Topology and Groups

Week 6, Monday

1 Preparation

- 6.01 (Braid group),
- 6.02 (Artin action).

2 Discussion

- 1. (PCQ) Why do braids form a group under stacking?
- 2. (PCQ) What is the Artin action of σ_1^{-1} ?
- 3. Recall that each braid $(F_i(t), t)$ satisfies $F_i(0) = z_i$ and $F_i(1) = z_{s(i)}$ for some permutation $s: \{1, \ldots, n\} \to \{1, \ldots, n\}$. The assignment of the permutation s to the braid $(F_i(t), t)$ gives a homomorphism from the braid group B_n on n-strands to the permutation group S_n . The kernel of this homomorphism is called the *pure braid group* PB_n . Can you give me a space X such that $\pi_1(X) = PB_n$?

3 Classwork

1. Give a picture-proof that the braid relations hold:

$$\begin{split} \sigma_i \sigma_j &= \sigma_j \sigma_i \text{ if } |i-j| > 1 \\ \sigma_i \sigma_{i+1} \sigma_i &= \sigma_{i+1} \sigma_i \sigma_{i+1}. \end{split}$$

- 2. Calculate the Artin action of σ_1^n on $\mathbf{Z} \star \mathbf{Z} = \langle \alpha, \beta \rangle$.
- 3. Calculate the Artin action of $\sigma_2^{-1}\sigma_1\sigma_2^{-1}\sigma_1$ on $\langle \alpha, \beta, \gamma \rangle$.

4 Surgery on 3-manifolds

Let $K \subset S^3$ be a knot. Thicken the knot slightly; you get a knotted solid torus N called a *tubular neighbourhood* of the knot. Let $C = S^3 \setminus N$ be the complement of this solid torus. Both the boundary of N and the boundary of C are homeomorphic to T^2 . Let $\phi: \partial N \to \partial C$ be a homeomorphism and consider the space

$$S^3_{K,\phi} := (C \coprod N) / \sim, \qquad \partial N \ni x \sim \phi(x) \in \partial C.$$

In other words, $S_{K,\phi}^3$ is obtained from S^3 by cutting out a solid torus and gluing it back in with a twist, ϕ . This procedure for constructing new spaces is called *Dehn surgery*; any 3-dimensional manifold can be obtained by a sequence of Dehn surgeries on knots starting from S^3 .

- 1. Explain how you would compute the fundamental group of $S^3_{K,\phi}$ if you knew the fundamental group of $S^3 \setminus K$. Exactly what information do you need to know about ϕ ?
- 2. Given that $\pi_1(S^3 \setminus U) \cong \mathbf{Z}$, where U is the unknot, compute $\pi_1(S^1_{U,\phi})$ for the homeomorphism

$$\phi \left(\begin{array}{c} e^{i\alpha} \\ e^{i\beta} \end{array} \right) = \left(\begin{array}{c} e^{ia\alpha + b\beta} \\ e^{ic\alpha + d\beta} \end{array} \right).$$