Topology and Groups

Week 7, Monday

1 Preparation

- 7.01 (Covering spaces),
- 7.02 (Path-lifting, monodromy).

2 Discussion

- 1. (PCQ) Are there any 2-to-1 covering spaces of the figure 8 other than the two given in the notes?
- 2. What are the monodromies for these covering spaces?
- 3. How many 3-to-1 covers of the figure 8 are there? What are their monodromies?
- 4. Can you draw a covering space of the figure 8 which:
 - is ∞ -to-1?
 - has a fundamental group which is not finitely generated?
 - is simply-connected?
- 5. (PCQ) Suppose that $p: Y \to X$ is a covering map and $x_0, x_1 \in X$. Is it true that there is a bijection $p^{-1}(x_0) \to p^{-1}(x_1)$? Give a proof or a counterexample. What if there is a path connecting x_0 to x_1 ?

3 Classwork

- 1. In each case, $p: Y \to X$ will be a covering space and $y \in Y$ will be a basepoint. Compute $p_*\pi_1(Y, y) \subset \pi_1(X, p(y))$.
 - $X = Y = S^1, \ p(e^{ix}) = e^{inx}.$
 - X = 8, Y is any of its connected double covers, and y is one of the two preimages of the cross-point. (Do it for all such Y, y).
 - X = 8, Y is any of its connected triple covers, and y is one of the three preimages of the cross-point. (Do it for all such Y, y).

Does your answer depend on which preimage of the cross-point you choose as basepoint?

- 2. In the examples above with X = 8, which of the subgroups you computed was normal? What do you notice about these covering spaces?
- 3. Let X be the figure 8 and let $G = \pi_1(X)$.
 - The commutator subgroup [G, G] is defined to be the subgroup generated by all commutators $aba^{-1}b^{-1}$ with $a, b \in G$. Can you write down a covering space $p: Y \to X$ and a basepoint $y \in Y$ such that $p_*\pi_1(Y, y) = [G, G]$?
 - What does the example you just found have to do with the 2-torus?
 - Given any subgroup $H \subset G$ is there a covering space $p: Y \to X$ such that $p_*\pi_1(Y, y) = \pi_1(X, p(y))$?

4 Assessed project 2

A branched cover of (orientable) surfaces $F: Y \to X$ is a map with the following properties:

- There exists a finite set $R \subset Y$ (ramification locus), a finite set $B \subset X$ (branch locus), and an integer d such that
 - -B = F(R),
 - $-F|_{Y \setminus R}$: $Y \setminus R \to X \setminus B$ is a covering map of degree d.
- For each point $y \in R$, there is an open neighbourhood U of y and an open neighbourhood V of $F(y) \in B$ such that
 - There are (orientation-preserving) homeomorphisms $u: U \to D^2$ and $v: V \to D^2$ where $D^2 \subset \mathbf{C}$ is the unit disc.
 - Viewed in the coordinate charts u and v^1 , $F|_U: U \to V$ is the map $z \mapsto z^{n_y}$ for some $n_y \in \{1, 2, \ldots\}$, called the *ramification index* of F at y. Note that if n = 1 then this is just an ordinary covering map.

Examples: The archetypal example of a branched cover is the map $F: \mathbb{C} \to \mathbb{C}$, $F(z) = z^n$. Another example would be the following. Take a surface of genus 2 and consider the $\mathbb{Z}/2$ -action on it where the nontrivial element rotates by 180 degrees around the axis shown. The quotient map is a 2-to-1 branched cover of the sphere with 6 ramification points, each having index 2. (A double branched cover of the sphere is also called a *hyperelliptic* cover).

¹In other words $(v \circ F \circ u^{-1})(z) = z^n$.

1. (Riemann-Hurwitz formula) Let $\chi(X)$ and $\chi(Y)$ denote the Euler characteristics of X and Y. Show that

$$\chi(Y) = d\chi(X) - \sum_{y \in R} (n_y - 1).$$

(Hint: Consider suitable CW structures on X and Y.)

- 2. Show that a hyperelliptic cover $F: Y \to S^2$ has 2g + 2 ramification points, where g is the genus of Y.
- 3. Let p(x) be a polynomial of degree d with no repeated roots. Consider the subset $Y = \{(x, y) \in \mathbb{C}^2 : y^2 = p(x)\}$ and let $F: Y \to \mathbb{C}$ be the map F(x, y) = x
 - Find the Euler characteristic of Y.
 - For large r, what is the preimage under F of the circle of radius r in **C**? (Hint: there should be a difference when d is odd or even.)
 - Given that a surface with genus g and b boundary circles has Euler characteristic 2 - 2g - b, what is the genus of Y?
 - What is the preimage of an arc connecting two of the roots of *p*?
 - In the case $p(x) = x^3 x$, sketch the surface Y along with the preimages of the arcs in the real axis connecting -1 to 0, 0 to 1 and 1 to ∞ .
 - Sketch the real curve $\{(x, y) \in \mathbf{R}^2 : y^2 = x^3 x\}$. What does this picture have to do with your drawing from the previous part?