Topology and Groups

Week 5, Thursday

1 Preparation

- 2.05 (Compactness),
- 2.06 (Hausdorffness),
- 2.07 (Homeomorphisms).

2 Discussion

- 1. (PCQ) Why is \mathbf{R}^n not compact? What about a punctured torus?
- 2. (PCQ) Why does a continuous function on a compact space attain its maximum?
- 3. Let $X = \{0, 1\}$ (discrete) and $Y = \{0, 1\}$ (indiscrete). Write down a continuous bijection $X \to Y$. Are these spaces homeomorphic? If not, why does the theorem from 2.07 not apply?
- 4. Which of the following statements is false?
 - A subspace of a Hausdorff space is Hausdorff.
 - A subspace of a compact space is compact.
 - If S and T are topologies on X, S is Hausdorff and T is compact and $S \subset T$ then S = T.
 - A discrete space is Hausdorff.

3 Classwork

- 1. Prove any of the claims in discussion point 4 which (a) was true but (b) wasn't obvious to you.
- 2. Prove that a quotient of a compact space is compact.
- 3. Let $X = \mathbf{R} \times \{0, 1\}_{disc}$. Let \sim be the equivalence relation $(x, 0) \sim (x, 1)$ if and only if $x \neq 0$. Try to "sketch" X/\sim and show that X/\sim is not Hausdorff. (This quotient is called the line with two origins, and shows that a quotient of a Hausdorff space need not be Hausdorff. Indeed, most non-Hausdorff spaces in nature arise as quotients. This is the first and only non-Hausdorff space we will meet in this module).

4 Discussion: Tychonoff's theorem

1. Can we prove that if X and Y are compact then $X \times Y$ is compact (and conversely)?