Topology and Groups

Week 3, Monday

1 Preparation

- 2.01 (Topological spaces, continuous maps),
- 2.02 (Bases, metric and product topologies),
- 2.03 (Subspace topology).

2 Discussion: topological spaces

- 1. What is a topology?
- 2. (PCQ) Can you think of an infinite collection U_i , $i \in \mathbf{N}$, of open sets in **R** such that $\bigcap_{i \in \mathbf{N}} U_i$ is not open?
- 3. (PCQ) Instead of checking that all finite intersections of open sets are open, we can just check that intersections of two open sets are open. Why is this sufficient?
- 4. (PCQ) Let X be a set. Can you give a base for the discrete topology on X? What is the smallest base you could give?
- 5. What is the subspace topology?
- 6. (PCQ) Show that the subspace topology satisfies the axioms for a topology.

3 Discussion: continuous maps

- 1. When is a map $F: X \to Y$ between two topological spaces *continuous*?
- 2. Let X be the set $\{0, 1\}$, equipped with the discrete topology and let Y be the set $\{0, 1\}$, equipped with the indiscrete topology. Which of the following maps is continuous?
 - $f: X \to Y, f(0) = 0, f(1) = 1.$
 - $g: Y \to X, g(0) = 0, g(1) = 1.$
- 3. Let $X = \{0, 1\}$ equipped with the discrete topology and $Y = \{0, 1\}$ equipped with the indiscrete topology; let **R** be the real line equipped with its usual (metric) topology. Which of the following functions are continuous?
 - $f: X \to \mathbf{R}, f(0) = 0, f(1) = 1.$
 - $g: Y \to \mathbf{R}, \, g(0) = 0, \, g(1) = 1.$
 - $p: \mathbf{R} \to X, \ p(x) = \begin{cases} 0 & \text{if } x < 0, \\ 1 & \text{if } x \ge 1. \end{cases}$ • $q: \mathbf{R} \to Y, \ q(x) = \begin{cases} 0 & \text{if } x < 0, \\ 1 & \text{if } x \ge 1. \end{cases}$

4 Classwork

In your learning groups, tackle the following questions:

- 1. Suppose that T is a topology on X. We say that a subset $A \subset X$ is closed if $X \setminus A \in T$ (i.e. its complement is open). Let T' be the set of closed sets in X. Prove that T' contains \emptyset and X and that it is closed under taking arbitrary intersections and finite unions. Deduce that we can equally well define topological spaces by specifying their closed sets. Give a characterisation of continuous maps in terms of closed sets instead of open sets.
- 2. Let X, Y be topological spaces, and suppose that $U, V \subset X$ are closed subsets. If $F: U \to Y$ and $G: V \to Y$ are continuous maps such that $F|_{U \cap V} = G|_{U \cap V}$ then prove that

$$H \colon X \to Y \qquad H(x) = \begin{cases} F(x) & \text{if } x \in U \\ G(x) & \text{if } x \in V, \end{cases}$$

is a well-defined continuous map. What if U, V are open?

- 3. Let X, Y be topological spaces and let $p: X \times Y \to X$ and $q: X \times Y \to Y$ be the projection maps p(x, y) = x, q(x, y) = y. Suppose that T is a topology on $X \times Y$ such that p and q are continuous. Show that T contains the product topology.
- 4. Let $F: Z \to X \times Y$ be a map. Show that F is continuous if and only if $F_X := p \circ F$ and $F_Y := q \circ F$ are continuous. (Hint: Write $F^{-1}(U \times V)$ in terms of $(p \circ F)^{-1}(U)$ and $(q \circ F)^{-1}(V)$). Deduce that $\pi_1(X \times Y, (x, y)) \cong \pi_1(X, x) \times \pi_1(Y, y)$.

5 Zariski topology (nonexaminable)

Here is an example of a topology which arises naturally in commutative algebra and is extremely useful for studying *algebraic geometry*.

Let R be a commutative ring. Recall that a subset $I \subset R$ is called an *ideal* if $ri \in I$ for all $r \in R$, $i \in I$ (for example, the subset $n\mathbf{Z} \subset \mathbf{Z}$ of integers divisible by n, is an ideal in the integers). An ideal I is called a *prime ideal* if $I \neq R$ and, whenever $a, b \in R$ and $ab \in I$, we have $a \in I$ or $b \in I$ (for example, $n\mathbf{Z}$ is a prime ideal if and only if n is prime). Let Spec(R) denote the set of prime ideals.

Given an ideal I, let $V(I) = \{P \in Spec(R) : I \subset P\}$ (what does this mean when $I = n\mathbb{Z}$ and $R = \mathbb{Z}$?). The Zariski topology is the topology for which the *closed sets* are the sets $\{V(I) : I \text{ an ideal}\}$.

- 1. What is $V(\{0\})$? What is V(R)?
- 2. Show that if $I \subset J$ then $V(J) \subset V(I)$.
- 3. Given two ideals I, J, the subset $IJ = \{ab : a \in I, b \in J\}$ is also an ideal. Show that
 - $V(I) \cup V(J) \subset V(IJ)$,
 - if P is a prime ideal containing IJ then either P contains I or P contains J.

Deduce that $V(I) \cup V(J) = V(IJ)$.

- 4. Given a collection of ideals I_k , define the ideal $\sum I_k$ to be the smallest ideal containing all the I_k . Show that $V(\sum I_k) = \bigcap V(I_k)$.
- 5. Deduce that the Zariski topology on Spec(R) is a topology.
- 6. Which points in $Spec(\mathbf{Z})$ are closed sets?
- 7. If k is a field, what is Spec(k)?
- 8. Let $R = \mathbf{C}[x]$, the ring of polynomials in one variable. Given a polynomial $f \in R$, when is the ideal $(f) = \{rf : r \in R\}$ of multiples of f prime? Since $\mathbf{C}[x]$ is a principal ideal domain, any ideal has the form (f) for some $f \in \mathbf{C}[x]$. Can you describe the topological space $Spec(\mathbf{C}[x])$ more concretely?