Topology and Groups

Week 2, Monday

1 Preparation

- 1.04 (Examples, simply-connectedness),
- 1.05 (Basepoint dependence),
- 1.06 (Fundamental theorem of algebra reprise).

2 Discussion

- 1. What does *simply-connected* mean?
- 2. If I give you a simply-connected space and a pair of points, how many homotopy classes of paths are there joining these points? How did we prove this? Was the proof correct?
- 3. What did we prove next in the video? Can you give a 20-second summary of the proof?
- 4. (PCQ) What about the unit sphere $S^n = \{(x_0, \ldots, x_n) \in \mathbb{R}^{n+1} : \sum_{k=0}^n x_k^2 = 1\}$ in higher dimensions? Is it simply-connected? Why does the argument break down for S^1 ?
- 5. The picture below shows a tube traced out by a free homotopy between α and β . We know that this means α is based homotopic to $\delta^{-1} \cdot \beta \cdot \delta$. Can you sketch on the picture a family of based loops interpolating between these two?

- 6. (PCQ) Suppose that X is a topological space and $x \in X$ is a basepoint with $\pi_1(X, x) \cong S_3$, where S_3 is the group of permutations of three objects. How many free homotopy classes of loops are there in X?
- 7. (PCQ) Did you believe the final proof of the fundamental theorem of algebra?
- 8. Consider the torus T^2 considered as a square with its sides identified as in the figure. The blue and red edges of the square become loops in the torus. Let α be the blue loop and β be the red loop (meeting at the point x, the vertex). If I rotate α around the torus in the β -direction, it comes back to itself. What does that imply about the elements α and β in $\pi_1(T^2, x)$?

- 9. Consider the Klein bottle K, which you can think of as a square with its sides identified as in the figure. The blue and red edges are circles (respectively α and β) after the identifications are made. Which of the following statements is true?
 - α and β commute in $\pi_1(K, x)$.
 - β is conjugate to β^{-1} in $\pi_1(K, x)$.
 - α is conjugate to α^{-1} in $\pi_1(K, x)$.
 - α is conjugate to β in $\pi_1(K, x)$.

3 Classwork

In your learning groups, think about the following questions. We will need volunteers to present their solutions at the end of the session.

- 1. We know that if two loops based at x are freely homotopic then their homotopy classes are conjugate in $\pi_1(X, x)$. Is the converse true?
- 2. Suppose that X is a path-connected space in which two loops are freely homotopic if and only if they are based homotopic. Show that $\pi_1(X, x)$ is abelian.
- 3. The figure below shows how to glue together a Möbius strip (identifying the two red edges with a twist as indicated by the arrows):

The boundary of a Möbius strip is a circle. The *real projective plane* \mathbf{RP}^2 is obtained from a Möbius strip by collapsing this circle down to a single point. Consider the dotted purple loop below. What is the *order* of this loop when considered as an element of the fundamental group of \mathbf{RP}^2 ?

