forcings is identical to the situations, even with simple systems similar to that consid-
single response estimated for the sum of these two forcingsered here, the response may be entirely non-lineacdrata
We may therefore estimate the entire set of possible linear reand Vulpianj 2007).
sponses by appropriate summing of the responses to forcing The non-parametric FDT algorithm requires that we use
each grid point individually. Similarly, quantities such as the an approximation of a PDF using a convolution of the data
response in the mean, or any other combination of severahnd a kernel function. The kernel function fills the gaps be-
variables, may be estimated from the appropriate combinatween data points. Given more data these gaps are smaller
tion of responses to separate local forcings. Forcings suffiand the kernel function can also be narrower leading to a bet-
ciently large to make the response strongly non-linear are irter PDF approximation. However, increasing dimensionality
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@ o2 , , , , , , , also large. If the PDF has a complex shape then its accurate
? ?l approximation is extremely difficult and is likely to require
A .'?" '-';? more data than is possible to obtain. Deterministic systems
@ o‘m"::; ' .[ﬂfbdb ; may even have a fractal PDF that makes uselpfifficult
:c‘;é" X & to justify. Other expressions such as the linear response rela-
' tion of Ruelle(1998 may have to be considered.
-0.2 10 '2'0 20 20 50 50 70 In addition to using truncation, there are seve_ral improve-
ments that could be made to the non-parametric FDT algo-
®) o2 : o : . . . . rithm. It may be possible to obtain insight into its bias by
4 considering different kernels with the same data set, or to re-
A " -'iﬂoa‘,', duce the bias via adaptive density estimation, Siéeerman
(,ﬁ (09030608080808 :I'." ‘.'.' Es' ;”'a*uf‘ 808000000108 8NN (1986 andCooper and Hayng2011). If restrictions such as
& & conservation laws can be placed upon a system’s PDF, per-
: haps by analytical consideration of the underlying equations,
0220 3040 50 60 70 it may also be easier to approximate. Another approach may
© Grid point be to adopt the tangent linear algorithmEyfink et al.(2004
0.2 ; - ; ; ; ; ; with the “blended response” modification &bramov and
/>\<° : Majda (2007 which replaces estimation of the PDF by esti-
KI? o l mation (or calculation if the underlying equations are avail-
A% Y "? e apndRoRom able) of a tangent linear system.
x 1
v !
02 10 20 30 40 50 60 70 Appendix A
(d)
© 02 . Experiment specification
S 1
%{D We test the FDT 1) using the stochastic Lorenz 95 sys-
,\CZL l tem introduced above where we choose the congtantS.
%,5 l It is approximated by applying a fourth-order Runge—Kutta
: method Press et al.2002 to the deterministic part of3j

o2 3OGrid pg‘iﬂt %0 6070 and the method of &nelin Rimelin 1982 to the stochas-
tic part using the Mersenne Twister algorithiMgtsumoto
Fig. 5. Response of the deterministi¢ £ 0) Lorenz 95 system es- and Nishimural998 for random numbers. We choose state
timated using the Gaussian FD2)(plots(a) and(b), and the dif-  vectors of sizel = 36 andd = 72 and starting with random
ference between the Gaussian F2Jgnd the non-parametric FDT  jnitial conditions we use a time step off =103 and af-
(Al) as an estimator _oﬂl} without truncation, plotséc_) and(d). The ter discarding 19 time steps iterate from=0 to ¢ = 108,
number of elements in the state vector fayand(c) isd = 36 and This may be compared with 1.74, the value of the largest

for (b) and(d) is d = 72. The grey lines indicate the true response S
plotted in Fig.1 and the RMS difference between the grey and black Lyapunov exponent for the deterministic systeflamov

points is~ 75 % as indicated by the uppermost straight horizontal and.Majda.200.7). We p.e.rf.orm 10 .|(.jent|cally specified .|nte-
lines in Fig.4. The location of the forcingfyg is indicated by the  drations with different initial conditions for each experiment
vertical dashed line and statistical error, 2 standard deviations diin order to get a measure of the statistical uncertainty. Equa-
vided by the square root of the number of integrations, is smallertion (8) is only valid in the linear regime, i.e. for a sufficiently
than graphical accuracy. small forcing. In order to discover the range over which the
linear approximation is valid, we perform several integra-
tions of @) with —8 <§f; <8 andsf; =0 for j #k and
necessarily increases the width of the kernel function relativek = 18. The average value of elements 18 and 19 of the state
to the distance between data points leading to a worse PDFector of thed = 36, a = 0 integrations averaged overf0
approximation. In a high dimensional space, the kernel functime steps is plotted in FigAl. For a forcing ofs fig = +1
tions significantly overlap and although we have not shown itthe non-linear component of the response is small in compar-
in any analytical way, the non-parametric FDT seems to ap-ison with the size of the total response. A similar range and
proach the Gaussian FDT (Fi). If the response to a local accuracy of linearity is observed for all elements of the state
forcing is spread over a large number of grid points (and anvector, and if the integrations are carried out with- 72.
accurate transformation to a smaller number of grid points Taking care that the relevant integrals have sufficiently
is not available), then the dimensionality of phase space irconverged, (10 is used to approximate infinity in the upper
which the non-parametric FDT must approximate a PDF islimit of the integral), the Gaussian FDZ)(is evaluated using
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state vector recorded at a particular time. Here a unit of the
indicesi and j correspond to a time between recordings of
X of 10 and a unit of the index corresponds to a time be-
tween recordings of 1. So for example if =5, j = 7 and

s =137 then the values afthat X;, X; and X, corre-
spondto are 50, 70 and 70.137, respectively. To evalddte (
we user = 10* (representing 10 time units to approximate
infinity as the upper limit of the integral irg)), m = 10°,
n=10°, up = 0.5At andu, = At for s > 0 with our choice
being motivated by a trade off between accuracy and avail-
able computational power; s&pnoper and Hayne011).

In Cooper and Hayne&011), the functionE was repre-
sented by, ad dimensional Gaussian with isotropic covari-
anceh. Here for computational efficiency we use the multi-
dimensional Epanechnikov kern&ifverman 1986 with-

out normalisation

R—(x—-yTx—y), I|x—yl<h

E(x;y.h) =

0, otherwise

(A2)

To estimate the response usiml], a value of the free pa-
rameterh must be chosen. We choose the smallest guess of
that corresponds to the standard deviation of the estimated re-
sponse of element g being no larger than five percent of the
estimate of its mean. Our choice kfis not well optimised
because this is computationally expensive and the benefits of
improving upon a simple guess appear small;Geeper and
Hayneg(2011]) for a discussion.
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lines indicate two standard deviations divided by the square root

of the number of independent integrations (of which there are 10).

Plots of the response of other vector elements or of the elements

a 72-element or stochastic Lorenz 95 system yield similar ranges o

linearity with different gradients near the origin.

the standard unbiased estimator for the covari&@e. Fol-
lowing Cooper and Hayne@011), we approximate§) by
the non-parametric method

m n v AT v

[\(SAI)=ZXJ-+S|:ZI'=1(XJ Xi) E(Xj; X, h)
=1

(AL)

h23 i 1 E(X); Xi,h)

J

and

Sx(h) =) usAO) A (sADSf,
s=0
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