Lecture 9: Moment map in Yang-Mills theory

Jonathan Evans

18th October 2010

Jonathan Evans ()

Lecture 9: Moment map in Yang-Mills theory

18th October 2010 1 / 10

< 🗗 🕨 🔸

3

The moment map

When M is a Riemann surface, the space of connections \mathcal{A} has a canonical symplectic form. Since it's just an affine space modelled on $\Omega^1(M; \mathrm{ad}(P))$ its tangent space at any point is canonically isomorphic to $\Omega^1(M; \mathrm{ad}(P))$ and so we can use the 2-form

$$\int_{M} \alpha \wedge \beta, \ \alpha, \beta \in \Omega^{1}(M; \mathrm{ad}(P))$$

(where the integral makes sense because M is 2-dimensional). Now each element $\phi \in \text{Lie}(\mathcal{G}) = \Omega^0(M; \text{ad}(P))$ generates a vector field V on \mathcal{A} by its infinitesimal action $V_{\nabla} = \nabla \phi$.

Lemma

The function $f: \nabla \mapsto -\int_M F_{\nabla} \wedge \phi$ is a Hamiltonian function on \mathcal{A} generating V.

・ロト ・回ト ・ヨト

Proof.

The proof is just integration-by-parts.

$$egin{aligned} Q(
abla \phi, A) &= \int_M
abla \phi \wedge A \ &= -\int_M \phi \wedge
abla A \ (df)_
abla (A) &= \langle
abla A, \phi
angle \end{aligned}$$

since $F_{\nabla + \epsilon A} = F_{\nabla} + \epsilon \nabla A + \mathcal{O}(\epsilon^2)$

э

э

< (17) > <

More generally if a group \mathcal{G} acts on a symplectic manifold \mathcal{A} in such a way that its infinitesimal action is through Hamiltonian vector fields you can write a *moment map*

$$\mu:\mathcal{A}
ightarrow \mathrm{Lie}(\mathcal{G})^*$$

encoding the Hamiltonian functions associated to infinitesimal actions of \mathcal{G} . In our case $\operatorname{Lie}(\mathcal{G})^* = \Omega^2(M; \operatorname{ad}(P))$ and the moment map is just

$$\nabla \mapsto -F_{\nabla}$$

The Yang-Mills functional is the L^2 -norm of the moment map.

Complexifying the action of ${\mathcal G}$

We want to consider ${\cal A}$ as a space of holomorphic vector bundles. Let us recall what that means.

Definition

A holomorphic vector bundle \mathcal{E} over a complex manifold (in our case a Riemann surface) is a complex vector bundle $\pi : E \to M$ where the total space is a complex manifold and the projection is holomorphic.

As usual on complexified 1-forms one writes $d = \partial + \bar{\partial}$ corresponding to the splitting $\Omega^1(M) \otimes \mathbb{C} = \Omega^{1,0}(M) \oplus \Omega^{0,1}(M)$ (here $\Omega^{1,0}, \Omega^{0,1}$ are the $\pm i$ -eigenspaces for J where $(J\alpha)(v) = \alpha(iv)$). For example if z = x + iy is a local complex coordinate then $dz \in \Omega^{1,0}$ since in $dz(iv) = (dx + idy)(-v_y, v_x) = -v_y + iv_x = i(dx + idy)(v_x, v_y)$.

() < </p>

On a holomorphic vector bundle \mathcal{E} one can also write down an operator $\bar{\partial}_{\mathcal{E}}$ on forms with values in $\mathcal{E}(\Omega^k(M;\mathcal{E}))$. This is defined so that

$$\bar{\partial}_{\mathcal{E}}\sigma = 0$$

for holomorphic sections $\sigma \in \Omega^0(M; \mathcal{E})$ and so that the Leibniz rule

$$\bar{\partial}_{\mathcal{E}}(f\sigma) = (\bar{\partial}f)\sigma + f\bar{\partial}_{\mathcal{E}}\sigma$$

holds for $\sigma \in \Omega^k(M; \mathcal{E})$, $f \in \Omega^{\ell}(M)$.

It is easy to define an operator satisfying these conditions. In some local chart $U \subset M$ there is a holomorphic trivialisation of the bundle

$$\mathcal{E}|_U \stackrel{\phi}{\cong} U \times \mathbb{C}^n$$

and we define $\bar{\partial}_{\mathcal{E}}\sigma$ to be

$$(\bar{\partial}\sigma_1,\ldots,\bar{\partial}\sigma_n)$$

Changing local coordinates is accomplished by a holomorphic map $g: U \to GL(n, \mathbb{C})$, the new coordinates being

$$\mathcal{E} \ni e \mapsto (\mathrm{pr}_U \phi(e), g \mathrm{pr}_{\mathbb{C}^n} \phi(e))$$

Under such a change

$$ar{\partial}_{\mathcal{E}}(g\sigma) = (ar{\partial}g)\sigma + gar{\partial}_{\mathcal{E}}\sigma = gar{\partial}_{\mathcal{E}}\sigma$$

since g is holomorphic.

Suppose we have a holomorphic vector bundle with a fibrewise Hermitian metric. Then we can make sense of unitary frames and observe that there is an underlying principal U(n)-bundle P. A unitary connection on the associated unitary vector bundle E underlying \mathcal{E} is then

$$abla : \Omega^0(M; E) o \Omega^1(M; E) = \Omega^{1,0}(M; E) \oplus \Omega^{0,1}(M; E)$$

so we can define $\nabla^{0,1}, \nabla^{1,0}$. We say ∇ is compatible with \mathcal{E} if $\nabla^{0,1} = \bar{\partial}_{\mathcal{E}}$. If $\bar{\partial}_{\mathcal{E}} = \bar{\partial} + \alpha$ in a local unitary trivialisation then define $\nabla^{1,0} = \partial - \alpha^{\dagger}$. Ex: $\nabla = \nabla^{1,0} + \bar{\partial}_{\mathcal{E}}$ is a unitary connection compatible with \mathcal{E} . The next proposition shows that this is reversible...

(日)(4月)(4日)(4日)(日)

Proposition

If P is a principal U(n)-bundle over a Riemann surface M and ∇ is a U(n)-connection then $\operatorname{ad}(P)$ inherits the structure of a holomorphic vector bundle over M such that

$$\nabla^{0,1} = \overline{\partial}$$

Proof.

It's easy to define complex charts on E: just pick local trivialisations, use the fibre coordinate vertically and pull back complex coordinates from Mhorizontally. The fact that M is a complex manifold means that these will glue to give the structure of a complex manifold globally and the projection will be holomorphic by construction. The main difficulty is to pick the trivialisation so as to ensure $\nabla^{0,1} = \bar{\partial}_{\mathcal{E}}$. A trivialisation is the same as a choice of local sections $\sigma_1, \ldots, \sigma_n$ which form a unitary basis at each point. Notice that in the complex structure we have described these sections will trace out complex submanifolds and hence end up as holomorphic local sections...

< 🗗 >

...but holomorphic sections will obey $\bar{\partial}_{\mathcal{E}}\sigma = 0$, so to ensure $\nabla^{0,1} = \bar{\partial}_{\mathcal{E}}$ we'll have to find a basis of local sections $\sigma = \{\sigma_i\}_{i=1}^n$ for which $\nabla^{0,1}\sigma_i = 0$. We'll do this next time!