Topology and Groups

Week 2, Thursday

1 Preparation

- 1.07 (Induced maps),
- 1.08 (Brouwer's fixed point theorem).

2 Discussion

- 1. Let $F: S^1 \to S^1$ be the map $F(e^{i\theta}) = e^{in\theta}$. What is the induced map F_* on $\pi_1(S^1) \cong \mathbb{Z}$?
 - $x \mapsto x + n?$
 - $x \mapsto nx?$
 - $x \mapsto x^n$?
 - $x \mapsto x/n$?
- 2. (PCQ) Brouwer's fixed point theorem tells us that continuous maps between 2-discs have fixed points. Is the same true for maps between 2-dimensional annuli? (An annulus is $S^1 \times [0, 1]$).
- 3. (PCQ) Brouwer's fixed point theorem also holds for maps $F: D^n \to D^n$ where D^n is the *n*-dimensional disc; can the proof we gave be adapted to cover this case, or are new ideas required?

3 Classwork

- 1. Let X, Y be topological spaces and let $F: X \to Y$ be a continuous map. Consider the map $\gamma \mapsto F \circ \gamma$ (from loops based at x to loops based at F(x)). Show that this descends to give a well-defined homomorphism $F_*: \pi_1(X, x) \to \pi_1(Y, F(x))$, and that if Z is a third topological space and $G: Y \to Z$ another continuous map, then $G_* \circ F_* = (G \circ F)_*$.
- 2. Let X be a space and $A \subset X$ be a subset. A map $r: X \to A$ is called a *retract* if r(a) = a for all $a \in A$. Let $i: A \to X$ be the inclusion map. If there is a retract $X \to A$, show that i_* is injective. What does this have to do with Brouwer's fixed point theorem?
- 3. The Klein bottle K is obtained by gluing the opposite sides of a square as indicated in the figure below. Projection onto the x-axis defines a continuous map $p: K \to S^1$. If γ is the dotted purple loop, what is $p_*\gamma$? What is the order of γ in $\pi_1(K)$?

- 4. Show that $F_*: \pi_1(X) \to \pi_1(Y)$ is trivial in any of the following cases:
 - $\pi_1(X)$ is simple¹ and $\pi_1(X) \not\cong \pi_1(Y)$.
 - $\pi_1(X)$ is finite and $\pi_1(Y) \cong \mathbf{Z}$.
- 5. Given a 2-by-2 integer matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, consider the map $S^1 \times S^1 \to S^1 \times S^1$ given by

$$F\left(\begin{array}{c}e^{i\theta}\\e^{i\phi}\end{array}\right) = \left(\begin{array}{c}e^{i(a\theta+b\phi)}\\e^{i(c\theta+d\phi)}\end{array}\right).$$

Given that $\pi_1(S^1 \times S^1) \cong \mathbf{Z} \times \mathbf{Z}$ (where (m, n) corresponds to the loop $\begin{pmatrix} e^{imt} \\ e^{int} \end{pmatrix}$), what is the induced map F_* ?

¹Recall that a group G is called *simple* if the only normal subgroups of G are G and the trivial subgroup.

4 Periodic orbits and fixed points (nonexaminable)

A dynamical system means a system of differential equations like $(\dot{x}(t), \dot{y}(t)) = (-y(t), x(t))$. If you think of the solution as a path (x(t), y(t)) (in this case in the plane) then the differential equation tells you that this path is everywhere tangent to the vector field which points in the (-y, x) at the point (x, y).

- 1. In this example, sketch the vector field and some solution curves.
- 2. A periodic orbit is a solution (x(t), y(t)) such that (x(T), y(T)) = (x(0), y(0)) for some T > 0. Did the previous example have any periodic orbits?
- 3. Now imagine that you have a vector field on the solid torus. $S^1 \times D^2$. Suppose that the field always has a component in the S^1 -direction and that the system has a solution for arbitrarily long times. Show that there exists a periodic orbit. [Hint: Use Brouwer's fixed point theorem.]