Topology and Groups

Week 7, Thursday

1 Preparation

- 7.03 (Uniqueness of lifts),
- 7.04 (Homotopy lifting).

2 Discussion

- 1. (PCQ) Why does monodromy around a loop only depend on the homotopy class of the loop?
- 2. Suppose that $p: Y \to X$ is a path-connected covering space and consider the monodromy action of $\pi_1(X, x)$ on $p^{-1}(x)$.
 - Is this action is always transitive?
 - What is the stabiliser of a point $y \in p^{-1}(x)$?
 - Can you give a topological interpretation of the *index* of the subgroup $p_*\pi_1(Y,y) \subset \pi_1(X,x)$?

3 Classwork

Let X be a space and let $p: Y \to X$ be a covering map.

- 1. Show that $p_* \colon \pi_1(Y, y) \to \pi_1(X, p(y))$ is an injection.
- 2. Let $\beta \in \pi_1(X, x)$ and let $\sigma_\beta \colon p^{-1}(x) \to p^{-1}(x)$ be the monodromy around β . Show that

$$\beta^{-1}p_*\pi_1(Y,y)\beta = \pi_1(Y,\sigma_\beta(y)).$$

Deduce that if Y is path-connected then any subgroup conjugate to $p_*\pi_1(Y, y)$ arises as $p_*\pi_1(Y, y')$ for some $y' \in p^{-1}(x)$.

4 Borsuk-Ulam theorem

We will prove the Borsuk-Ulam theorem:

• There is no map $g: S^2 \to S^1$ satisfying g(-x) = -g(x).

assuming the fact (to be proved soon) that there is a 2-to-1 covering map $p: S^2 \to \mathbf{RP}^2$ such that p(x) = p(-x).

For contradiction, we will assume that we can find a map $g: S^2 \to S^1$ such that g(-x) = -g(x).

- Why is the map $\bar{g} \colon \mathbf{RP}^2 \to S^1 / \sim, \bar{g}([x]) = [g(x)]$, well-defined and continuous (where \sim is the equivalence relation on S^1 which identifies opposite points)?
- Consider the diagram

Translate this (via induced maps) into a diagram of homomorphisms between groups. What can you say about \bar{g}_* ?

- Let α be a loop in \mathbf{RP}^2 representing the nontrivial class in $\pi_1(\mathbf{RP}^2) = \mathbf{Z}/2$; what does the monodromy around α do? (Hint: Recall that p(-x) = p(x)).
- Using the fact that g(-x) = -g(x), deduce that the monodromy around $\bar{g} \circ \alpha$ is nontrivial. Hence derive a contradiction.

Deduce the following corollary:

• If $f: S^2 \to \mathbf{R}^2$ is a continuous map then there is a point $x \in S^2$ such that f(x) = f(-x). In particular, there is no continuous injection $S^2 \to \mathbf{R}^2$. (Hint: Assume you have an f such that $f(x) \neq f(-x)$ for all x. You need a trick to convert such a map $f: S^2 \to \mathbf{R}^2$ into a map g like in the earlier theorem).