Lecture 9: Moment map in Yang-Mills theory

Jonathan Evans

18th October 2010

The moment map

When M is a Riemann surface, the space of connections \mathcal{A} has a canonical symplectic form. Since it's just an affine space modelled on $\Omega^{1}(M ; \operatorname{ad}(P))$ its tangent space at any point is canonically isomorphic to $\Omega^{1}(M ; \operatorname{ad}(P))$ and so we can use the 2 -form

$$
\int_{M} \alpha \wedge \beta, \alpha, \beta \in \Omega^{1}(M ; \operatorname{ad}(P))
$$

(where the integral makes sense because M is 2-dimensional). Now each element $\phi \in \operatorname{Lie}(\mathcal{G})=\Omega^{0}(M ; \operatorname{ad}(P))$ generates a vector field V on \mathcal{A} by its infinitesimal action $V_{\nabla}=\nabla \phi$.

Lemma

The function $f: \nabla \mapsto-\int_{M} F_{\nabla} \wedge \phi$ is a Hamiltonian function on \mathcal{A} generating V.

Proof.

The proof is just integration-by-parts.

$$
\begin{aligned}
Q(\nabla \phi, A) & =\int_{M} \nabla \phi \wedge A \\
& =-\int_{M} \phi \wedge \nabla A \\
(d f)_{\nabla}(A) & =\langle\nabla A, \phi\rangle
\end{aligned}
$$

since $F_{\nabla+\epsilon A}=F_{\nabla}+\epsilon \nabla A+\mathcal{O}\left(\epsilon^{2}\right)$

More generally if a group \mathcal{G} acts on a symplectic manifold \mathcal{A} in such a way that its infinitesimal action is through Hamiltonian vector fields you can write a moment map

$$
\mu: \mathcal{A} \rightarrow \operatorname{Lie}(\mathcal{G})^{*}
$$

encoding the Hamiltonian functions associated to infinitesimal actions of \mathcal{G}. In our case $\operatorname{Lie}(\mathcal{G})^{*}=\Omega^{2}(M ; \operatorname{ad}(P))$ and the moment map is just

$$
\nabla \mapsto-F_{\nabla}
$$

The Yang-Mills functional is the L^{2}-norm of the moment map.

Complexifying the action of \mathcal{G}

We want to consider \mathcal{A} as a space of holomorphic vector bundles. Let us recall what that means.

Definition

A holomorphic vector bundle \mathcal{E} over a complex manifold (in our case a Riemann surface) is a complex vector bundle $\pi: E \rightarrow M$ where the total space is a complex manifold and the projection is holomorphic.

As usual on complexified 1-forms one writes $d=\partial+\bar{\partial}$ corresponding to the splitting $\Omega^{1}(M) \otimes \mathbb{C}=\Omega^{1,0}(M) \oplus \Omega^{0,1}(M)$ (here $\Omega^{1,0}, \Omega^{0,1}$ are the $\pm i$-eigenspaces for J where $(J \alpha)(v)=\alpha(i v))$. For example if $z=x+i y$ is a local complex coordinate then $d z \in \Omega^{1,0}$ since in $d z(i v)=(d x+i d y)\left(-v_{y}, v_{x}\right)=-v_{y}+i v_{x}=i(d x+i d y)\left(v_{x}, v_{y}\right)$.

On a holomorphic vector bundle \mathcal{E} one can also write down an operator $\bar{\partial}_{\mathcal{E}}$ on forms with values in $\mathcal{E}\left(\Omega^{k}(M ; \mathcal{E})\right)$. This is defined so that

$$
\bar{\partial}_{\mathcal{E}} \sigma=0
$$

for holomorphic sections $\sigma \in \Omega^{0}(M ; \mathcal{E})$ and so that the Leibniz rule

$$
\bar{\partial}_{\mathcal{E}}(f \sigma)=(\bar{\partial} f) \sigma+f \bar{\partial}_{\mathcal{E}} \sigma
$$

holds for $\sigma \in \Omega^{k}(M ; \mathcal{E}), f \in \Omega^{\ell}(M)$.

It is easy to define an operator satisfying these conditions. In some local chart $U \subset M$ there is a holomorphic trivialisation of the bundle

$$
\left.\mathcal{E}\right|_{U} \stackrel{\phi}{\cong} U \times \mathbb{C}^{n}
$$

and we define $\bar{\partial}_{\mathcal{E}} \sigma$ to be

$$
\left(\bar{\partial} \sigma_{1}, \ldots, \bar{\partial} \sigma_{n}\right)
$$

Changing local coordinates is accomplished by a holomorphic map $g: U \rightarrow G L(n, \mathbb{C})$, the new coordinates being

$$
\mathcal{E} \ni e \mapsto\left(\operatorname{pr}_{U} \phi(e), g \operatorname{pr}_{\mathbb{C}^{n}} \phi(e)\right)
$$

Under such a change

$$
\bar{\partial}_{\mathcal{E}}(g \sigma)=(\bar{\partial} g) \sigma+g \bar{\partial}_{\mathcal{E}} \sigma=g \bar{\partial}_{\mathcal{E}} \sigma
$$

since g is holomorphic.

Suppose we have a holomorphic vector bundle with a fibrewise Hermitian metric. Then we can make sense of unitary frames and observe that there is an underlying principal $U(n)$-bundle P. A unitary connection on the associated unitary vector bundle E underlying \mathcal{E} is then

$$
\nabla: \Omega^{0}(M ; E) \rightarrow \Omega^{1}(M ; E)=\Omega^{1,0}(M ; E) \oplus \Omega^{0,1}(M ; E)
$$

so we can define $\nabla^{0,1}, \nabla^{1,0}$. We say ∇ is compatible with \mathcal{E} if $\nabla^{0,1}=\bar{\partial}_{\mathcal{E}}$. If $\bar{\partial}_{\mathcal{E}}=\bar{\partial}+\alpha$ in a local unitary trivialisation then define $\nabla^{1,0}=\partial-\alpha^{\dagger}$. Ex: $\nabla=\nabla^{1,0}+\bar{\partial}_{\mathcal{E}}$ is a unitary connection compatible with \mathcal{E}. The next proposition shows that this is reversible...

Proposition

If P is a principal $U(n)$-bundle over a Riemann surface M and ∇ is a $U(n)$-connection then $\operatorname{ad}(P)$ inherits the structure of a holomorphic vector bundle over M such that

$$
\nabla^{0,1}=\bar{\partial}
$$

Proof.

It's easy to define complex charts on E : just pick local trivialisations, use the fibre coordinate vertically and pull back complex coordinates from M horizontally. The fact that M is a complex manifold means that these will glue to give the structure of a complex manifold globally and the projection will be holomorphic by construction. The main difficulty is to pick the trivialisation so as to ensure $\nabla^{0,1}=\bar{\partial}_{\mathcal{E}}$. A trivialisation is the same as a choice of local sections $\sigma_{1}, \ldots, \sigma_{n}$ which form a unitary basis at each point. Notice that in the complex structure we have described these sections will trace out complex submanifolds and hence end up as holomorphic local sections...
...but holomorphic sections will obey $\bar{\partial}_{\mathcal{E}} \sigma=0$, so to ensure $\nabla^{0,1}=\bar{\partial}_{\mathcal{E}}$ we'll have to find a basis of local sections $\sigma=\left\{\sigma_{i}\right\}_{i=1}^{n}$ for which $\nabla^{0,1} \sigma_{i}=0$. We'll do this next time!

